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The notion of a ‘‘biological clock’’ in

women arises from the fact that oocytes

progressively decline in number to the

point of exhaustion as females get older,

along with a decades-old dogmatic view

that oocytes cannot be renewed in mam-

mals after birth [1]. This latter thinking

was challenged in 2004 when Tilly and

colleagues [2], then others [3], reported

that the rate of oocyte loss through

follicular atresia and ovulation was much

higher than the net rate of oocyte decline.

This ignited an ongoing debate about

whether the ovaries of adult mammals can

form new oocytes and follicles [4–6].

Recent work demonstrating that oocyte-

producing (oogonial) stem cells (OSCs;

also referred to as female germline stem

cells or fGSCs) exist in and can be isolated

from ovaries of adult fish [7,8], mice [2,9–

11], and even humans [11,12] has led to

new ideas about reproductive biological

clocks. Earlier this year, a paper published

in PLoS Genetics offered some of the most

direct evidence to date that oogenesis in

mice continues into adulthood under

normal physiological conditions [13].

Shapiro and colleagues use a ‘‘molecular

clock’’—based on microsatellite mutations

and a genetic trick to increase the mutation

rate to ,0.03 per cell per generation—to

track the lineage relationships of individual

cells, and reconstruct lineage trees in which

inferred ‘‘depth’’, or number of preceding

mitotic cell divisions, is proportional to

branch length [14–18]. Not surprisingly,

the authors find that oocyte lineage trees are

distinct from those of somatic cells; they then

use the size and distribution of the lineage

trees to estimate an initial oocyte progenitor

pool of three to ten cells, similar to what has

been estimated for the number of lineage-

restricted primordial germ cell (PGC) pre-

cursor cells specified early in embryogenesis

[19]. In addition, lineage trees from left and

right ovaries are not distinct, which suggests

there is substantial mixing of oocyte progen-

itors prior to the establishment of the two

different ovary populations.

One of the most intriguing findings,

though, is that oocytes exhibit a significant

and progressive increase in depth as

females age [13]. In other words, oocytes

in older mice are derived from progenitor

germ cells that have undergone more

mitotic divisions than those that gave rise

to oocytes in younger females. Two

potential causal mechanisms are offered

to explain this striking observation. The

first, and the one that Reizel et al. dedicate

the majority of their discussion to, is based

on the ‘‘production-line hypothesis’’ first

proposed by Henderson and Edwards in

1968 [20] as a potential explanation for

the increase in oocyte chromosomal ab-

normalities and infertility observed with

age. The production-line hypothesis states

that oocytes in follicles are selected for

maturation and ovulation throughout

adult life in the same sequential order as

their generation during fetal development.

That is, oocytes matured and ovulated

later in life theoretically committed to

meiosis during embryonic development

later than those germ cells that give rise

to oocytes used earlier during adulthood.

Reizel et al. carry out simulations to

depict how an embryonic meiotic produc-

tion line could account for their observa-

tions, which they refer to as ‘‘depth-guided

oocyte maturation’’. However, a major

problem with this idea is that the produc-

tion-line hypothesis is based on differences

in the timing of meiotic entry during

embryogenesis, whereas depth of a given

oocyte reflects the number of mitoses that

occurred in the premeiotic germ cell

(progenitor) that gave rise to that oocyte

before it was formed. Proliferation of

embryonic female germ cells in the mouse

ceases at embryonic day 13.5 (e13.5) just

prior to the onset of meiotic entry, which

spans five days [21–23]. It is therefore

unclear how oocytes formed at e18.5, and

presumably matured later in life (viz.

twelve months of age), would have signif-

icantly more depth than those formed only

five days earlier (e13.5), and presumably

matured first (viz. one month of age), in

lieu of any additional rounds of germ cell

mitosis between e13.5 and e18.5 (Figure 1).

We think a more logical explanation for

the observations of Reizel et al. is that

oocytes present in ovaries of older females

arise from postnatal oogenesis, as succes-

sive mitotic divisions of OSCs with age

give rise to new ‘‘deeper’’ oocytes. This

suggestion, which Reizel et al. mention

more in passing than as an explanation, is

consistent with earlier work demonstrating

the presence of rare proliferating germ

cells in ovaries of mice during postnatal life

[2]. These cells can be purified, continue

to proliferate in vitro, and when trans-

planted into the ovaries of recipient mice

generate fully functional eggs that fertilize

to produce viable embryos and offspring

[9,11]. If oocytes in older female mice

arise from actively dividing OSCs, those

oocytes would have greater depth than

oocytes from younger mice, since in

younger females the oocyte pool would

be derived either from embryonic PGCs

or from postnatal OSCs that had under-

gone fewer mitotic divisions up to that

point (Figure 1).

Interestingly, Reizel et al. also find that

unilateral ovariectomy at one month of

age results in an increase in oocyte depth

in the remaining ovary when analyzed
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Figure 1. Postnatal oogenesis through ongoing oogonial stem cell (OSC) mitosis explains increasing oocyte depth with age. (a)
Following primordial germ cell (PGC) expansion starting at embryonic day 7.5 (e7.5) in the mouse, proliferation of female germ cells (oogonia; pink)
ceases at e13.5 concomitant with a 5-day period of germ cell meiotic commitment that drives formation of oocytes (blue); since all oocytes produced
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three months later compared with oocytes

from age-matched control female mice

possessing both ovaries [13]. Past studies

with rodents have shown that following

the removal of one ovary, compensatory

ovulation occurs from the remaining ovary

through increased follicle recruitment out

of the immature follicle pool [24–29]. This

leads to maintenance of a normal ovula-

tory quota in mice possessing only a single

ovary, which persists for at least 75 weeks

post-surgery [30]. Interestingly, despite the

increased pull of follicles from the ‘‘single’’

ovarian reserve for long-term maintenance

of normal ovulation rates, premature

ovarian failure does not occur in unilater-

ally-ovariectomized mice [29–31], the

follicle pool is not depleted at a greater

rate [29–31], and there is no decline in the

rate of follicle atresia which might provide

a source of the additional immature

follicles recruited for ovulatory growth

[29]. Collectively, these historical data,

coupled with the increase in depth of

oocytes following unilateral ovariectomy

reported by Reizel et al. [13], combine to

make a compelling case for an increase in

the rate of postnatal oogenesis in the

remaining ovary as a very logical expla-

nation for these findings.

In closing, the debate over whether

mammals rely on OSCs and postnatal

oocyte production for maintenance of

ovarian function and fertility during adult-

hood is not yet settled. The recent

purification of OSCs from ovaries of adult

mice and women [9–11], and the fact that

such cells, at least in mice, differentiate

into fertilization-competent oocytes that

produce viable embryos and offspring

following intraovarian transplantation

[9,11], provide independent corroboration

of their existence and functional potential.

In addition, other work has reported the

presence of dormant premeiotic germ cells

in ovaries of aged female mice that resume

the generation of new oocytes if moved

into a young adult ovarian environment

[32]. While these types of transplantation

studies tell us what these newly discovered

cells can do, it remains unclear what OSCs

are doing in adult ovaries under normal

physiological conditions. The recent work

of Shapiro and colleagues is one of the first

reports to offer experimental data consis-

tent with a role for postnatal oocyte

renewal in contributing to the reserve of

ovarian follicles available for use in adult

females as they age. Although unequivocal

conclusions cannot be made at this point

regarding the basis of the increase in

oocyte depth described by Reizel et al.

[13], their work is nonetheless an exciting

and important addition to our understand-

ing of reproductive biology and the origin

of mammalian oocytes.
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during this time are of equivalent ‘‘depth’’, the production-line hypothesis of postnatal oocyte maturation cannot logically explain increasing oocyte
depth as females age. (b) If continued proliferation of OSCs (red) and their subsequent differentiation into oocytes (blue) during postnatal life is
superimposed on the production-line hypothesis, the emerging picture is consistent with a progressive increase in oocyte depth in females as they
age.
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