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Fast probabilistic petrophysical mapping of reservoirs
from 3D seismic data

Mohammad S. Shahraeeni1, Andrew Curtis2, and Gabriel Chao3

ABSTRACT

A fast probabilistic inversion method for 3D petrophysical
property prediction from inverted prestack seismic data has been
developed and tested on a real data set. The inversion objective is
to estimate the joint probability density function (PDF) of model
vectors consisting of porosity, clay content, and water saturation
components at each point in the reservoir, from data vectors with
compressional- and shear-wave-impedance components that are
obtained from the inversion of seismic data. The proposed inver-
sion method is based on mixture density network (MDN), which
is trained by a given set of training samples, and provides an es-
timate of the joint posterior PDF’s of the model parameters for
any given data point. This method is much more time and mem-
ory efficient than conventional nonlinear inversion methods. The
training data set is constructed using nonlinear petrophysical for-
ward relations and includes different sources of uncertainty in the

inverse problem such as variations in effective pressure, bulk
modulus and density of hydrocarbon, and random noise in re-
corded data. Results showed that the standard deviations of all
model parameters were reduced after inversion, which shows that
the inversion process provides information about all parameters.
The reduction of uncertainty in water saturation was smaller than
that for porosity or clay content; nevertheless the maximum of the
a posteriori (MAP) of model PDF clearly showed the boundary
between brine saturated and oil saturated rocks at wellbores. The
MAP estimates of different model parameters show the lateral
and vertical continuity of these boundaries. Errors in the MAP
estimate of different model parameters can be reduced using more
accurate petrophysical forward relations. This fast, probabilistic,
nonlinear inversion method can be applied to invert large seismic
cubes for petrophysical parameters on a standard desktop
computer.

INTRODUCTION

Prediction of rock and fluid properties such as porosity, clay con-
tent, and water saturation is essential for exploration and develop-
ment of hydrocarbon reservoirs. Rock and fluid property maps
obtained from such predictions can be used in exploration, apprai-
sal, or development of hydrocarbon reservoirs. Seismic data are
usually the only source of information available throughout a field
that can be used to predict the 3D distribution of properties with
appropriate spatial resolution. The main challenge in inferring prop-
erties from seismic data is the ambiguous nature of geophysical in-
formation. Uncertainty enters into the problem in at least three
levels: First, there is nonuniqueness in the inversion of (AVO) seis-

mic data for the acoustic impedances of rock, second, there is non-
uniqueness in the petrophysical inversion of the rock impedances
for rock-fluid properties given a petrophysical relationship between
the acoustic properties and rock-fluid properties, and third, there is
ambiguity in these petrophysical relationships themselves (Doyen,
1988). Therefore, any estimate of rock and fluid property maps
derived from seismic data must also represent its associated
uncertainty.
Rock physics theories are used to construct the petrophysical re-

lations that provide the link between seismic data and reservoir rock
properties. Theoretically, elastic moduli and density of rocks are
controlled by different rock properties including porosity, clay con-
tent, fluid saturations, effective pressure, fluid densities, fluid and
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mineral elastic moduli, and possibly more parameters (Avseth et al.,
2005; Mavko et al., 2009). Although some theories and laws appear
to be approximately true in many examples of similar specific rock
settings, it is very difficult to address effects of all of microscale
heterogeneity of rocks in any single set of petrophysical relations.
In practice for any particular geologic basin, petrophysical relations
are therefore semiempirical, are calibrated with well logs and
core data, and their theoretical uncertainty remains nonnegligible
(Bachrach, 2006).
Statistical rock physics has been used as a general tool to address

uncertainties associated with the petrophysical relations. Mukerji
et al. (2001), Avseth et al. (2001), Eidsvik et al. (2004), Buland
et al. (2008), and Gonzalez et al. (2008) demonstrate applications
of statistical rock physics to estimate lithology units, pay zones, and
fluid types from seismic attributes. The Monte Carlo (MC) method
(Sambridge and Mosegaard, 2002; Malinverno and Parker, 2006)
has also been used to explore all ranges of rock and fluid properties
and to simulate elastic responses associated with different petrophy-
sical forward relations. Bosch et al. (2007) show a quantitative ap-
plication of the MC sampling techniques to obtain compressional
impedance and porosity from short-offset seismic data. Bosch et al.
(2009) extend their previous work to estimate water saturation in
addition to the above two parameters and constrains the final result
by geostatistical information from well logs. Spikes et al. (2007)
show another application of the MC sampling to invert two
constant-angle stacks of seismic data for porosity, clay content, and
water saturation in an exploration setting. Bachrach (2006) applies
MC sampling to produce porosity and water saturation maps
from seismic compressional- and shear-impedance. Sengupta and
Bachrach (2007) also apply MC sampling to estimate reservoir
pay volume with its associated uncertainty from seismic data. Grana
and Della Rossa (2010) apply a sampling algorithm to produce a
priori joint PDF of porosity, clay content, water saturation, and
compressional- and shear-wave impedance using petrophysical
forward relations and a priori information about litho-fluid classes
at wellbores. Using the above joint PDF, they estimate the joint
PDF of porosity, clay content, and water saturation conditioned on
seismic compressional- and shear-wave impedance. In this way,
they propagate uncertainty from seismic data to petrophysical
parameters in a Bayesian approach. Bosch et al. (2010) provide
a general introduction about applications of MC sampling in seis-
mic inversion for reservoir properties.
Although in principle, the MC sampling method can map uncer-

tainty of petrophysical parameters, in practice, applying it to invert
seismic attributes for rock and fluid properties can be extremely
computationally demanding. For each point in the subsurface,
the forward problem (in this case the petrophysical relationships)
must be evaluated for a large number of model samples (typically
at least of the order of thousands), and this process would have to be
repeated for all data points of interest in a seismic cube, which
usually includes hundreds of millions of data points. In addition,
storing the obtained probabilistic results (many MC samples per
data point) can require large storage facilities. Consequently, effi-
cient application of MC sampling techniques requires large compu-
tational facilities and is usually implemented on a small subset of
the available data points.
As a solution, we present a mixture density network (MDN) as a

new tool for probabilistic inversion of seismic attributes to obtain
rock and fluid properties. The MDN provides a solution to the time

and the memory problems associated with the MC sampling meth-
od. Previously, Devilee et al. (1999) and Meier et al. (2007a, 2007b;
2009) show other geophysical applications of the MDN for solving
1D inverse problems. The latter papers invert global seismological
data sets for the global distribution of various rock properties and
structures in the crust and upper mantle, showing that large, seis-
mic-like data sets can be inverted efficiently and probabilistically
for 3D earth models. Shahraeeni and Curtis (2009, 2011) used
the MDN to invert acoustic velocity logs for porosity and clay con-
tent profiles down wellbores, showing that the method can be used
for probabilistic inversion of well logs.
Neural networks have also been used to classify lithofacies suc-

cessions from borehole well logs. Maiti et al. (2007) and Maiti and
Tiwari (2009) apply neural networks to identify lithofacies bound-
aries using density, neutron porosity, and gamma ray logs of the
German Continental Deep Drilling Project (KTB). However, these
two papers did not address the problem of inverting data for the joint
PDF of a continuous multidimensional model vector, as in Devilee
et al. (1999), Meier et al. (2007a, 2007b; 2009), and Shahraeeni and
Curtis (2009, 2011). Hampson et al. (2001) and Schultz et al. (1994)
also apply neural networks to predict log properties from seismic
data. They discuss several practical aspects of application of neural
networks for prediction of log properties. In addition to neural net-
works, other methods of automatic data integration are also applied
in the seismic reservoir modeling. For example, Eftekharifar and
Han (2011) apply unsupervised clustering and principal component
analysis (PCA) for modeling of reservoir rock properties from seis-
mic attributes. For other background information, Poulton (2002)
provides a detailed description of mathematical theory and other
geophysical applications of neural networks.
In this paper, we jointly invert industrial seismic compressional

and shear impedances for the joint probability density function
(PDF) of porosity, clay content, and water saturation, using cali-
brated petrophysical relations and other prior information from
wells. The resulting property maps are obtained from the integration
of geophysical information, well logs, and rock physics information
in an exploration setting. In the same way as Bachrach (2006) and
Spikes et al. (2007), in this study information about vertical and
spatial geologic continuity has been incorporated in the process
of seismic inversion for elastic impedances, and hence, indirectly
constrains the final property maps.
First, we briefly present the MDN method of solving an inverse

problem, and then introduce petrophysical forward relations, a
priori information about model parameters, and data uncertainties.
The statistical behavior of the petrophysical forward relations due to
a priori uncertainty of model parameters and noise in data are then
analyzed. After analysis of the forward function, the inversion re-
sults are presented. This is followed by a discussion about results,
and conclusions.

THEORY

Mixture density network solution
of an inverse problem

The solution to any inverse problem is a definition of the extent to
which any combination of model parameter values are consistent
with data, given the data uncertainty. In mathematical terms the
solution can be expressed as (Tarantola, 2005):
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σMðmjdÞ ¼ KρMðmÞLðfðmÞjdÞ. (1)

In this equation,m is the model parameter vector, f is the forward
function which is assumed to be known and calculable, ρM is the a
priori PDF of the model vector over the model parameter space M,
and σM is the a posteriori PDF of the model vector, which
represents the solution of the inverse problem and is normalized
by constant K. The likelihood function L measures the consistency
of a model vector m with measured data d. It represents the uncer-
tainty of the synthetic data fðmÞ due to different sources such as
theoretical uncertainties in the forward function f, and also accounts
for measurement uncertainties in data d (the vertical line represents
the fact that data d are measured and hence have fixed values).
Equation 1 represents a Bayesian solution because it combines in-
formation known prior to inversion, ρMðmÞ, with information
from a new data set, LðfðmÞjdÞ, using Bayes rule for combining
probabilities.
The mixture density network (MDN) is trained to emulate

σMðmjdÞ for any measured data d. This is achieved using pairs
of a priori samples of model and data vector (m, d). The set of sam-
ple pairs is called a training data set and is constructed in the
following way: samples mi, i ¼ 1; : : : ; N, are taken according to
the a priori model PDF ρM, and for each sample, the corresponding
synthetic data fðmiÞ are calculated. Several samples, εi;j,
j ¼ 1; : : : ; R, of data measurement uncertainty, as well as of the
theoretical uncertainty in the forward function f (both of which
are represented within the likelihood function L), are added to each
calculated synthetic data vector fðmiÞ. This results in several sam-
ples of possible measured data vectors d for each sample of the
model vector m∶fðmi; fðmiÞ þ εi;jÞ∶i ¼ 1; : : : ; N; j ¼ 1; : : : ; Rg.
Using these samples of pairs, which for short we denote (mk,
dk), k ¼ 1; : : : ; NR, the network is trained to map any data vector
including its uncertainty into an estimate of the corresponding a
posteriori PDF of model vector m. Shahraeeni and Curtis (2011)
show that the estimated a posteriori PDF is an approximation of

the MC sampled a posteriori PDF of model parameters. A more
detailed description of the MDN is given in Appendix A.

Petrophysical forward relations, a priori model PDF,
and data uncertainty

We applied the MDN inversion method to invert compressional
and shear-wave impedances derived from seismic data, for porosity,
clay content, and water saturation in a deep offshore field in Africa.
In this section, we describe the petrophysical forward relations, a
priori information about model parameters, and the seismic data
and its uncertainty.

Petrophysical forward function

The petrophysical forward relations are a combination of
Gassmann’s law to account for fluid substitution, a mixing law
to account for mixed lithology (sand and shale), and empirical depth
trend curves to describe pressure effects on the bulk and shear
moduli of reservoir rocks. The components of the output vector
of this petrophysical relation d are estimated compressional-
and shear-wave impedances, d ¼ ðIP; ISÞ; the input vector is m 0 ¼
ðϕe; VcL; sw; pe; Khc; Kw; ρhc; ρwÞ where ϕe is effective porosity,
which is defined as the void space outside of porous clay in a unit
volume of rock, Vcl is clay content, sw is water saturation, pe is
effective pressure, Khc and Kw are bulk modulus of hydrocarbon
and brine, and ρhc and ρw are density of hydrocarbon and brine,
respectively. A detailed description of the rock physics model is
given in Appendix B. This model is developed for a reservoir with
a laminated sand-shale mixture. We do not advocate it as a general
model to be used elsewhere. Instead we note that the MDN inver-
sion method on which we focus here can be used to invert any
assumed rock physics model. The one in Appendix B should, there-
fore, be regarded in general as one possibility among many others
(for another example, see Shahraeeni and Curtis, 2011).
Figure 1 shows the petrophysical forward function predictions

and measured values of P- and S-wave impedances at one well

Figure 1. Comparison between prediction of the
petrophysical forward function and measured logs
and their correlation coefficients (R). (a) Compres-
sional impedance IP (R ¼ 0.87), red curve is the
measured log and black curve is the prediction of
the petrophysical forward function. (b) Error in IP
(i.e., difference between measured and predicted
impedance divided by measured impedance.).
Red lines represent two absolute mean error inter-
vals around zero (blue line). (c) Shear-wave impe-
dance IS (R ¼ 0.91). (d) Error in IS.
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in the field. In that figure errors in the prediction of the petrophy-
sical forward function are also shown. The error of the forward
function for Ip is around 4% and for Is is around 6%. However,
in some intervals, we observe a bias in the prediction of the petro-
physical forward function (e.g., 3154–3295 m and 3312–3367 m).
It seems that on these intervals the petrophysical forward function
predictions has a systematic error, which may indicate that the se-
lected forward function in Appendix B is not able to model the elas-
tic behavior of rock on these intervals. The effect of these errors on
the petrophysical inversion result will be discussed in the “Discus-
sion” section.
Figure 2 shows crossplots of impedances and effective porosity

color coded by clay content for samples from the well in Figure 1.
The predictions of the petrophysical forward function for water sa-
turated samples at average effective pressure of the well and for
different values of clay content are shown by black curves in that
figure. These crossplots in addition to error plots in Figure 1 show
that in general the petrophysical forward function is able to model
the elastic behavior of rocks at the well. However, effect of errors
and uncertainties in the predictions of the petrophysical forward
function must be taken into account in the petrophysical inversion.
In our inverse problem, the data vector d ¼ ðIP; ISÞ is derived

from the inversion of seismic data, and is inverted for the marginal

joint PDF of the model vector with porosity, clay content, and
water saturation as its components, m ¼ ðϕe; Vcl; swÞ. Other
input parameters of the petrophysical forward relations are treated
as confounding parameters, mconf ¼ ðPe; Khc; Kw; ρhc; ρwÞ —
parameters that may vary and thus alter the uncertainty in estimated
model vector m. In mathematical terms, in the MDN solution
the confounding petrophysical parameters are integrated out in
the marginal a posteriori PDF of the model vector m:

σMðmjdÞ ¼
Z
mconf

σMðm 0jdÞ dmconf . (2)

Thus, the effect of possible variations of confounding model
parameters on the posterior PDF is integrated out, and this integra-
tion results in an increase in uncertainty of the estimated a posteriori
model vector m ¼ ðϕe; Vcl; swÞ.

Seismic data

A 3D simultaneous elastic inversion technique jointly inverted
near-, mid-, and far-angle substacks to derive estimates of the
3D distribution of compressional- and shear-wave impedances,
IP and IS. Five angle stacks were used as the input seismic data

Figure 2. Crossplot of impedances and porosity
for samples from one well. (a) Compressional im-
pedance IP versus effective porosity. Hot colors
represent higher values of clay content. Black
curves represent predictions of the petrophysical
forward function for 100% water saturated sam-
ples at the mean effective pressure of the reservoir.
(b) Shear-wave impedance IS versus effective
porosity.
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set, with angle ranges 0°–13° for near, 13°–21° and 21°–29° for
middle, 29°–37° for far, and 37°–45° for ultra-far stacks. The sam-
pling interval of the seismic data was 3 ms. The wavelet for each
angle stack was estimated at four different well locations using
reflection coefficients obtained from VP, VS, and density logs.
Structural and stratigraphic interpretations resulted in picks of 18

different horizons in the seismic data to define the geometry of the
initial model used for inversion. The a priori models for IP and IS in
each horizon were provided by the low-frequency trend of the well
logs and were extrapolated over the entire model using kriging
methods. The trend of a priori IP and IS were obtained from seismic
interval velocity (provided from seismic imaging) and the distribu-
tion of the residuals was obtained from kriging of well logs
(Dubrule, 2003, p. 3–39). The range of the variogram used for
the kriging was defined based on a priori geologic information
in each of the 18 different horizons of the model geometry. The
result of the kriging was then filtered with a low-pass filter (below
seismic band-pass) and transferred into the model geometry as prior
IP and IS model. Finally, An iterative algorithm, based on the
simulated annealing technique (Sen and Stoffa, 1991) was used
to adjust this prior model estimates of IP and IS in each bin, to op-
timize the match between the input seismic data and the synthetic
seismic response calculated by the Zoeppritz equations (Aki and
Richards, 1997).

In this way, the seismic-inversion technique combined geologic
information about the expected vertical and spatial continuity of the
medium, well-log data, and information from seismic data to pro-
vide an estimate of the distribution of IP and IS. The result for one
section, which includes one of the wells, is shown in Figure 3.

Uncertainty of the estimated values of IP and IS can be derived
either directly from the inversion algorithm (Buland et al., 2003;
Buland and Omre, 2003) or by statistical comparison between up-
scaled IP and IS values derived from well-log and seismic-inversion
results (Bachrach, 2006). In this study, the latter method was
applied and the a posteriori uncertainty of the inversion for IP
was modeled as a Gaussian distribution with zero mean and
standard deviation of σIP ¼ 0.06 IP, and for IS was modeled as a
Gaussian distribution with zero mean and standard deviation of
σIS ¼ 0.08 IS. This uncertainty means that if we take several sam-
ples of IP with an average value equal to 6000, 68% of the samples
will be between 5640 and 6360. It is important to note that applica-
tion of this method to estimate uncertainty means that IP and IS
derived from seismic inversion are assumed to be unbiased. This
assumption may be violated where the low-frequency background
model used in inversion is biased. In particular, areas of the field
with low-effective stress would be bypassed by low-frequency
background trend. However, in the area under study in this paper
abnormal pressure behavior is not reported and the low-frequency

Figure 3. The P- and S-wave-impedance for
one cross section of the 3D seismic data set.
(a) Compressional-wave impedance. The correla-
tion between inverted samples and upsclaed well
logs is R ¼ 0.88. (b) Shear-wave impedance
(R ¼ 0.85). Black curve is the upscaled measured
well log.
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trend is valid. In general, due to the fact that the statistical estimation
of uncertainty is based on well data, it can be an underestimation of
the true uncertainty away from the well.

A priori PDF of the input parameters of the forward
petrophysical function

To choose the a priori PDF of the model parameters, well-log data
from the five wells in the field were analyzed. Figure 4a shows the

values of effective porosity versus clay content for well-log samples
from the five wells. A correlation between these two parameters can
be observed in that figure. Based on this observation, the a priori
maximum allowable range or interval for effective porosity and clay
content was defined as the region Tðϕe; VclÞ, which is shown in
Figure 4a. Figure 4b and 4c shows effective porosity versus water
saturation, and clay content versus water saturation for well-log
samples, respectively. These two figures show that, while effective
porosity and clay content values are to some extent correlated with
water saturation values, there are no hard boundaries to intervals in
which parameters lie as there are in Figure 4a. In addition, we
observe that for all samples with clay content values higher than
0.8, the water saturation is equal to one. According to these
observations we assumed a priori that porosity and clay content
were uniformly distributed over the T-area in Figure 4a. Also,
we assumed that a priori water saturation is equal to one when clay
content is higher than 80%, and that it is uniformly distributed over
the [0,1] interval for clay content values lower than 80%. We thus
assumed very weak prior information about the three parameters
of interest.
Effective pressure changes between 173 and 332 bars in the depth

intervals that we considered. We do not observe any correlation
between effective pressure and effective porosity, clay content, or
water saturation in our data set. However, according to Batzle and
Wang (1992), the bulk modulus and density of any type of hydro-
carbon (with a given value of API degree) are empirical functions of
pore pressure and temperature. The pore pressure and overburden
stress and hence the effective pressure are assumed to be hydro-
static. The empirical relation between bulk modulus (or density)
of fluid and pore pressure is transformed into a relation between
bulk modulus (or density) of fluid and effective pressure, using
the above assumption. Five different types of hydrocarbon, with
different API degrees, were observed in the well intervals we con-
sidered. For each type, the bulk modulus as a function of effective
pressure, and density as a function of effective pressure, are derived
from Batzle and Wang (1992) equations and hydrostatic assump-
tion, and shown in Figure 5a and 5b, respectively. The effect of
change of temperature over the interval of interest on both the
hydrocarbon bulk modulus and density was assumed to be negli-
gible in this study. Brine density and bulk modulus are equal to
1.008 g∕cm3 and 2.625 GPa, respectively, and are constant in all
well intervals we considered. Based on the above observations, ef-
fective pressure was assumed to be uniformly distributed between
173 and 223 bar, and bulk modulus and density of fluid were de-
rived from effective pressure using the straight lines in Figure 5 for
each of the five different types of hydrocarbon.
The above a priori probability densities are selected to be as non-

informative (conservative) as possible given the known constraints.
However, they limit possible values of the model parameters to phy-
sically realizable values in the field in this study. The MDN inver-
sion method can be applied with any a priori PDF and the above a
priori PDF’s are selected because they are more suitable for the data
in this study.

Forward modeling of IP: Effect of confounding
parameters and uncertainties

In this section, we study the effect of variations of the confound-
ing parameters and measurement uncertainties on the predictions
of the petrophysical forward function. Figure 6a shows IP as a

Figure 4. Crossplot of the parameters of the model vector. (a) Clay
content versus effective porosity; T represents the a priori region of
the porosity-clay content plane. (b) Effective porosity versus water
saturation. (c) Clay content versus water saturation.
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function of porosity, when all other input parameters of the
petrophysical forward relations are held constant at possible realis-
tic values: Vcl ¼ 0.2, sw ¼ 0.3, pe ¼ 200 bar, Khc ¼ 0.22 GPa,
Kw ¼ 2.62 GPa, ρhc ¼ 0.47 g∕ cm3, and ρhc ¼ 1.008 g∕cm3. The
uncertainty in Figure 6a is Gaussian and due to two sources: (1)
Uncertainty in the inverted value of IP and IS (i.e., measurement
uncertainty) and (2) uncertainty in the predictions of the petrophy-
sical forward function (i.e., theoretical uncertainty). The PDF of
uncertainty in the inverted value of seismic IP and IS is Gaussian
and is introduced in the section of seismic data above. The PDF of
uncertainty in the predictions of the petrophysical forward function
is also Gaussian and introduced in Appendix B. The total uncer-
tainty, which is shown in Figure 6a and 6b is the combined effect
of the above two sources of uncertainty. The PDF of this uncertainty
is Gaussian and its covariance matrix is equal to the sum of covar-
iance matrices of the above sources of uncertainty (Tarantola, 2005,
p. 35). Notice that these plots are different from plots that represent
the theoretical uncertainty alone, as might be found in other
papers (e.g., Tarantola and Valette, 1982). This is because in the
MDN inversion methodology, data measurement uncertainties

are also added to the theoretical forward equations uncertainties
(Devilee et al., 1999; Meier et al., 2007b; Shahraeeni and
Curtis, 2011).
Figure 6b shows IP as a function of porosity for the constant

values of clay content and water saturation given above, but when
the confounding parameters (i.e., effective pressure, bulk modulus,
and density of hydrocarbon) are varied according to their a priori
distributions. The thicker black and dark gray area in Figure 6b in
comparison with Figure 6a shows that the uncertainty of the
prediction of the petrophysical forward function increases due to
variations in the confounding parameters.
Figure 6c, 6d, 6e, and 6f shows variation of IP as a function

of clay content and water saturation in the same manner as Figure 6a
and 6b for porosity. In particular, Figure 6d and 6f shows the effect
of variations in the confounding parameters on the uncertainty
of IP.
Figure 7 shows a cross section of IP-ϕe for porosity equal to 15%.

Different Gaussians in that figure correspond to uncertainty in IP
due to different values of the confounding parameters (in particular
effective pressure). Note that due to theoretical relationship between

Figure 5. Properties of five different types of
hydrocarbons (with different API degrees) in the
wells. (a) Density as a function of effective pres-
sure. (b) Bulk modulus as a function of effective
pressure.
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effective pressure and P- and S-wave impedance, changes in
confounding model parameters induce a shift in the mean value
of the Gaussians. The black curve represents the sum of different
Gaussians and total uncertainty due to uncertainty in the value of
confounding parameters, measurement uncertainty and uncertainty
in the petrophysical forward function predictions.
Figure 6 shows that although IP is a strongly varying function of

porosity and clay content, and a weakly varying function of water
saturation, inference of the petrophysical parameter values from IP

estimates may well be obscured by the high uncertainty of IP due to
uncertainty in the seismic processing, and due to confounding para-
meters of the petrophysical forward relations. In the same manner as
for IP, uncertainty in IS is also high due to aforementioned sources
and the inference of petrophysical parameters from IS may also be
well obscured. Therefore, with only two data (IP and IS) for three
unknowns (porosity, clay content, and water saturation) we clearly
do not expect a unique solution. Hence, herein we aim principally to
assess how much information the seismic data provides to reduce

Figure 6. Uncertainty in the predictions of the petrophysical forward relations for IP. (a) Plot of IP versus porosity when other input parameters
of the petrophysical forward relations are held constant. Ambiguity (gray area) is due to the overall effect of theoretical and measurement
uncertainty. (b) Plot of IP versus porosity when confounding parameters of the petrophysical forward function are varied. The thicker black and
dark gray area show additional uncertainty due to variation of the confounding parameters. (c and d) Corresponding plots for IP versus clay
content. (e and f) Corresponding plots for IP versus water saturation.
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uncertainty in these three parameters. We could also do the same for
any of the other parameters in the rock physics model.

Training data set and MDN specifications

The MDN input vector consists of the P- and S-wave-impedances
d ¼ ðIP; ISÞ, and its outputs are parameters of the mixture density
model of the posterior PDF of the model vector m ¼ ðϕe; c; swÞ.
The output vectors of the training data set of the MDN were
constructed by drawing samples from the a priori PDF of the model
parameters, which are described in the a priori PDF section above.
There were 846 equally spaced samples of porosity and clay content
selected from the T-region in the ϕe-Vcl plane (Figure 4a). Forty
equally spaced samples of sw and six equally spaced samples of
pe were then selected from the intervals [0,1] and [173 bar ,
332 bar], respectively. The values of the bulk modulus and density
of each type of hydrocarbon were derived from the selected values
of pe to model the elastic behavior of the hydrocarbon (Figure 5).
The total number of model vectors constructed in this way was
642,960.
The MDN will interpolate the relationship

between d and m after training. To reduce the
interpolation error of the MDN for the desired
model parameters (ϕe, Vcl, sw) we select samples
from these parameters densely (i.e., Δϕe ¼
0.009, ΔVcl ¼ 0.0204, and Δsw ¼ 0.025).
Because the effect of confounding model param-
eters (pe, Khc, ρhc, Kw, ρw) is integrated out by
the MDN, we select a smaller number of samples
from these parameters and apply the MDN to
interpolate and integrate the effect of other
values. A denser sample selection of the above
parameters will improve the accuracy of the
MDN; however, it will increase the training time
significantly.
For each of the 642,960 a priori model vectors

selected above, one data vector (IP, IS) was
calculated using the petrophysical forward rela-
tions. Three samples of Gaussian noise with zero
mean were added to each of these data vectors to
represent data uncertainty. The covariance matrix
of Gaussian noise was equal to the sum of the
measurement and theoretical uncertainty covar-
iance matrices given in the forward modeling
section above. The number of noisy model-
data pairs derived in this way was therefore
3 × 642; 960 ¼ 1; 928; 880, which were used
as the training data set.
The number of required kernels (equation A-1), and hidden

units of the MDN were selected using a trial and error procedure
(Shahraeeni and Curtis, 2009, 2011). Here, we describe the trial and
error procedure. Four networks with different number of kernels
and hidden units were trained for 100 iterations. Then error of each
network over the well-log samples (validation error) was measured
and the network with the minimum validation error was selected to
continue the training procedure. In Table 1, a summary of training
and validation errors of the four different networks is given.
Overfitting of the network to the training data set (a source of
instability in trained neural networks — Bishop [1995]) is
controlled using the noisy training data set (Bishop, 1995,

p. 346–349). Also, the total number of weights (free parameters
of the network) is 2041, which is far smaller than the number of
training samples and reduces the probability of overfitting signifi-
cantly according to Vapnik and Chervonenkis theorem (Bishop,
1995, p. 377–380).

RESULTS

Inversion of Backus-averaged IP and IS well logs

In the first step of inversion, the Backus-averaged (Backus, 1962;
Mavko et al., 2009) P- and S-wave impedance logs are inverted
for porosity, clay content, and water saturation. Backus-averaged
P- and S-wave impedance logs can be used as low-
frequency estimates of P- and S-wave impedance logs. To evaluate
results of petrophysical inversion of Backus-averaged P- and
S-wave impedance, these results can be compared with measured
petrophysical well logs.
To have the same frequency content as seismic data, we select

a Backus averaging window equal to one-fourth of seismic

Table 1. Variation of the training and validation error due to
different choices of the MDN’s parameters.

Number of
kernels

Number of
hidden units

Normalized
training error

Normalized
validation error

5 52 −0.87 −0.73
80 −0.89 −0.74

10 27 −1.00 −0.90
40 −1.05 −0.90

Figure 7. Uncertainty in IP for different values of effective pressure (colored curves).
The black curve is total uncertainty due to uncertainty in effective pressure as a con-
founding model parameter.
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wavelength. The average seismic wave frequency in the seismic
data in this application is around 20 Hz and the average wave speed
is around 2800 m∕s, henceforth the wavelength is around 140 m.
This wavelength is much larger than the typical thickness of layers
in the well (at most 4 m) and, therefore, Backus averaging can be
used to estimate the behavior of seismic wave. The Backus aver-
aging window used was approximately one-fourth of the above seis-
mic wavelength, which is around 35 m. Figure 8a and 8b shows the
measured and Backus-averaged IP and IS for one well.
For the inversion of the Backus-averaged IP and IS logs, uncer-

tainty of data was assumed to be equal to the uncertainty of the
petrophysical forward function (Appendix A), and a priori informa-
tion about model parameters was assumed to be the same as those
described in the method section above. Another training data set
was constructed using the same procedure as explained above.
We trained a separate MDN with the above data set and applied it

to invert Backus-averaged IP and IS logs to obtain the a posteriori
PDF of porosity, clay content, and water saturation logs. The results

are shown in Figure 8c, 8d, and 8e, for porosity, clay content, and
water saturation, respectively. Note that a relatively large bias in the
value of clay content can be observed on the 3540–3640 ms inter-
val. Figure 1 shows that the predictions of the petrophysical forward
function are also biased on this interval. This observation means that
applying the petrophysical forward function for inversion can result
in large errors on the aforementioned interval.

Inversion of seismic IP and IS

The MDN with the specifications given above was trained using
the training data set fðmk; dkÞ∶k ¼ 1; : : : ; NRg to estimate the joint
PDF of model vectorm ¼ ðϕe; c; swÞ from data vector d ¼ ðIP; ISÞ.
In this section, we present results of the inversion of seismic
IP and IS.
Figure 9 shows the joint marginal PDF’s of model parameters

evaluated at a randomly chosen data point at one well in the field
with IP ¼ 7345 kg∕ðm2sÞ and IS ¼ 4658 kg∕ðm2sÞ. The measured

Figure 8. Comparison of the maximum a poster-
iori marginal PDF of petrophysical parameters
obtained from inversion of the backus-averaged
IP and IS logs and measured logs. (a) Measured
IP (black) and Backus-averaged IP (red); (b) IS.
(c) Measured porosity (black) and inverted poros-
ity (red). (d) Clay content. (e) Water saturation.
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values of model parameters for this data point are ϕe ¼ 0.19,
c ¼ 0.04, and, sw ¼ 0.13, which are shown by crosses in Figure 9.
The point estimates of porosity, clay content, and water saturation
are obtained as the MAP points of the marginal PDF’s and are equal
to 0.17 for porosity, 0.04 for clay content, and 0.12 for water
saturation.
To assess reduction of uncertainty in the model parameters after

inversion, which is due to additional information in seismic data, we
compare the posterior and the prior standard deviations. The
standard deviation for the posterior PDF’s of porosity, clay content,
and water saturation are equal to 0.02, 0.05, and 0.17, respectively,
while for the prior PDF’s they are equal to 0.09, 0.26, and 0.30,
respectively. The relative reduction in all three posterior standard
deviations shows that the inversion process decreases the uncer-
tainty of all model parameters. Remaining uncertainty in the model
parameters is mainly due to uncertainty in effective pressure, other
confounding parameters, theoretical uncertainty and error of the
petrophysical forward relations, and error in IP and IS estimates
obtained from seismic data. Note that, in general, reduction of
uncertainty of water saturation is much smaller than reduction of
uncertainty of porosity and clay content.
Figures 10 and 11 show the marginal PDF’s of porosity,

clay content, and water saturation, derived from the inversion of
seismic IP and IS in two intervals along the well profile (perfor-
mance at other wells is similar). The value of water saturation in
these two intervals varies between 10% and 100%. The first rows
in Figures 10 and 11 show results of the MDN inversion of seismic
data. To assess the accuracy of the MDN solution, an MC sampling
method was also applied to solve the same inverse problem on the
above intervals. The a priori information about model parameters
and the petrophysical forward relations used in the MC sampling
inversion were the same as the MDN inversion. The marginal PDF’s
of the model parameters, which are obtained from MC sampling,
are shown in the second row of Figures 10 and 11. Comparison
between the results of the MDN inversion and MC sampling inver-
sion shows that the MDN solution gives an acceptable approxima-
tion of the MC sampling solution. Shahraeeni and Curtis (2011)
show other examples of the comparison between MC sampling
and MDN inversion result. In those examples also, the MDN inver-
sion results are acceptable estimates of MC sampling results. It can
be argued that in some cases MDN results are better estimates of the
low-resolution logs than MC sampling results; this might be due to
the learning ability of neural networks.
In Figures 10 and 11, in addition to the marginal PDF’s of the

model parameters, a solid black line shows the result of inversion of
Backus-averaged IP and IS. A solid red line shows the maximum a
posteriori (MAP) of the marginal PDF’s of the model parameters.
Figures 10 and 11 show that the marginal PDF’s of the model
parameters derived from inversion of seismic IP and IS represent
good estimates of the inversion result of Backus-averaged IP and
IS. In particular, the MAP of the marginal PDF’s (solid red lines
in Figures 10 and 11) estimates the inversion result of Backus-
averaged IP and IS with a reasonable accuracy. The difference
between the values of porosity, clay content, and water saturation
derived from seismic IP and IS and the values of these parameters
derived as the MAP of the inversion of Backus-averaged IP and IS
can be due to errors in the processing of the seismic data.
Figure 12a shows the MAP of porosity after inverting the IP

and IS cross sections in Figure 3. Figure 12b shows the standard

deviation of the marginal distribution of porosity in this cross
section. The highest value of the color bar corresponds to the a
priori standard deviation of porosity, and throughout the cross sec-
tion the a posteriori standard deviation is smaller than this value (the
color of the a priori standard deviation is red, and the hottest color in
Figure 12b is light orange). Figures 13a and 14a show the MAP of
clay content and water saturation, respectively, after inverting IP

Figure 9. Marginal a posteriori joint PDF of model parameters
for IP ¼ 7345 ðkm∕sÞ.ðg∕cm3Þ and IS ¼ 4658 ðkm∕sÞ.ðg∕cm3Þ.
(a) Marginal joint PDF of effective porosity and clay content.
(b) Marginal joint PDF of clay content and water saturation.
(c) Marginal joint PDF of effective porosity and water saturation.
Hot colors show high probability zones. The black cross is the value
of logs for this data point.
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and IS sections in Figure 3. Figures 13b and 14b show the standard
deviations of clay content and water saturation in each section.
Again, the highest values of the color bars correspond to the a priori
standard deviation values, and it is evident that for all data points the
a posteriori standard deviation is smaller than this value.
Figure 15 shows the MAP of model parameters for 30 neighbor-

ing traces of the well in the inline section perpendicular to the
previous crossline section. Figures 12, 13, and 14, in addition to
Figure 15 show this method gives a good 3D estimate of the
underground rock and fluid properties. As indicated previously,
in addition to the MAP and standard deviation estimate of the model
parameters, any other statistical property of the model parameters
can be calculated from the estimated conditional joint PDF
pðϕe; c; swjIP; ISÞ, for any location spanned by the 3D seismic
data sets.

DISCUSSION

Figures 10 and 11 show that the MAP’s of the marginal a poster-
iori PDF of the model parameters are reasonable estimates of the
values obtained from the inversion of the Backus-averaged logs.
The error in the petrophysical inversion of seismic IP and IS can
be related to uncertainty in the inverted seismic data and the
accuracy of the petrophysical forward relations.

Figure 1 shows the measured well log of IP and IS and corre-
sponding predictions of the petrophysical forward relations. Large
biases in the predictions of the petrophysical forward relations can
be seen in the interval 3550–3700 ms. These biases result in errors
in the estimated values of porosity, clay content, and water satura-
tion obtained from inversion of Backus-averaged IP and IS
in Figure 8. In particular, we can see biases in the estimated
clay content value on the same interval in that figure. The error
over the above interval shows the effect of the accuracy of the pet-
rophysical forward relations on the petrophysical inversion result.
Appendix B shows that Reuss average of the elastic moduli of sand
and shale and Gassmann theory are applied to derive the petrophy-
sical forward function. The Reuss average is a lower bound of the
elastic moduli of a mixture of rocks; therefore, the petrophysical
forward function may underestimate the equivalent elastic moduli
of the mixture of sand and shale. Application of more accurate the-
oretical models might improve the accuracy of the petrophysical
forward function and reduce error in the petrophysical inversion
result.
Figure 16a and 16b shows IP and IS obtained from seismic

data and compare it with Backus-averaged logs for the two inter-
vals in Figures 10 and 11. This figure shows that seismic inversion
for IS in the interval 3425–3470 ms has large errors (in some

Figure 10. Marginal a posteriori PDF’s of the
model parameters from the inversion of seismi-
cally derived IP and IS for the depth interval
3335–3555 ms, in one of the wells. First row is
the marginal PDF of the model parameters ob-
tained using MDN: (a) Porosity (R ¼ 0.86).
(b) Clay content (R ¼ 0.80). (c) Water saturation
(R ¼ 0.84). Second row is the joint PDF of the
model parameters usingMC sampling: (d) Porosity
(R ¼ 0.86). (e) Clay content (R ¼ 0.80). (f) Water
saturation (R ¼ 0.84). Solid black line is the low-
resolution log. Darker areas show high probability
zones. The solid red line is the maximum a poster-
iori (MAP) of the marginal PDFs; R in each item
shows the correlation coefficient between the
MAP and low-resolution log.
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cases near 25%, around two times larger than the 14% error
used in the MDN inversion above). This error results in large
errors in the inverted values of porosity and clay content on the
same interval in Figure 10a and 10b. We also see large errors in
the inverted values of IP in the shale interval 3500–3550 ms,
which result in errors in the inverted values of clay content on
the same interval in Figure 10b. The errors in the above intervals
show the effect of the accuracy of the processed seismic data
on the petrophysical inversion result. Any improvement in the
accuracy of the inverted seismic data can reduce the effect of this
type of error.
The MDN inversion method relies on the validity of the seismic

impedance inversion. Due to several sources of uncertainty such as
wavelet parameters, seismic-to-well tie, low-frequency a priori im-
pedance model, and amplitude processing, the seismic inversion can
be biased and inaccurate away from the well. However, due to time
efficiency of the MDN inversion method, it is possible to apply
this method with multiple realizations of IP and IS obtained by
probabilistic inversion of seismic data. In such cases, for each
realization, the MDN gives the joint PDF of the petrophysical
parameters. The average of these PDF’s can be used as a petrophy-
sical model that captures uncertainties due to uncertainties in the
elastic inversion process.

Figures 9, 10, and 11 show the a posteriori uncertainty of
porosity, clay content, and water saturation is large. The high
uncertainty of model parameters stems from uncertainty about con-
founding model parameters (i.e., effective pressure, bulk modulus,
and density of hydrocarbon), uncertainty of the petrophysical for-
ward relations, and measurement uncertainty in seismic IP and IS.
In addition of course, we invert only two data for three parameters,
and hence, simply by appealing to dimensionality arguments, a
unique solution is impossible without strong a priori information.
Figures 6 and 7 show the effect of theoretical and measurement
uncertainty in addition to the effect of the confounding model
parameters on the uncertainty of IP (the behavior of IS is similar).
In particular, for water saturation, in Figure 6f, we observe that
uncertainty in the confounding model parameters results in large
uncertainty in IP values. Figure 6f shows that even when porosity
and clay content values are known, for a given value of IP the
uncertainty of water saturation is large. This means that the reduc-
tion in uncertainty in the water saturation from the petrophysical
inversion will always be small (Figures 9, 10, and 11). Bachrach
(2009) and Spikes (2007) report the same high uncertainty for a
posteriori water saturation in petrophysical inversion. Nevertheless,
the inversion process does reduce the uncertainty of all model
parameters as can be seen in Figures 12b, 13b, and 14b.

Figure 11. Marginal a posteriori PDFs of the
model parameters from the inversion of seismi-
cally derived IP and IS for the depth interval
3674–3855 ms in one of the wells. First row is
the marginal PDF of the model parameters ob-
tained using MDN: (a) Porosity. (b) Clay content.
(c) Water saturation. Second row is the joint PDF
of the model parameters using MC sampling:
(d) Porosity. (e) Clay content. (f) Water saturation.
Solid black line is the low-resolution log. Darker
areas show high probability zones. The solid red
line is the maximum a posteriori (MAP) of the
marginal PDF’s. Correlation coefficients between
low-resolution logs and MAP estimates are the
same as those shown in Figure 10.
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Figures 12a, 13a, and 14a in conjunction with Figure 15 show
that if this method is applied to invert 3D seismic IP and IS sections,
the estimates of porosity, clay content, and water saturation can
provide a detailed 3D description of rock properties in a reservoir.
This is of great value and importance for exploration and reservoir
development plans as it can help to locate possible sources of
hydrocarbon inside a reservoir. The accuracy and resolution of this
description depends on the accuracy and resolution of 3D seismic
impedance cubes, and on the accuracy of the petrophysical relation-
ships used.
In some reservoirs, it is possible to observe rocks with different

petrophysical properties (i.e., porosity and clay content) and similar
values of IP and IS (Shahraeeni and Curtis, 2011). In such cases,
due to multimodal nature of a posteriori PDF of the petrophysical
properties, applying conventional fast probabilistic inversion meth-
ods (e.g., linearized inversion with Gaussian assumption about prior
and posterior uncertainties [Rimstad and Omre, 2010]) can result in
large errors in the estimated value of porosity and clay content.
Shahraeeni and Curtis (2011) show that in those cases MDN can
estimate the a posteriori PDF of the petrophysical parameters with
acceptable accuracy. Also, we must note that the technique pre-
sented by Rimstad and Omre (2010) is very efficient and useful

for integration of geological prior information in the petrophysical
inversion procedure.
Due to large uncertainty associated with data, petrophysical

forward relations, and confounding model parameters, the a poster-
iori PDF of model parameters, and especially water saturation
will always have large uncertainty. To address this uncertainty
appropriately, any petrophysical inversion method must be prob-
abilistic. The MDN method is a time- and memory-efficient meth-
od for probabilistic nonlinear inversion. The nonlinear inversion of
each crossline section, which included 170,322 data points and
resulted in the full joint posterior PDFs of ϕe, c, and sw, only took
340 s on a regular desktop computer. The number of crossline sec-
tions is 1461, so inverting the whole 3D seismic cube with
248,840,442 data points takes only around 138 hours on the same
desktop computer. Note that solving the same number of petrophy-
sical inverse problems using the MC sampling method will take
around 27,500 hours on the same desktop computer (nearly
200 times more than MDN). What is more, the mixture density
neural network encoded the full joint PDF of all model parameters
for all data points into only 2041 scalar values (i.e., the number of
MDN weights), which requires 20.5 KB memory for storage. The
storage of the MC sampling results requires 3.2 MB, which means

Figure 12. Estimated porosity and its associated
uncertainty for one section from the seismic cube,
which includes one of the wells. (a) Maximum a
posteriori of the marginal PDF of porosity.
(b) Standard deviation of porosity. The black line
represents the upscaled well log.
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Figure 13. Estimated clay content and its associated uncertainty
for one section from the seismic cube, which includes one of the
wells. (a) Maximum a posteriori of the marginal PDF of clay
content. (b) Standard deviation of clay content. The black line
represents the upscaled well log.

Figure 14. Estimated water saturation and its associated uncer-
tainty for one section of the seismic cube, which includes one of
the wells. (a) Maximum a posteriori of the marginal PDF of
water saturation. (b) Standard deviation of water saturation.
The black line represents the upscaled well log.
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that for all data points around 2.4 TB (2.4 × 1012 Bytes) of mem-
ory is required. Using conventional inversion methods such as MC
sampling to invert 3D seismic cubes is thus possible only when
large parallel computing resources are available. On the other
hand, the MDN inversion method is a fully probabilistic, non-
Gaussian, nonlinear, petrophysical inversion method that is applic-
able to large seismic cubes on a standard desktop computer.
We must consider that there is a trade-off between time and mem-

ory efficiency of the MDN inversion technique, and the accuracy of
the a posteriori PDF of model parameters estimated by this techni-
que (Shahraeeni and Curtis, 2011). An MDN with a larger number
of kernels usually results in a smaller training and validation error
(Table 1), however, the time required to train such a network in-
creases exponentially with the number of kernels. Another draw-
back of using MDN is that the selection of the number of
kernels and hidden units is a trial and error procedure, which
can take a long time. However, this time is usually much smaller
than the time required for petrophysical inversion using the MC
sampling method.

CONCLUSIONS

A fast probabilistic inversion method based on mixture density
neural networks has been applied to jointly invert compressional
and shear-wave impedances for the joint probability density func-
tion (PDF) of porosity, clay content, and water saturation in a 3D
seismic cube. The inversion results at a well location show that the
maximum a posteriori (MAP) of the marginal PDF’s of the model
parameters is a reasonable estimate of corresponding low-resolution
log. Residual errors correspond to errors in the petrophysical for-
ward relations, and differences between the seismic IP and IS and
measured logs at wells. The uncertainty in the a posteriori PDF of
the model parameters and in particular water saturation is high. This
high uncertainty is related to presence of measurement uncertainty
in IP and IS and also uncertainty about confounding model
parameters. Nevertheless, the inversion process reduces the a priori
uncertainty of all model parameters.
The result of the inversion gives a detailed description (to within

the seismic resolution) of rock and fluid properties in the reservoir

Figure 15. Estimated model parameters around
the well in the inline section. (a) Porosity. (b) Clay
content. (c) Water saturation. The black line repre-
sents the upscaled well log.

Figure 16. Comparison between seismically
derived IP and IS (red) and upscaled measured
logs (black). (a and b) are for the depth interval
3333–3570 ms. (c and d) are for the depth interval
3674–3855 ms. Correlation coefficients are given
in Figure 3.
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that can be used for exploration and development planning. In
particular, it can be used to find areas with high effective porosity
and low clay content (pay zones), and also areas with possible
sources of hydrocarbon based on the estimated water saturation.
The advantages of the mixture density neural network inversion

method over other probabilistic inversion methods are its memory
and computational efficiency. Due to the large size of 3D seismic
cubes, these two properties are essential for any nonlinear probabil-
istic petrophysical inversion. As the inversion method is indepen-
dent of the particular seismic attributes chosen in this case study (IP
and IS), it can be used to invert any set of pertinent seismic attributes
such as compressional- and shear-wave velocity and bulk density, or
compressional impedance and Poisson’s ratio. The main drawback
of using MDN is the trial and error procedure of selecting the
number of kernels and hidden units.
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APPENDIX A

MIXTURE DENSITY NETWORK

One application of neural networks is to estimate some given
mapping from an input vector x to a target vector t. Any uncertainty
associated with the target vector in this mapping can be represented
by the probability density of t conditioned on (or given) x, written as
pðtjxÞ. The MDN is a type of neural network that can be trained to
emulate an approximation to pðtjxÞ. Within the MDN, pðtjxÞ is
represented by a mixture or sum of known probability densities:

pðtjxÞ ¼
Xm
i¼1

αiðxÞφiðtjxÞ. (A-1)

In equation A-1, φiðtjxÞ is a known PDF called a kernel, m is the
number of kernels, and αiðxÞ is the mixing coefficient that defines
the weight of each kernel in the mixture (the sum). This representa-
tion of the PDF is called a mixture model.
A mixture of densities with Gaussian kernels can approximate

any PDF to any desired accuracy, given a sufficient number of ker-
nels with appropriate parameters (Shahraeeni and Curtis, 2011). We
assume kernels are Gaussian with a diagonal covariance matrix:

φiðtjxÞ ¼
1

Q
c
l¼1

� ffiffiffiffiffi
2π

p
σilðxÞ

� exp

�
−
1

2

Xc
l¼1

ðtl − μilðxÞÞ2
σ2ilðxÞ

�
;

(A-2)

where c is the dimensionality of the output vector t ¼ ðt1; : : : ; tcÞ,
μilðxÞ is the lth component in the mean vector of the ith kernel, and
σil is the lth diagonal element in the covariance matrix of the ith
kernel. Therefore, the mean and covariance of the ith Gaussian
kernel are μi ¼ ðμi1; : : : ; μicÞ, and Σi ¼ diagðσ2i1; : : : ; σ2icÞ,
respectively.
Appropriate values for the parameters of the MDN (i.e.,

mixing coefficients, mean and covariance matrix of kernels) in

equations A-1 and A-2 can be predicted by using any standard neur-
al network (Bishop, 1995). We apply a two-layer feed-forward
neural network with a single hidden layer of hyperbolic tangent
functions and an output layer of linear functions.
In the network training phase, n statistically independent pairs of

example input and output vectors fxj; tjg are used as training sam-
ples. Unknown parameters of the network, which are referred to as
weights, are determined in such a way that the likelihood of
the training samples with respect to the density function in
equation A-1 is maximized. The maximization of the likelihood
is equivalent to minimization of the error function E, defined as

E ¼
Xn
j¼1

Ej ¼ −
Xn
j¼1

ln pðtjjxjÞ. (A-3)

To find the minimum of E, an optimization algorithm called
scaled conjugate gradient is used. This algorithm determines the
minimum of E with respect to the weights of the network, itera-
tively. In each iteration the algorithm requires derivatives of E with
respect to the network weights, which are derived by using the so-
called back-propagation algorithm (see Bishop (1995) for an expla-
nation of the optimization and back-propagation algorithms).
Shahraeeni and Curtis (2011) show two examples of MDN

solution of inverse problems and compare results with Monte Carlo
(MC) sampling solution. Their results show that MDN can estimate
MC sampling solution with an acceptable accuracy.

APPENDIX B

PETROPHYSICAL FORWARD RELATIONS

The petrophysical forward function is a set of mathematical
equations that links the petrophysical parameters of a rock to its
elastic parameters (i.e., P- and S-wave velocity and density). Many
parameters can have an influence on the elastic parameters of a rock
including porosity, size and shape of grains, clay content, fluid
saturation, type of mineral matrix, sorting and arrangement of
grains, effective pressure, temperature, burial, and history of the
rock (i.e., diagenesis, tectonics, etc.). In this study, the approach
to the petrophysical forward function construction is to explain
the influence of these parameters on the elastic properties as much
as possible.
In the field under study, we only observe turbidite sands within

shaley intervals. In this field, shaley intervals are defined as inter-
vals with clay volume larger than 60%, and effective porosity lower
than 5%. First, we develop the petrophysical forward function for
the shaley intervals. Shales are normally not cemented and silt
grains are suspended in the clay matrix of shales (Avseth, 2005).
In this case, Reuss average can be used to estimate the elastic mod-
uli of shale layers:

Ksh ¼
�
1 − Vcl

Kqz

þ Vcl

Kclay

�
−1

(B-1)

μsh ¼
�
1 − Vcl

μqz
þ Vcl

μclay

�
−1

(B-2)

In the above equations, Vcl is clay content, Kqz and μqz are bulk
and shear moduli of silts, which are assumed to be mainly
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composed of quartz, Kclay and μclay are the corresponding
parameters of fluid saturated clay particles, and Ksh and μsh are
the corresponding parameters of shales.
We applied the approach of Meadows et al. (2005) to model Kclay

and μclay as empirical functions of effective porosity and effective
pressure. We slightly modified the aforementioned approach by
using effective porosity instead of total porosity. However, due
to the fact that this approach is an empirical approach, this modi-
fication would not impose any additional error on the modeled elas-
tic parameters of clay. Well-log data on the shaley intervals are
applied to calibrate the empirical relationships. In this sense the pet-
rophysical forward function is empirical.
Second, we develop the petrophysical forward function for sand

intervals. In sand intervals, clay particles are assumed to be dis-
persed in the sand matrix and therefore total porosity can be
represented as a function of effective porosity and clay content:

ϕ ¼ ϕe

1 − Vcl
. (B-3)

In the above equation, ϕ is total porosity, and ϕe is effective
porosity.
Following the approach of Nur et al. (1995), bulk and shear

moduli of dry sand, Kdry and μdry, is modeled as

Kdry ¼ Kqz

�
1 −

ϕ

ϕc

�
; (B-4)

μdry ¼ μqz

�
1 −

ϕ

ϕc

�
. (B-5)

In the above equation, ϕcis critical porosity. The ratio ϕ∕ϕc is
represented as an empirical function of effective pressure and
porosity (Chao, 2009). The above empirical functions are calibrated
with well-log data. Based on the available data at wells, the effect
of other potentially influential parameters such as temperature or
diagenesis is assumed to be negligible in this petrophysical forward
function. The existence of such effects in some areas of the field
will result in inaccurate predictions of the petrophysical forward
function.
In this study, we assume that rocks are macroscopically

homogenous, pores are interconnected, fluid is frictionless, and
the rock-fluid system is closed. Therefore, Gassmann theory can
be used to perform fluid substitution for different values of water
saturation (Wang, 2001). Using the bulk and shear moduli of dry
sand in equations B-4 and B-5, we obtain the following equations:

Ksand ¼ Kdry þ
�
1 −

Kdry

Kqz

�
2

∕
�
ϕ

Kf

þ ð1 − ϕÞ
Kqz

þ Kdry

K2
qz

�
;

(B-6)

μsand ¼ μdry: (B-7)

Here Kf is the bulk modulus of saturating fluid.
The pore fluid bulk modulus Kf is the bulk modulus of the mix-

ture of water and hydrocarbon inside the effective pore space. By

assuming a homogeneous mixture of water and hydrocarbon, this
bulk modulus is obtained as

Kf ¼
�
SW
KW

þ 1 − SW
KH

�
−1
. (B-8)

In the above equation, SW is water saturation, KW is the bulk
modulus of brine, and KH is the bulk modulus of hydrocarbon.
The interconnectivity of pores in shale is questionable, and
therefore, application of Gassmann for them can result in errors.
However, in this study we observe that the effect of this error
can be neglected. More accurate petroelastic models might be used
to model the behavior of shale and therefore reduce errors.
geologic observations at the well locations suggest that sand-

shale mixtures in this field are mainly laminated. The petrophysical
forward function for a laminated sand-shale mixture is derived by
assuming that laminas are arranged perpendicular to the direction of
wave propagation (Dvorkin and Gutierrez, 2001). For this arrange-
ment, the bulk and shear moduli of sand-shale mixture are derived
by Backus averaging of the bulk and shear moduli of sand and shale
laminas:

Kmix ¼
�
1 − Vcl

Ksand

þ Vcl

Kshale

�
−1
; (B-9)

μmix ¼
�
1 − Vcl

μsand
þ Vcl

μshale

�
−1
. (B-10)

Note that the above two equations are the Reuss average of elastic
moduli of sand and shale laminas, which is a lower bound of the
elastic moduli of laminas. Therefore, if the perpendicular wave in-
cident assumption is violated in the laminated sand-shale mixture,
application of the above formulas result in an underestimate of the
equivalent elastic moduli of the mixture.
Assuming that the earth is isotropic and linearly elastic, the

seismic behavior of sediments can be completely characterized
by three parameters: bulk modulus, shear modulus, and bulk den-
sity. Bulk density ρmin is calculated as the volumetric average of
density of solid phase and liquid phase. The P- and S-wave impe-
dances are derived from the bulk and shear moduli of saturated rock
(equation B-9, B-10), and bulk density:

IP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρmixðKmix þ 4∕3μmixÞ

p
; (B-11)

IS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρmix μmix

p
. (B-12)

The above petrophysical forward relations are calibrated with
data from eight wells in the field under study to construct the
petrophysical forward function used in the inversion process.
Because the petrophysical forward function is calibrated on sev-

eral wells, its uncertainty can be large. For high effective pressure
(more than 100 bar) these uncertainties can be modeled by a Gaus-
sian PDF with zero mean and standard deviation of 4% for IP and of
6% for IS (Chao et al., 2009).
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