
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On Use Cases and Their Relationships in the Unified Modelling
Language
Citation for published version:
Stevens, P 2001, On Use Cases and Their Relationships in the Unified Modelling Language. in H
Hussmann (ed.), Fundamental Approaches to Software Engineering: 4th International Conference, FASE
2001 Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2001
Genova, Italy, April 2–6, 2001 Proceedings. Lecture Notes in Computer Science, vol. 2029, Springer-Verlag
GmbH, pp. 140-155. DOI: 10.1007/3-540-45314-8_11

Digital Object Identifier (DOI):
10.1007/3-540-45314-8_11

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Fundamental Approaches to Software Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28969191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/3-540-45314-8_11
http://www.research.ed.ac.uk/portal/en/publications/on-use-cases-and-their-relationships-in-the-unified-modelling-language(b57a3b03-5c97-478f-8b74-daadd2610652).html


On Use Cases and Their Relationships in the

Unified Modelling Language

Perdita Stevens�

Division of Informatics
University of Edinburgh

Abstract. In the Unified Modelling Language, use cases are provided
as a way of summarising the requirements on a system. They are de-
fined informally as specifications of sets of sequences of actions, and sev-
eral relationships between use cases are informally defined. Dependable,
tool-supported software development necessitates precise definitions of
all these concepts but the topic has so far received little attention in the
literature, beyond what is present in Catalysis. This paper explores how
these notions can be formalised whilst staying as close as possible to the
UML standard, makes some suggestions and raises further questions.

1 Introduction

The Unified Modelling Language has been widely adopted as a standard language
for modelling the design of (software) systems. Nevertheless, certain aspects of
UML are not yet defined precisely. This paper is concerned with one such aspect:
use cases and their relationships. The relationship between a use case and its
constituent actions, and especially the implications of this for the relationships
between use cases, are a particularly frequent source of confusion; we have not
reached the point where a tool could support the use of use cases without making
major decisions concerning how to interpret the UML standard.

In this paper we discuss how use cases and their relationships may be for-
malised. We aim to use the minimum of formal machinery possible; so, for ex-
ample, we model use cases as plain labelled transition systems, rather than as
processes in some particular process algebra. 1 A major aim of this work is to be
faithful to the UML standard wherever possible: UML is a hard-fought compro-
mise and it seems sensible to try to formalise what is currently intended rather
than, or at least before, suggesting improvements to that intention. There are,
however, several points at which our formalisation attempt forces us to conclude
that the UML standard needs amendment.
� Email: Perdita.Stevens@dcs.ed.ac.uk. Fax: +44 131 667 7209
1 Given that process algebras are typically explained and given semantics using la-

belled transition systems, working directly with the LTSs is indeed “more basic”,
requiring strictly less machinery: it gives us a well-defined notion of what it would
mean for an alternative translation into a process algebra to be consistent with our
decisions, without requiring us to enter into the process algebra wars.
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The paper is structured as follows. The remainder of this section includes a
note on standards and terminology, and a brief discussion of related work. In
Sect. 2, we discuss the way UML sees use cases as made up of constituent actions.
We model use cases and raise questions concerning their relationship with the
system that provides them. In Sect. 3, we go on to discuss the “dependency”
relationships between use cases, covering �include� in detail. In Sect. 4 we
consider the more controversial relationship, generalisation between use cases;
here we fail to find an adequately simple formalisation of UML’s intentions,
and indeed expose some problems with even the informal description. Finally in
Sect. 5 we conclude and discuss future work.

1.1 Note on standards and terminology

This paper is based on UML1.3, the current standard at the time of writing. It is
hoped that this work may feed into the ongoing construction of UML2.0, a major
aim of which is to increase the precision of UML. The reader is assumed to be
familiar with UML and should, in particular, be aware that UML’s treatment of
use cases changed significantly between versions 1.1 and 1.3, in response to criti-
cisms of UML1.1’s treatment: many UML books, however, still refer to UML1.1.
We will refer to [10] as evidence of the intentions of some of the authors of UML,
but it is important to note that the definition of UML is the OMG standard
[7], not what is contained in any UML book. We cite material from [7] by page;
thus, [7] (3-90) indicates page 90 of Sect. 3 of the UML standard, that is, of the
Notation Guide.

Catalysis is described principally in [5]. Readers need to be aware that the
notation used there, though UML-like, is not standard UML; and also that
some technical terms have different meanings in UML and in Catalysis. Unless
otherwise stated, this paper uses the UML notions.

1.2 Related work

Perhaps surprisingly, given the frequency of mailing list questions and informal
discussions of use cases and their relationships, there seems to be no previous
work that formalises use cases in a way comparable to the present. In prac-
tice, many use case experts such as Alistair Cockburn (see e.g. [4]) advocate
an informal approach to use cases, in which use cases are simply considered as
tasks. This is arguably the right approach for a practitioner to take; but even so,
see Sect. 5 for Cockburn’s comment on deficiencies in current understanding of
generalisation of use cases. The closest comparator to the present work is Gun-
nar Övergaard’s recent PhD thesis [9], which reached the author too late to be
considered in detail here. At first sight, a major difference is that Övergaard’s for-
malisation does not seem to consider fully the implications of the dynamic choices
that are made by the parties to a use case. The thesis supercedes an earlier paper
[8], which formalised some aspects of use cases in UML1.1 and was influential on
the development of UML1.3, considered here. The authors of the development



method Catalysis [5], have also been more concerned with preciseness than many
of those involved in UML: we will naturally turn to Catalysis for ideas.

There has been more work that formalises UML activity diagrams. We men-
tion particularly Bolton and Davies’ work defining activity diagrams as CSP
processes [3]. In the present work we are interested, as stated, in formalising
use cases using the minimal machinery possible, so we refrain from introduc-
ing any particular process algebra for describing use cases; however, it would
be interesting in future to combine the two approaches, especially with the aim
of formalising the interactions between different use cases in an overall system
workflow. Note that in the present work we do not consider interactions or in-
terference between use case instances, either of the same or different use cases,
at all.

Theoretical work which is relevant to particular sections of this work is dis-
cussed in those sections.

2 What is a use case and what is it made of?

A use case diagram gives a high-level view of the requirements of a system: it
shows the actors of a system – that is, the roles played by humans or external
systems that interact with it – and the tasks, or use cases, which the instances of
the system and actors collaborate to perform. Not all actors need be involved in
all use cases; an association between an actor and a use case shows the potential
for communication between instances of the use case and the actor. Use cases
may in fact be used to describe the requirements on subsystems, components
etc. (that is, on any Classifier), so we follow the UML standard and use the term
“entity” to describe the system, subsystem, component etc. whose requirements
are documented by a use case.

Check
Status

Place
Order

Fill
Orders Credit

Establish

Customer

Salesperson Shipping clerk Supervisor

Fig. 1. Basic use case diagram, adapted from [7] (3-90)

The most crucial passages on use cases in the standard are the following:

The use case construct is used to define the behavior of a system or other
semantic entity without revealing the entity’s internal structure. Each use



case specifies a sequence of actions, including variants, that the entity can
perform, interacting with actors of the entity. In the metamodel UseCase
is a subclass of Classifier, specifying the sequences of actions performed by
an instance of the UseCase. The actions include changes of the state and
communications with the environment of the UseCase.

[7] (2-120)

Each use case specifies a service the entity provides to its users, i.e. a specific
way of using the entity. The service, which is initiated by a user, is a complete
sequence. This implies that after its performance the entity will in general be
in a state in which the sequence can be initiated again. A use case describes
the interactions between the users and the entity as well as the responses
performed by the entity, as these responses are perceived from the outside
of the entity. A use case also includes possible variants of this sequence, e.g.
alternative sequences, exceptional behavior, error handling etc.

[7] (2-124)
Like most design notations, use cases are used in two different ways: (a) by

someone wanting to design the entity, to describe what a correct design must
do; or (b) by someone wanting to use the entity as a black box – for example, in
the design of another entity – to describe the services offered and their correct
use. The main difference between the needs of these users will be the nature of
the actions involved: the designer will probably begin with abstract, conceptual
actions which may never have an exact counterpart in any implementation (even
the direction of a communication may not have been decided when the first use
cases are described [5]) whereas the user will require a description in which the
actions do correspond directly to communications with the entity. The distinc-
tion will not be important for our purposes here, however, where action can be
taken in either sense.

It is also said ([7] 2-120,2-125) that use cases may be described in a variety
of ways – for example, text, state charts, pre- and post-conditions – which may
shed some light on what a use case is intended to be, as we shall discuss. None
of these descriptions is privileged as a definition, however.

The first thing to note is that a use case has a dual existence, like other
Classifiers (classes, components, etc). On one hand, it may often usefully be
identified with the set of its instances. That is, just as it is sometimes useful
to identify a class with the set of objects in that class, it is sometimes useful
to identify a use case with the set of instances of the use case. An instance of
UseCase is one particular (maximal) sequence of actions from the many which
comprise the use case. More precisely a UseCaseInstance is

the performance of a sequence of actions specified in a use case. [...] An
explicitly described UseCaseInstance is called a scenario.

(2-120) One may think of a UseCaseInstance as a single-branch labelled tran-
sition system, and of a scenario as the sequence of labels on the branch; the
difference will not be important for our purposes.



On the other hand, just as classes may often be more usefully regarded as
“things” in their own right – collections of attribute and operation specifications
and implementations – use cases too may be studied as Classifiers, neglecting
their instances.

We will consider the two aspects in more detail and propose a synthesis.

2.1 Use cases as classifiers

In the UML metamodel, UseCase is a specialisation of Classifier. This implies,
among other things, that use cases can have structural and behavioural features,
such as attributes and operations.

Structural features The attributes of a use case are the means by which it is
recorded how the state of a use case changes as a sequence of actions is carried
out. In practice, it is usual to regard the entity and the actors as having certain
conceptual attributes – conceptual in that there is no intention that a given
attribute has a direct counterpart in any implementation – and then the state
space of one of the use cases of the entity should induce an equivalence relation
on the set of (joint) conceptual states of the entity and the actor instances.
Notice, here, the subtlety introduced by the lack of any constraint in UML on
the multiplicity of associations between actors and use cases: the number of
instances of a given actor (potentially) communicating with a given instance
of a use case might even be unbounded! In practice it is hard to imagine an
example where more than one instance of a given actor communicates with a
given instance of a use case (there are none in [7] or [10] for example). If there
are two distinct such actor instances then almost by definition they play different
roles in the use case and should therefore be modelled as instances of different
actors. We suggest that this should be enforced in UML by constraining the actor
end of any association between a use case and an actor to have multiplicity either
“0,1” or “1”, and will assume this constraint.

Behavioural features In the UML metamodel an operation is an example of a
behavioural feature. We omit to explain the details here: suffice it to say that
the behavioural features of a use case will specify those actions that the entity
can send and receive which are relevant to the use case. We will work simply
with unanalysed actions; as with states, different choices of high-level syntax are
possible to reflect the structure of actions as, for example, operation invocations
with particular parameter values. Notice that there is in particular no general
expectation that an action should have a reply, though a high level use case
specification language that translated down into our basic formalisation might
impose such restrictions when appropriate.

2.2 Use cases as specifications of sequences of actions

A use case “specifies a sequence of actions with variants”. Taken at face value,
this suggests that what is needed is a definitive way to decide, given a use



case and a sequence of actions, whether the sequence of actions matches the
specification given by the use case.

However, we must take more care over “with variants”. In practice, use cases
are normally described in English or pseudocode and include statements like “if
[something happens within a calculation] the system ...” and “the user enters a
datum and the system acts accordingly: ...”. That is, the points at which the
variations may happen (the branch points) are specified.

s1

s1 s2

s2

s3 s5

s4

s4

s3b

c

b

c

a

a

a
b

c

a

a

c

b

a
UC1

UC2

Fig. 2. Location of branch points

To illustrate the implications of this, let us represent the choices as branch
points in a labelled transition system, or equivalently as states with more than
one output transition in a statechart. (We illustrate both this one time to show
that it is possible to use existing UML notions: however, we do not recommend
the use of UML statecharts for this purpose, because their extra power relative
to LTSs is not required and because their correspondingly complex semantics
makes misunderstandings more likely.) The top line of Fig. 2 specifies the same
set of sequences of actions – {ab, ac} – as the bottom line. However, we argue
that they should not be regarded as interchangeable. Suppose that each of UC1
and UC2 are representations of a use case offered by a system, S, and that b
and c represent “input” actions chosen by (an instance of) actor A (for the sake
of argument, and to make it clear that it is not reasonable to expect A to “react
intelligently”, let A be an external system with which S must communicate).
Then if what S provides is UC1, A does not have to commit to entering b or
c until after the action a has happened; the choice between b and c may be
made, for example, after some computation within the actor that involves third
parties outside the scope of a model of S and does not begin until after a has
occurred (and this might be essential: a could be an “output” action which carries
information that A uses to choose the third party). However, an implementation
of A that behaves this way may fail if it tries to carry out UC2: by the time the
action a has happened, a commitment may have been made to carry out b, and
if A decides that c is what is intended there will be deadlock.



In many cases, of course, such considerations will not apply: it will often be
enough to know the set of maximal traces of the use case, without specifying
the branching structure. This makes it understandable that the UML standard
is written in terms of sets of sequences of actions. However, when describing a
use case in text, one has to go out of one’s way to avoid specifying where branch
points are; it is standard practice that use case descriptions do include this infor-
mation, because textual descriptions which do so are more natural. Moreover, a
use case described using a state chart necessarily has this information, and dis-
carding it would require deliberate identification of structurally different state
charts. Therefore it seems likely that our next proposal for a modification to
the UML standard may be acceptable: we suggest that “a use case specifies a
process, which determines a set of sequences of actions”.

The set of sequences of actions so determined is the set of maximal traces
of the process. We are using the term “process” independently of any particular
process algebra; we could use “labelled transition system”, “automaton” (but
not “finite state automaton”) or “(restricted) state chart” instead.

2.3 Formalisation and discussion

Definition 1. A use case u = (S, L,→, S0) consists of:

– a (possibly infinite) set S of states
– a (possibly infinite) set L of labels

– a transition relation →⊂ S × L × S; as usual we write s
l→ t rather than

(s, l, t) ∈→
– a (possibly infinite) set of initial states S0 ⊆ S

We will use the usual variants on the notation, writing for example s → t when
there is some l such that s

l→ t, and s �→, or equivalently s ∈ final(u), when
there are no l, t such that s

l→ t. We write l1 . . . ln ∈ sequences(u) iff there exist
s0, . . . sn such that s0 ∈ S0 and s0

l1→ s1 . . .
ln→ sn �→.

For technical reasons we will insist that S0 ∩ final(u) = ∅, that is, that every
start state has some transition.

Specifying a use case We deliberately do not concern ourselves with how the
components of a use case are given, because there are many choices that will
be appropriate in different circumstances. The choice, more than our underlying
LTS structure, will determine what computation it is possible for a tool to carry
out concerning a use case and with what complexity. For example, if it is possible
to abstract away from data to the extent that the sets S and L are finite, the
whole range of model-checking techniques becomes available. More usually, these
sets will be infinite (or extremely large, depending for example on whether one
models with real integers or machine integers) but structured according to the
structural and behavioural features of the use case, and ultimately of the entity
and the actors.



Nevertheless, any way of giving the components should be expected to satisfy
a sanity condition that the state of the use case “contains no more information
than” the states of the participants in the use case. Precisely:

Definition 2. Let u = (S, L,→, S0) be a use case for an entity with statespace
E in which the entity communicates with actors with statespaces A1 . . . An.2 A
quotient map of u is a surjective function

h : E × A1 × . . . An → S.

A specification formalism should include such a quotient map for each use case.
Most simply, if the statespace of the use case is constrained to be written in
terms of a subset of the attributes of the entity and actors involved, the obvious
induced quotient map might be assumed.

Why maximal traces? We have chosen to restrict attention to finite sequences
of actions, where no further action is possible, because there is an assumption
running through the UML standard that the sequences of actions that comprise a
use case are finite. This does not imply that the process needs to be a tree, or even
acyclic. We could restrict attention to acyclic processes, which would obviously
facilitate reasoning about total correctness. However to impose such a restriction
in general would seem unreasonable: there is no obvious objection to reaching
the same state by two different routes, or even several times. Considering only
maximal traces, in this way, does limit the usefulness of use cases for describing
continuing behaviour; but this is already a recognised weakness of use cases.
This formalisation might provide a basis for remedying the weakness, but this
is beyond our scope here.

Specifying branching structure As we have argued, branching is a normal feature
of use case descriptions. It is normal, however, for the conditions under which the
branches are taken to be underspecified at this stage; the precise conditions may
not be known, or may depend on data of the system and/or the actors which
the specifier does not choose to model. There is a style of specification (and
Catalysis’ recommendations, for example, are close to it) in which the specifier
would add “conceptual” attributes to system and actors and write conditions
in terms of these; but it is far from universal. For simplicity, therefore, we will
model choices as simple non-determinism in an LTS.

2.4 Use cases as (pre- and) post-conditions

Pre- and post-conditions (hereinafter PPCs) are suggested in the UML standard
as one way of describing a use case, and in the Catalysis method they are the
2 Notice the use of our restriction that there is at most one instance of a given actor

communicating with a given use case: this enables us to confuse actor instances with
actors with impunity, and we shall continue to do so



main such method. Evidently they are not sufficient for recording intended con-
tracts between the system and its actors which are more complex than a simple
relation between the states before and after an instance of the use case occurs
– they provide no way to talk about the nature of the interaction between the
system and its actors. Thus two implementations of a use case could in general
satisfy the same PPC, but not be substitutable for one another from the point of
view of an actor, if, for example, one implementation expected two inputs from
the actor where the other expected three. (In Catalysis use cases are identified
with (joint and/or abstract) actions; use cases are decomposed into sequences
(sic) of smaller use cases/actions. This is an interesting approach; however, in
UML use cases and actions are quite distinct concepts, so we will not consider
it further here.)

PPCs are, however, a very convenient way to specify use cases which are
simple, and/or which should be specified at a very high level. How does this
view interact with the others?

Following Catalysis, we consider PPCs written in terms of conceptual at-
tributes of the system and the actors : recall that this is the same information
which determines our proposed states of use cases via quotient maps.

Definition 3. Let u = (S, L,→, S0) be a use case for an entity E with actors
A1 . . . An, and let h : E × A1 × . . . An → S be its quotient map.3

Let a PPC be given as a relation PP ⊆ (E×A1× . . . An)×(E×A1× . . . An),
where if p fails the pre-condition (p, q) �∈ PP for any q; we write p fails pre(PP ).
Then

1. PP and u are compatible if PP respects h, in the sense that whenever
h(p) = h(p′) and h(q) = h(q′) we have (p, q) ∈ PP ⇔ (p′, q′) ∈ PP .

2. u satisfies PP iff both
(a) PP and u are compatible, and
(b) whenever s0 ∈ S0 and s0

l1→ s1 . . .
ln→ sn �→ and h(p) = s0 and h(q) = sn,

we have either (p, q) ∈ PP or p fails pre(PP ).

Intuitively, to say that a use case and a PPC are compatible is to say that the
PPC uses no more state than is recorded in the use case. If this is not the case,
then the question of whether the use case satisfies the PPC is nonsensical.

Notice that in the simplest case, where the state of a use case is determined
by giving values for a subset of the attributes of the entity and its actors, a
PPC written in terms of that same subset of attributes will automatically be
compatible with the use case, as expected.

We shall later need the following:

Definition 4. Let u = (S, L,→, S0) be a use case for an entity E with actors
A1 . . . An, and let h : E × A1 × . . . An → S be its quotient map. The induced
pre- and post-condition of u, written PP (u), is

{(p, q) ∈ (E × A1 × . . . An) × (E × A1 × . . . An) :
h(p) = s0 ∈ S0 and ∃s0 → s1 . . . → sn �→ such that h(q) = sn}

3 by a slight abuse of notation we use E both for the entity and its state space, etc.



Lemma 1. Any use case satisfies its induced pre- and post-condition. �

Supply
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Order
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Arrange
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Request
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<<extend>>

<<include>>
<<include>>
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the salesperson asks for 
the catalog

1 *

Salesperson

Fig. 3. �include� and �extend� dependencies between use cases: copied from [7]
(3-93)

3 �include� dependency between use cases

The intention of the �include� relationship is to show subtasks as separate
use cases; for example, in order to show that certain subtasks are shared by
�include�ing them in several use cases, or to demonstrate the use of a pre-
existing component to carry out a subtask. The most relevant passage is:

An include relationship between two use cases means that the behavior de-
fined in the target use case is included at one location in the sequence of
behavior performed by an instance of the base use case. When a use-case
instance reaches the location where the behavior of an another use case is
to be included, it performs all the behavior described by the included use
case and then continues according to its original use case. This means that
although there may be several paths through the included use case due to
e.g. conditional statements, all of them must end in such a way that the
use-case instance can continue according to the original use case. One use
case may be included in several other use cases and one use case may in-
clude several other use cases. The included use case may not be dependent
on the base use case. In that sense the included use case represents encap-
sulated behavior which may easily be reused in several use cases. Moreover,
the base use case may only be dependent on the results of performing the
included behavior and not on structure, like Attributes and Associations, of
the included use case.



([7] 2-126: a subset of this information also occurs on 2-120)
We must take care over the interpretation of “the included use case may not

be dependent on the base use case”. In [10] it is stated that the included use
case has access to the attributes of its base, which apparently contradicts the
lack of dependence; but indeed, it is not clear in what sense an included use
case can have a result if it is not allowed to affect the state of its parent! We
interpret the lack of dependence as meaning simply that the included use case
makes sense, that is, is a valid use case, in its own right. Now as an included use
case can define its own attributes as well as having access to those of its parent,
we conclude that its quotient map should induce a possibly finer equivalence on
the state of the entity and actors than its parent did.

Definition 5. A use case v = (S′, L′,→′, S′
0) with quotient map hv is suitable

for inclusion in u = (S, L,→, S0) with quotient map hu if

1. hv is finer than hu; that is, hv(p) = hv(q) ⇒ hu(p) = hu(q);
2. |hv(h−1

u (s)) ∩ S′
0| ≤ 1 for all s ∈ S.

We write huv for the unique surjective map S′ → S such that huv ◦ hv = hu

In terms of attributes, condition 2 amounts to saying that if the included use case
defines a new attribute, then given values for the attributes already present in
the base use case there must be a single (“default”) value for the new attribute.
This avoids the need to invent data for the extra attribute(s). If there are no
new attributes, that is, if hu = hv, the condition is vacuous.

We interpret the instruction that the base use case must depend only on
the result of the included use case as meaning that the base use case must be
describable in terms which allow the substitution of any use case with the same
induced PPC as the intended one. We restrict the circumstances under which
inclusion is allowed, for convenience and to reflect the intention that �include�
(unlike �extend�) is used for unconditional, once-only inclusion of behaviour.
Thus we define:

Definition 6. A use case u = (S, L,→, S0) with quotient map hu includes use
case v = (S′, L′,→′, S′

0) with quotient map hv via Source I→ Target if

1. v is suitable for inclusion in u;
2. I ∈ L \ L′;
3. Source, Target, S0 are pairwise disjoint subsets of S;
4. hu(p) I→ hu(q) is a transition in u exactly when all of: (p, q) ∈ PP (v),

hu(p) ∈ Source, hu(q) ∈ Target hold;
5. any element of sequences(u) includes at most one occurrence of I;
6. the only transitions out of Source or into Target are those labelled I.

Such a use case depends only on the result of a suitable v, not on its details.
To get a fully described use case including v itself we replace the source-target
gap by the actual behaviour of v, identifying source states with the appropriate
start states of v and target states with the appropriate final states; precisely:



Definition 7. If u includes v via Source I→ Target then the composite use case
include(u, v, I) = (S′′, L′′,→′′, S′′

0 ) where

1. S′′ = S \ Source \ Target
.∪ S′

2. L′′ = L \ {I} .∪ L′
3. For s and t in S′′, s →′′ t iff one of the following holds:

– s → t in u (note that by insisting s, t are in S′′ we automatically discard
transitions to Source or from Target)

– s → s′ ∈ Source in u and t ∈ hv(h−1
u (s′)) ∩ S′

0 (that is, t is a start state
of v corresponding to a source in u)

– t′ ∈ Target and t′ → t in u and t′ = huv(s) (that is, s is a final state of
v corresponding to a target in u)

– s →′ t in v
4. S′′

0 = S0

The easy result that relates this process view to the trace inclusion view
found in the standard is:

Lemma 2. If l1 . . . ln ∈ sequences(include(u, v, I)), then either

– l1 . . . ln ∈ sequences(u); or
– for some 1 < m ≤ p ≤ n we have l1 . . . lmIlp . . . ln ∈ sequences(u) and

lm+1 . . . lp−1 ∈ sequences(v).

�

We make no formal restriction on when the first case can occur, but to stay
within the spirit of the �include� relation this should indicate that something
exceptional happened “before” the “inclusion point” of v. Because use cases are
allowed to include exceptional or erroneous cases, in which the use case instance
might be “aborted” before v becomes relevant, it does not seem sensible to take
literally the view that every trace of the composite use case should include a
trace of v. One could make this artificially the case by writing v to include a
trivial “not applicable” trace to be included at the end of any trace of u on which
v is never truly reached, but this seems pointless.

The �extend� relationship between use cases is similar; it is more complex
but raises no substantially new issues. For reasons of space we omit a detailed
treatment.

4 Generalisation of use cases

This is the most controversial of UML’s relationships between use cases. (Cock-
burn writes, for example “In general, the problem with the generalizes relation is
that the professional community has not yet reached an understanding of what
it means to subtype and specialize behavior...” [4] p241.) The Notation Guide
contains no example of generalisation of use cases, and says only the “A gener-
alization from use case A to use case B indicates that A is a specialization of B”
(3-92). The example pictured above is taken from [10] and is typical of the way
the relationship is used: the idea is that the child use case should be a more fully
described version of its parent. The Semantics Guide appears more helpful:
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Fig. 4. Generalisation of use cases, from [10]

Generalization between UseCases means that the child is a more specific
form of the parent. The child inherits all Features and Associations of the
parent, and may add new Features and Associations.

(2-120)

A generalization relationship between use cases implies that the child use
case contains all the attributes, sequences of behavior, and extension points
defined in the parent use case, and participate [sic] in all relationships of the
parent use case. The child use case may also define new behavior sequences,
as well as add additional behavior into and specialize existing behavior of
the inherited ones. One use case may have several parent use cases and one
use case may be a parent to several other use cases.

(2-126)
Trying to combine this with the property which any UML Generalization is

supposed to have, namely, that the child GeneralizableElement may be safely
substituted for the parent, demonstrates that this description is at least in-
complete. To see this, suppose A is an external system, behaving as an actor
expecting to interact with an entity E according to a use case u. Presumably A
includes code to react correctly to all actions which it may receive from E. Sce-
narios in the use case u contain a mixture of actions sent from A to E, those sent
from E to A, and internal actions which may for example change the state of E.
If we replace u by a specialising use case v which is allowed to contain arbitrary
new scenarios, there is no guarantee that A will be able to react correctly, or at
all, to actions which it may receive as part of the new scenario. That is, v will
not automatically be substitutable for u. Let us examine what it should mean
for v to be a specialised version of u.

Essentially, the wording of the current standard does not distinguish between
two fundamentally different possible relations between u and v, each of which
arguably reflects the view that more design decisions have been reflected in the
description of v than of u:

1. v is more deterministic than u in what it says about the entity’s actions



2. v replaces descriptions of high-level actions by lower-level more detailed de-
scriptions.

Each of these points requires further analysis. (2) is essentially what we did
with �include�, though a more flexible treatment would be useful. The main
thing to notice about (1) is that it only makes sense if we know which actions
are chosen by the entity and which by an actor. So far, we have not needed to
make such a distinction, and indeed we pointed out that it is sometimes desirable
to describe use cases before such decisions have been taken. From the point of
view of an actor for whom v should be substitutable for u, it would be quite
reasonable for v to include fewer transitions chosen by the entity, or indeed by
other actors, but it would be unreasonable to include fewer transitions chosen
by A. Again, A may have been coded to assume that it is permitted to take a
certain transition, and might break if v forbade this. From a theoretical point
of view the most obviously appealing formalism to use to reflect this question
of where choices are made would be the alternating transition systems of [2];
but as remarked before this conflicts with our desire to use minimal machinery
– especially as we would need to do at least a little adaptation to deal with
the presence of more than the two choice-makers considered there. Perhaps the
reactive module work of [1], might help. For now we adapt an approach due
to Jackson in [6], and say that from the point of view of a given actor A, the
actions that make up a use case may be classified into inputs (actions initiated
by A affecting E), outputs (actions initiated by E affecting A) and all others
(including internal actions by E and communications between E and actors other
than A: recall that UML does not permit direct communication between actors,
so this list is exhaustive). To what extent does an actor care about more than
its own input/output? It presumably does care about the PPC of the use case;
after all, this is what specifies what the use case actually achieves. For simplicity
in these early explorations, let us assume that u and v have identical label-sets
and a bijection f from the start-states of v to the start-states of u.

From the point of view of an actor A who sees the actions of a use case u

as FromMe
.∪ ToMe

.∪ Other, write l⇒ for l→ preceded or followed by arbitrarily
many Other transitions. Then a candidate definition is:

Definition 8. v = (S′, L,→′, S′
0) specialises u = (S, L,→, S0), iff the following

all hold:

– v satisfies PP (u)
– there is some relation �⊆ S′ × S such that sv � su implies

• whenever i ∈ FromMe and su
i⇒ s′u is a transition in u, then there is a

transition sv

i

⇒′ s′v in v such that s′v � s′u;

• whenever o ∈ ToMe and sv

o

⇒′ s′v is a transition in v, then there is a
transition su

o⇒ s′u in u such that s′v � s′u;
• s′0 � f(s′0) for all s′0 ∈ S′

0.



A point that follows on from this is that if u involves several actors, which use
cases v are specialisations of u depends on from which actor’s point of view we
see the relationship. What is the relation that results from insisting that v be a
specialisation from the point of view of all (beneficiary) actors? What difference
does it make if actors are assumed capable of cooperation? Can these relations
be put in a testing framework? Given appropriate high-level syntax, can they
be computed? We have abandoned the total correctness aspects of [6] (because
the assumptions seem too strong for our context); can we recover something
useful when we want it? For these or some similar definitions, do �include�
and generalisation interact cleanly, for example, is there some sense in which you
can be permitted to include a more specialised version of what you expected,
and is the resulting composite use case a more specialised version of what you
would have had with the more general included use case? This may be too much
to hope.

5 Conclusions and further work

It is possible, and often pragmatically advisable, to use UML use cases in a com-
pletely informal way, to describe the tasks to be carried out with the help of the
system. Sometimes, however, we would like to have the option of relating use
cases to the design of the system that implements them – or to that of another
system that uses them – in a soundly-based, tool-supportable way. Moreover, re-
gardless of whether users of UML choose to describe their use cases in full detail,
it seems reasonably to expect that the UML standard’s informal explanations of
what would be the case if one did, would be formalisable. In this paper we have
begun an attempt to provide, using the minimum of formal machinery, such a
formalisation. It is surprising (at least to the author), given the modest scope of
the present work, how much already has to be done. Directions of future work
might include, besides the answering of questions left open here:

High level formalisms for describing use cases We have deliberately avoided
choosing a high-level formalism for defining use cases, preferring to work at the
basic level of labelled transition systems or processes. These can for example be
defined using any process algebra or any kind of automata that has a labelled
transition system semantics; alternatively, they could be defined using (a suit-
able formalisation of) statecharts. We suggest that it is probably impractical to
standardise on one such language within UML, at least at this point; were a
formalisation of statecharts to be agreed in UML2.0, this would be an obvious
candidate, but others might be more appropriate in different circumstances. It
seems more appropriate to use the minimal notion of labelled transition system
in the UML standard.

Interference We should consider interactions and interference between use case
instances, both of the same use case and of different use cases. Pace [7]’s state-
ment “This implies that after its performance the entity will in general be in a state



in which the sequence can be initiated again.”, ordering dependencies between use
cases often exist and are sometimes modelled with activity diagrams; how can
this be formalised? What is the relationship between the set of all use cases
and the entity itself? [7] (2-124) says “The complete set of use cases specifies all
different ways to use the entity, i.e. all behaviour of the entity is expressed by its use
cases.”; in what formal sense can this be true?
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[8] G. Övergaard and K. Palmkvist. A Formal Approach to Use cases and their
Relationships. In P.-A. Muller and J. Bézivin, editors, Proceedings of �UML�’98:
Beyond the Notation, pages 309–317. Ecole Supérieure des Sciences Appliquées
pour l’Ingénieur – Mulhouse, Université de Haut-Alsace, France, June 1998.

[9] Gunnar Övergaard. Formal Specification of Object-Oriented Modelling Concepts.
PhD thesis, Department of Teleinformatics, Royal Institute of Technology, Stock-
holm, Sweden, 2000.

[10] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Addison Wesley, 1998.


