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ON FINITE DIFFERENCE SCHEMES FOR DEGENERATE

STOCHASTIC PARABOLIC PARTIAL DIFFERENTIAL

EQUATIONS

ISTVÁN GYÖNGY

Abstract. Finite difference approximations in the space variable for
possibly degenerate stochastic parabolic PDEs is investigated. Sharp
estimates for the rate of convergence are obtained, and sufficient con-
ditions are presented under which the speed of approximations can be
accelerated to any given order of convergence by Richardson’s method.
The main theorems generalise some results from [5] and [6] to degenerate
SPDEs.

1. Introduction

We study spatial discretisations

duht (x) = (Lht (x)uht (x) + ft(x)) dt+
∞∑
ρ=1

(Mhρ
t uht (x) + gρt (x)) dwρt , (1.1)

t ∈ [0, T ], x ∈ Gh, for stochastic parabolic PDEs

dut(x) = (Ltut(x) + ft(x)) dt+

∞∑
ρ=1

(Mρ
t ut(x) + gρt (x)) dwρt , (1.2)

t ∈ [0, T ], x ∈ Rd, with initial condition

u0(x) = ψ(x), x ∈ Rd. (1.3)

Here (wρ)∞ρ=1 is a sequence of independent Ft-Wiener processes carried on

a probability space (Ω,F , P ), equipped with the filtration F = (Ft)t≥0.
The operators L and Mρ, ρ = 1, 2, ..., are differential operators in x, with
random time dependent coefficients, adapted to the filtration F , such that
L is a second order differential operator and Mρ are first order operators,
of the form

L =

d∑
α,β=0

aα,βt (x)DαDβ and Mρ =

d∑
α=0

bα,ρbt(x)Dα, ρ = 1, 2, ...,

respectively. The stochastic parabolicity condition is assumed (see Assump-
tion 2.1 below). Such equations arise in filtering theory of partially observed
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2 I. GYÖNGY

diffusion processes Z = (X,Y ), as equations for the unnormalised density of
the signal process X at time t, given the observation process Y until time t.
Therefore effective numerical algorithms for solving (1.2)-(1.3) are of great
practical importance. There are many methods introduced to solve (1.2)-
(1.3) numerically. We take here finite difference operators Lh and Mhρ to
approximate the solution u of (1.2)-(1.3) by the solution uh of (1.1) with
initial condition uh0 = ψ on a fixed grid Gh of mesh-size |h|.

Finite difference approximations for deterministic PDEs are studied ex-
tensively in the literature. See for instance [2] and the references therein.
However, there are only a few results published for degenerate equations.
Sharp rate of convergence estimates are obtained in [3] for deterministic
(possibly) degenerate parabolic and elliptic SPDEs with monotone finite
difference schemes. Rate of convergence estimates of finite difference approx-
imations for stochastic parabolic PDEs are are obtained under the strong
stochastic parabolicity condition, i. e., when there is a constant κ > 0 such
that

(2aij − biρbjρ)zizj ≥ κzizi

for all ω ∈ Ω, t ≥ 0 and x ∈ Rd.
About hundred years ago L. F. Richardson suggested a method of acceler-

ating the convergence of numerical approximations depending on a parame-
ter, for example on the mesh-size |h| of the grid in the case of finite difference
approximations (see [9] and [10]). He demonstrated that the accuracy of the
approximations can be dramatically increased if one takes suitable mixtures
of approximations with different step-sizes. His idea is based on the exis-
tence of an expansion of the finite difference approximation in powers of
the step-size, which makes it possible to find such mixtures where the lower
order powers are cancelled out. Therefore it is important to find sufficient
conditions under which numerical approximations admit power expansions
with respect to a parameter which is proportional to the error of the method.
The possibility of such expansions have been studied thoroughly in numer-
ical analysis. See, for example, the book [8] on Richardson’s idea applied
to finite difference approximations for deterministic PDEs. In [6] Richard-
son’s idea is implemented to a class of monotone finite difference schemes for
(possibly) degenerate parabolic and elliptic PDEs, and in [?] Richardson’s
idea is implemented to stochastic PDEs satisfying the strong parabolicity
conditions. Both in[6] and [?] general conditions are obtained under which
the accuracy of finite difference approximations in the supremum norm can
be made as high as desired. In the present paper we generalise some results
from [6] and [?] to SPDEs satisfying only the stochastic parabolicity con-
ditions. We present sharp rate of convergence estimate and give sufficient
conditions under which the accuracy of the accelerated schemes is as high as
we wish. In the special case of when the finite difference approximations are
defined by replacing the partial derivatives ∂∂xi by centred finite differences
along the basis vector ei our main theorem reads as follows: The accuracy
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of the (spatial) finite difference approximations to (1.2)-(1.3) be accelerated
to any order if the initial condition and free terms are sufficiently smooth in
x and the matrix

ãt(x) := (2aij − biρbjρ)
can be decomposed as

at(x) = σt(x)σTt (x) (1.4)

by a sufficiently smooth matrix σ in x. Clearly, requiring a sufficiently
smooth factorization (1.4) is a rather restrictive condition. Nevertheless this
condition is easily applicable to the equation of the unnormalised conditional
density in nonlinear filtering, since this factorization condition is satisfied
even in the general setting of correlated signal and observation noises when
the diffusion coefficients of the signal noise is sufficiently smooth.

For survey papers on the application of Richardson’s method to various
numerical approximations we refer to [1] and [4]

The paper is organised as follows. In Section 2 basic notions and notation
are introduced and the main results are presented. In Section 3 the main
tools are given. The proof of the main theorems are given in the last section,
Section 4

We fix a probability space (Ω,F , P ), equipped with an increasing family
of σ-algebras (Ft)t≥0, such that F0 contains the P -zero sets of F . The σ-
algebra of predictable subsets of Ω × [0,∞) is denoted by P. We fix also
a sequence of independent Wiener processes (wρt )

∞
ρ=1, such that wρt is Ft-

measurable and wρt −w
ρ
s is independent of Fs for 0 ≤ s ≤ t, for every integer

ρ ≥ 1. Unless otherwise stated, the summation convention with respect to
repeated integer-valued indices is used throughout the paper.

2. Formulation of the main results

We consider the equation

dut = (Ltut + ft) dt+ (Mρ
tut + gρt ) dwρt , (2.1)

for ω ∈ Ω, (t, x) ∈ [0, T ]× Rd =: HT with some initial condition

u0(x) = ψ(x), x ∈ Rd, (2.2)

where

Ltφ = aαβt DαDβφ, Mρ
tφ = bαρt Dαφ,

Here and below the summation with respect to α and β is performed over
the set {0, 1, ..., d} and with respect to ρ, over the positive integers {1, 2, ...}.
Assume that aαβt = aαβt (x) are real-valued, bαt = (bαρt (x))∞ρ=1 are l2-valued

P × B(Rd)-measurable functions on Ω×HT for all α, β ∈ {0, 1, ...}.
A necessary condition that the Cauchy problem (2.1)-(2.2) be well-posed

is the condition of stochastic parabolicity:
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Assumption 2.1. For all (ω, t, x) ∈ Ω×HT and z ∈ Rd

d∑
i,j=1

(2aijt − b
iρ
t b

jρ
t )zizj ≥ 0.

To formulate an existence and uniqueness theorem for the generalised
solution we need to require smoothness conditions on the coefficients aαβ,
bα, the initial value ψ, and free terms f , g.

Let m ≥ 0 be an integer and let Wm
2 be the usual Hilbert-Sobolev space

of functions on Rd with norm ‖ · ‖Wm
2

.

Assumption 2.2. For each (ω, t) the functions aijt are max(m, 2) times, the
functions a0i

t , a0i
t , a00

t are m times continuously differentiable in x for i, j ∈
{1, ..., d}. The l2-valued functions bαt = (bαρ)∞ρ=1 are m-times continuously

differentiable in x. There are constants Kl, l = 0, ...,max(m, 2) such that

|Dlaijt | ≤ Kl for l ≤ max(m, 2),

|Dlaα0| ≤ Kl, |Dla0α| ≤ Kl, |Dlbαt |l2 ≤ Kl, |Dlbt|l2 ≤ Kl for l ≤ m
for all α ∈ {0, 1..., d} and i, j ∈ {1, ..., d}.

Assumption 2.3. We have ψ ∈ L2(Ω,F0,W
m
2 ). The function ft is Wm

2 -

valued, gρt , ρ = 1, 2, ..., are Wm+1
2 -valued predictable functions given on

Ω× [0, T ]. Moreover, for gt := (gρt )∞ρ=1 and

‖gt‖2W l
2

:=

∞∑
ρ=1

‖gρt ‖2W l
2

we have

E

∫ T

0
(‖ft‖2Wm

2
+ ‖gt‖2Wm+1

2
) dt+ E‖u0‖2Wm

2
=: K2

m <∞.

Remark 2.1. If Assumption 2.3 holds with m > d/2 then by Sobolev’s em-
bedding of Wm

2 into Cb, the space of bounded continuous functions, for al-
most all ω we can find a continuous function of x which equals to u0 almost
everywhere. Furthermore, for each t and ω we have continuous functions of
x which coincide with ft and gt, for almost every x ∈ Rd. Therefore when
Assumption 2.3 holds with m > d/2, we always assume that ψ, ft and gt
are continuous in x for all t.

We look for the solution of (2.1)-(2.2) in Hm(T ), the Banach space of
Wm

2 -valued weakly continuos predictable processes u = (ut)t∈[0,T ] with the
norm defined by

‖u‖2Hm
2 (T ) = E sup

t∈[0,T ]
‖u(t)‖2Wm

2
<∞.

We use the notation (ϕ, φ) for the inner product of ϕ and φ in L2(Rd).
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Definition 2.1. A W 1
2 -valued weakly continuous predictable process u =

(ut)t∈[0,T ] is a solution to (2.1)-(2.2) if almost surely for all ϕ ∈ C∞0 (Rd)

(ut, ϕ) = (u0, ϕ) +

∫ t

0
(−aijs Djus, Diϕ) + (ajsDjus, ϕ) + (asus, ϕ) ds

+

∫ t

0
(biρs Dius + bρs , ϕ) dwρs

for all t ∈ [0, T ], where aj := −Dia
ij + a0j + aj0 and the summation in the

repeated indices i, j is performed over their range {1, 2..., d}.

The following result is known from [7] (see also [1]).

Theorem 2.1. Let Assumptions 2.2, 2.3 and 2.1 hold. Then (2.1)-(2.2) has
a unique solution u. Moreover, u ∈ Hm, it is a strongly continuous process
with values in Wm−1

2 , and there exists a constant N depending only on T ,
d, m and Kj , j ≤ max(m, 2), such that

E sup
t≤T
‖ut‖2Wm

2
≤ NK2

m. (2.3)

Remark 2.2. We are going to assume that m > d/2. Then by Sobolev
embedding theorems the solution ut(x) from Theorem 2.1 is a continuous
function of (t, x) (a.s). More precisely, with probability one, for any t one
can find a continuous function of x which equals ut(x) for almost all x and,
in addition, the so constructed modification is continuous with respect to
the couple (t, x).

We are interested in approximating the solution by means of solving a
semidiscretized version of (2.1) when partial derivatives are replaced with
finite differences. For λ ∈ Rd \ {0} and h ∈ R \ {0} define

δh,λu(x) =
u(x+ hλ)− u(x)

h
, δλ = δhλ =

1

2
(δh,λ + δ−h,λ),

and let δh,0 be the unit operator.

Let Λ ⊂ Rd be a finite set containing the zero vector and consider the
following finite difference equation

duht = (Lht u
h
t + ft) dt+ (Mh,ρ

t uht + gρt ) dwρt , (2.4)

uh0 = ψ, (2.5)

with

Lht = aλµt δhλδ
h
µ +

∑
λ∈Λ0

(pλδh,λ − qλδ−h,λ), Mh,ρ
t = bλρt δ

h
λ,

where the summation is performed over λ, µ ∈ Λ and in (2.4) also with

respect to ρ ∈ {1, 2, . . . }. Assume that aλµ = aλµt (x), pλ = pλt (x), qλ = qλt (x)

are real-valued, and bλ = (bλρt (x))∞ρ=1 are l2-valued, P × B(Rd)-measurable
bounded functions on Ω×HT , for all λ, µ ∈ Λ.
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Introduce

Gh = {λ1h+ ...+ λnh : n = 1, 2, ..., λi ∈ Λ ∪ (−Λ)},

and let l2(Gh) be the set of real-valued functions u on Gh such that

|u|2l2(Gh) := |h|d
∑
x∈Gh

|u(x)|2 <∞.

The notation l2(Gh) will also be used for l2-valued functions like g.

Remark 2.3. Notice that equation (2.4) is just an infinite system of ordinary
Itô equations for {ut(x) : x ∈ Gh}. Therefore if, for instance, (a.s.)∫ T

0
(|ft|2l2(Gh) + |gt|2l2(Gh)) dt <∞,

and Assumption 2.5 (i) holds then equation (2.4) has a unique solution with
continuous trajectories in l2(Gh) provided that the initial data uh0 ∈ l2(Gh)
(a.s.). By Sobolev’s embedding of W r

2 into Cb we have W r
2 ⊂ l2(Gh) if

r > d/2, see Lemma 4.2 below. Therefore if

‖ψ‖2W r
2

+

∫ T

0
‖f(s)‖2W r

2
+ ‖g(s)‖2W r

2
ds <∞ (a.s.),

then (2.4)-(2.5) has a unique l2(Gh)-valued Ft-adapted continuous solution
(uht )t∈[0,T ].

It is easy to see that in order uh approximate the solution of (2.1)-(2.2)
the following consistency condition is necessary.

Assumption 2.4. For all i, j = 1, ..., d and ρ = 1, 2, ...∑
λ,µ∈Λ0

aλµt λiµj = aijt ,
∑
λ∈Λ0

bλρt λ
i = biρt , (2.6)

∑
λ∈Λ0

aλ0λi +
∑
µ∈Λ0

a0µµi +
∑
µ∈Λ0

pλλi −
∑
λ∈Λ0

qλµi = ai0t + a0i
t ,

a00
t = a00

t , b0ρ
t = b0ρt .

There are many ways of constructing appropriate coefficients a, p, q and
b, satisfying this condition.

Example 2.1. Set Λ = {e0, e1, ..., ed}, where e0 = 0 and ei is the ith basis
vector, and let

a
eαeβ
t = aαβt , beαρt = bαρt , α, β = 0, 1, ..., d.

qeα = peα = 0 α, β = 1, ..., d.

Thus each derivative Di in (2.1) is approximated by the symmetric finite
difference δhei .
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Example 2.2. We take the same set Λ as in the previous example, and
define peα , qeα for α ∈ {1, 2, ..., d} and define

a00 = a00, a
eαeβ
t = aαβt , α, β = 1, ..., d,

beαρt = bαρt , α, β = 0, 1, ..., d,

and take also nonnegative P ⊗B(Rd)-measurable functions peα , qeα for α ∈
{1, ..., d}, such that

peα − qeα =
1

2
(a0α + aα0), α ∈ {1, 2, ..., d}.

To formulate our theorem on the accuracy of the approximation uh we fix
an integer l ≥ 1, constants A0,..., Al+1 and impose the following condition.

Assumption 2.5. (i) For each (ω, t), x ∈ Rd we have

pλ ≥ 0, qλ ≥ 0, λ ∈ Λ0.

(ii) For some integer d1 ≥ 1 for each λ ∈ Λ0 there are F ⊗ B(HT )-
measurable real functions σλ1,..., σλd1 on Ω×HT such that for all (ω, t, x) ∈
Ω×HT

ãλµt := 2aλµt − bλρt bµρt =

d1∑
k=1

σλkσµk, λ, µ ∈ Λ0. (2.7)

(iii) Let l ≥ 1 be an integer. For λ ∈ Λ0 the functions σλk, bλ and b0 are
l+ 1 times continuously differentiable in x, and a0λ, aλ0 a00 pλ and q0 are l
times continuously differentiable in x. For all values of arguments we have

|Djσλk|+ |Djbλ|+ |Djb0| ≤ Aj for j ≤ l + 1,

|Djaλ0|+ |Dja0λ|+ |Dja00||Djpλ|+ |Djqλ| ≤ Aj for j ≤ l,
for all λ ∈ Λ0, k = 1, ..., d1.

Remark 2.4. Clearly, Assumption 2.5 (ii) implies∑
λ,µ∈Λ0

ãλµzλzµ ≥ 0 for (ω, t, x) ∈ Ω×HT , zλ ∈ R, λ ∈ Λ0,

which, together with (2.6), implies Assumption 2.1. If in addition Assump-
tions 2.2 and 2.3 are also satisfied with m > 2+d/2, then (2.1)-(2.2) admits a
unique generalised solution, which by virtue of Sobolev’s embedding almost
surely equals to a function u for every t ∈ [0, T ] and almost every x ∈ Rd,
such that u and its derivatives in x up to second order are continuous func-
tions on HT and almost surely

dut(x) = (Ltut(x) + ft(x)) dt+Mρ
t ut(x) + gρ(x) dwρt , u0(x) = ψ(x)

for all t ∈ [0, T ] and x ∈ Rd.
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Theorem 2.2. Let Assumptions 2.2 through 2.5 hold with m ≥ 3 + l and
l > d/2. Then for h > 0

E sup
t∈[0,T ]

sup
x∈Gh

|uht (x)− u(t, x)|2 ≤ Nh2Km, (2.8)

where N is a constant depending only on T , Λ, l, d, m, K0,....,Km and
A0,....,Al+1.

We prove this theorem after the next section. Now we are going to for-
mulate the main result of the paper. Namely, that under additional smooth-

ness conditions, for a given integer k ≥ 0 there exist random fields u
(j)
t (x),

(t, x) ∈ HT , such that they are independent of h, u(0) is the solution of
(2.1)-(2.2), and for h 6= 0 almost surely

uht (x) =
k∑
j=0

hj

j!
u

(j)
t (x) +Rht (x) (2.9)

for all t ∈ [0, T ] and x ∈ Gh, where uht is the solution to (2.4)-(2.5), and Rh

is an l2(Gh)-valued adapted continuous process, such that

E sup
t∈[0,T ]

sup
x∈Gh

|Rht (x)|2 ≤ Nh2(k+1)K2
m (2.10)

with a constant N independent of h.

Assumption 2.6. Let m ≥ 0 be a fixed integer. For λ, µ ∈ Λ the derivatives
in x ∈ Rd of aλµ and the l2-valued functions bλ up to order max(m − 4, 0),
and for λ ∈ Λ0 the derivatives in x of pλ, qλ up to order max(m− 2, 0) are
functions, bounded by a constant Cm, for all ω ∈ Ω and (t, x) ∈ HT .

Theorem 2.3. Let Assumptions 2.2 through 2.6 hold with

m = m ≥ 2k + 3 + l (2.11)

and l > d/2, where k ≥ 0 is an integer. Then for h > 0 expansion (2.9)
and estimate (2.10) hold with a constant N depending only on d, m, l, T ,
Λ, K0,...,Km, A0,...,Al+1 and Cm.

If pλ = qλ = 0 for λ ∈ Λ0 then (2.9)-(2.10) hold for all h 6= 0. Moreover,

u(j) = 0 for odd j ≤ k, and if k is odd then to have (2.9) and (2.10) we need
only

m > 2k + 2 + l

instead of (2.11).

Remark 2.5. Actually uht (x) is defined for all x ∈ Rd rather than only on
Gh and, as we will see from the proof of Theorem 2.3, one can replace Gh

in (2.10) with Rd.

Equality (2.9) clearly yields

δh,λu
h
t (x) =

k∑
j=0

hj

j!
δh,λu

(j)
t (x) + δh,λR

h
t (x)
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for any λ = (λ1, ..., λn) ∈ Λn and integer n ≥ 0, where Λ0 = {0} and

δh,λ := δh,λ1 · ... · δh,λn .
Theorem 2.3 can be generalized as follows.

Theorem 2.4. Let λ ∈ Λn for an integer n ≥ 0. Let Assumptions 2.2
through 2.6 hold with

m = m > n+ 2k + 3 + l (2.12)

and l > d/2. Then for h > 0 we have (2.9) and

E sup
t∈[0,T ]

sup
x∈Gh

|δh,λRht (x)|2 ≤ Nh2(k+1)K2
m, (2.13)

with a constant N depending only on d, m, n, k, l, T , Λ, K0, ..., Km, Cm,
A0,...,Al+1.

If pλ = qλ = 0 for λ ∈ Λ0 then u(j) = 0 for odd j ≤ k, and if k is odd
then instead of (2.12)we need only

m > n+ 2k + 2 + l

to have (2.9) and the estimate (2.13).

We prove Theorem 2.4 in Section 4 after some preliminaries presented in
Section 3.

To accelerate the rate of convergence of uh we fix an integer k ≥ 0 and
define

ūh =
k̃∑
j=0

b̄ju
2−jh , ũh =

k̃∑
j=0

b̃ju
2−jh , (2.14)

where
(b̄0, b̄1, ..., b̄k) := (1, 0, 0, ..., 0)V̄ −1,

(b̃0, b̃1, ..., b̃k̃) := (1, 0, 0, ..., 0)Ṽ −1, k̃ = [k2 ],

V̄ −1 is the inverse of the matrix

V̄ ij := 2−(i−1)(j−1), i, j = 1, ..., k + 1,

and Ṽ −1 is the inverse of matrix

V ij := 4−(i−1)(j−1), i, j = 1, ..., k̃ + 1.

Theorem 2.5. Let Assumptions 2.2 through 2.6 hold with

m = m ≥ 2k + 3 + l (2.15)

and l > d/2, where k ≥ 0 is an integer. Then for h > 0 we have

E sup
t≤T

sup
x∈Gh

|ūht (x)− u(0)
t (x)|2 ≤ Nh2(k+1)K2

m (2.16)

with a constant N = N(T,m, k, d, l,Λ,K0, ...,Km, A0, ..., Al+1, Cm).
If pλ = qλ = 0 for λ ∈ Λ0, then

E sup
t≤T

sup
x∈Gh

|ũht (x)− u(0)
t (x)|2 ≤ N |h|2(k+1)K2

m (2.17)
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for h 6= 0, and if k is odd then to have (2.17) we need only

m = m > 2k + 2 + l

instead of (2.15).

Proof. We prove only (2.17), since estimate (2.16) can be obtained in the
same way. By Theorem 2.3

u2−jh = u(0) +
k̃∑
i=1

h2i

(2i)!4ji
u(2i) + hk+1r2−jh, j = 0, 1, ..., k,

with r2−jh := h−(k+1)R2−jh. Hence with r̃h :=
∑k̃

j=0 r
2−jh

ũh =
k̃∑
j=0

b̃ju
2−jh = (

k̃∑
j=0

b̃j)u
(0) +

k̃∑
j=0

k̃∑
i=1

b̃j
h2i

(2i)!4ij
u(2i) + hk+1r̃h

= u(0) +
k̃∑
i=1

h2i

(2i)!
u(2i)

k̃∑
j=0

b̃j
4ij

+ hk+1r̃h = u(0) + hk+1r̃h,

since
k̃∑
j=0

b̃j = 1,

k̃∑
j=0

b̃j4
−ij = 0, i = 1, 2, ...k̃

by the definition of (b̃0, ..., b̃k̃). Thus owing to (2.10) we have

E sup
t∈[0,T ]

sup
x∈Gh

|ũh − u|2 ≤ h2(k+1)E sup
t∈[0,T ]

sup
x∈Gh

|r̃ht (x)|2 ≤ Nh2(k+1)K2
m

and the theorem is proved. �

Remark 2.6. Notice that without acceleration, i.e., when k = 0 and k = 1
in (2.15) and (2.16), respectively, in the above theorem for h > 0 we have

E sup
t∈[0,T ]

sup
x∈Gh

|uh − u0|2 ≤ Nh2K2
m,

and when pλ = qλ = 0 for λ ∈ Λ0 we have

E sup
t∈[0,T ]

sup
x∈Gh

|uh − u0|2 ≤ Nh4K2
m,

respectively. These are sharp estimates by virtue of Remark 2.21 in [3] on
finite difference approximations for deterministic parabolic PDEs.

Remark 2.7. Let pλ = qλ = 0 for λ ∈ Λ0. Let n ≥ 0 and assume the
conditions of Theorem 2.3 with

m > n+ 2k + 3 + d/2,

with an integer n ≥ 0. Then for λ ∈ Λn (2.17) holds with δh,λũ
h and δh,λu

(0)

in place of ũh and u(0), respectively, with a constant N depending on T , m,
k, n, d, b, Λ, K0,...,Km, A0,...,Al+1 and Cm.
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Proof. This follows from Theorem 2.4 in the same way as Theorem 2.5 fol-
lows from Theorem 2.3. �

By the above remark one can construct fast approximations for the deriva-
tives of u(0) via suitable linear combinations of finite differences of ūh.

Example 2.3. Assume that we have d = 2. m = 10 and pλ = qλ = 0 in
λ ∈ Λ0. Then

ũh := 4
3u

h/2 − 1
3u

h

satisfies

E sup
t≤T

sup
x∈Gh

|u(0)
t (x)− ũht (x)|2 ≤ Nh8.

Example 2.4. Consider the SPDE

dut = aD2ut dt+ bDut dwt t > 0, x ∈ R

with initial data u0(x) = cosx, x ∈ R, coefficients a = b = 2 and a one-
dimensional Wiener process w. Notice that 2a − b2/2 = 0, i.e., this is a
degenerate parabolic SPDE. The unique bounded solution is

ut(x) = cos(x+ 2wt).

The finite difference equation (2.4) is the following:

duht (x) =
uht (x+ 2h)− 2uht (x) + uht (x− 2h)

2h2
dt+

uht (x+ h)− uht (x− h)

h
dwt.

Its unique bounded solution with initial condition u0(x) = cosx is

uht (x) = cos(x+ 2φhwt),

where φh = sinh/h. For t = 1, h = 0.1, and wt = 1 we have

u1(0) ≈ −0.4161468365,

uh1(0) ≈ −0.4131150562, u
h/2
1 (0) ≈ −0.415389039,

ũh1(0) = 4
3u

h/2
1 (0)− 1

3u
h
1(0) =≈ 0.4161470333.

Such level of accuracy by uh̃1(0) is achieved with h̃ = 0.0008, which is more
than 60 times smaller than h/2.

Note that this example does not quite fit into our scheme because u0 is
not square summable over R, but one can extend our approach to weighted
Sobolev spaces and then the above example can be included formally.
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3. Auxiliary facts

Recall the notation

δh,λ =
1

h
(Th,λ − I), δλ = δhλ =

1

2
(δh,λ + δ−h,λ) =

1

2h
(Th,λ − Th,−λ),

for h 6= 0, λ ∈ Rd, where for all h ∈ R
Th,λϕ(x) = ϕ(x+ hλ), x ∈ Rd

for functions ϕ on Rd. Set

Iλ = Ihλ =
1

2
(Th,λ + Th,−λ),

∆λ = ∆h
λ =

1

h
(δh,λ + δh,−λ) = δh,λδ−h,λ = (δ

h/2
λ )2

The following useful identities can easily be verified.

Lemma 3.1.

δh,λ(uv) = (δh,λu)v + (δh,λv)Th,λu

= (δh,λu)v + (δh,λv)u+ h(δh,λu)(δh,λv), (3.1)

δλ(uv) = (δλu)v +
1

2
{(δh,λv)Th,λu+ (δ−h,λv)Th,−λu}

= (δλu)v + (δλv)Iλu+
h2

2
(∆λv)δλu

= (δλu)v + (δλv)u+
h2

2
{(δλu)∆λv + (∆λu)δλv} (3.2)

For linear operators A and B we use the notation

[A,B] = BA−AB.

Lemma 3.2.

δµ(aδλ) = aδµδλ +
1

2
(δµa)(δλ+µ + δλ−µ) +

h2

2
(∆µa)δλδµ, (3.3)

[aδλ, bδµ] =
1

2
(b(δµa)− a(δλb))δλ+µ +

1

2
(b(δµa) + a(δλb))δλ−µ

+
h2

2
(b(∆µa)− a(∆λb)δλδµ, (3.4)

[aδh,µ, bTh,λ] = (b(δh,λa)− a(δh,µb))Th,λ+µ − b(δh,λa)Th,λ (3.5)

[aδµ, bTh,λ] =
1

2
(b(δh,λa)− a(δh,µb))(Th,λ+µ − Th,λ−µ)

− a(δh,µb)Th,λ−µ (3.6)

Let l ≥ 0 be an integer and K ≥ 0 be a constant. In the next lemma
M and N denote difference operators of the form M =

∑
λ∈Λ0

bλδh,λ and

N =
∑

λ∈Λ0
bλδλ, with functions bλ on Rd, and (, ) denotes the inner product

in L2(Rd).
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Lemma 3.3. The following estimates hold for all multi-indices α, |α| ≤ l,
and functions ϕ ∈W l

2 on Rd.
(i) If bλ ≥ 0 for λ ∈ Λ0, and they, together with their derivatives up to

order l ∨ 1 are functions, bounded by K, then for h > 0

(DαMϕ,Dαϕ) ≤ N‖ϕ‖2
W l

2
. (3.7)

(ii) If for each λ ∈ Λ0, bλ and its derivatives up to order l ∨ 1 are
functions, bounded by K then for h 6= 0

|(DαNϕ,Dαϕ)| ≤ N‖ϕ‖2W 2
l
. (3.8)

(iii) If for λ ∈ Λ0 the coefficients bλ and its derivatives up to order (l +
1)∨ 2 are functions on Rd, bounded by K, and b0 and its derivatives
up to order l + 1 are functions, bounded by K, then for h 6= 0

|(DαNNϕ,Dαϕ) + (DαNϕ,DαNϕ)| ≤ N‖ϕ‖2W 2
l
. (3.9)

In these estimates N denotes a constant that depends only on Λ0, d, l and
K.

Proof. To prove (i) notice that by (3.1)∑
λ∈Λ0

ϕbλδh,λϕ =
1

2

∑
λ∈Λ0

bλδh,λ(ϕ2)− h

2

∑
λ∈Λ0

bλ(δh,λϕ)2 ≤ 1

2

∑
λ∈Λ0

bλδh,λ(ϕ2).

Hence, taking into account that δ∗h,λ, the adjoint of δh,λ in L2, is δh,−λ, we
have

(Mϕ,ϕ) ≤ 1

2

∑
λ∈Λ0

(δh,−λb
λ, ϕ2) (3.10)

which yields (3.7) for l = 0. For |α| = l ≥ 1∑
1≤|γ|,γ+β=α

∑
λ∈Λ0

|((Dγbλ)δh,λD
βϕ,Dαϕ)| ≤ N‖ϕ‖2

W l
2
.

Hence

(DαMϕ,Dαϕ) ≤ N‖ϕ‖2
W l

2
+ (MDαϕ,Dαϕ),

which yields (3.7), since by (3.10)

(MDαϕ,Dαϕ) ≤ N‖ϕ‖2
W l

2
.

To prove (ii) notice notice that

(Nϕ,ϕ) = (Tϕ, ϕ) (3.11)

with

T =
1

2
(N +N ∗) = −1

4

∑
λ∈Λ0

((δh,λbλ)Th,λ + (δ−h,λbλ)Th,−λ), (3.12)
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where N ∗ denotes the adjoint of N in L2. Hence

|(Nϕ,ϕ)| ≤ K

4

∑
λ∈Λ0

|λ|(‖Th,λϕ‖L2 + ‖Th,−λϕ‖L2)‖ϕ‖L2

=
K

2

∑
λ∈Λ0

|λ|‖ϕ‖2L2
, (3.13)

which proves (3.8) for α = 0. For |α| = l ≥ 1∑
1≤|γ|,γ+β=α

∑
λ∈Λ0

|((Dγbλ)δh,λD
βϕ,Dαϕ)| ≤ N‖ϕ‖2

W l
2
.

Hence
(DαNϕ,Dαϕ) ≤ N‖ϕ‖2

W l
2

+ (NDαϕ,Dαϕ),

which implies (3.8), since due to (3.10) we have

(NDαϕ,Dαϕ) ≤ N‖ϕ‖2
W l

2
.

Now we prove (iii). From (3.11) by polarization we get

(Nψ, φ) + (Nϕ,ψ) = 2(Tϕ, ψ)

for functions ϕ,ψ ∈ L2. Substituting here Nϕ in place of ψ, using T ∗ = T
and N ∗ = 2T −N , we obtain

(NNϕ,ϕ) + (Nϕ,Nϕ) = 2(Tϕ,Nϕ) = ((TN +N ∗T )ϕ,ϕ)

= ((TN −NT + 2T 2)ϕ,ϕ) = ([N , T ]ϕ,ϕ) + 2(Tϕ, Tϕ).

Hence using (3.12) and the identity (3.5) we easily get (3.9) for α = 0. To
deal with the case α 6= 0 we fix ϕ ∈ W l

2 and use the notation f ∼ g for
functions f, g ∈ L1, which may depend also on the parameter h, if

|
∫
Rd

(f(x)− g(x)) dx| ≤ N |ϕ|2W 2
l

with a constant N depending only on Λ, l, d and K. Clearly,

(DαNϕ)Dαϕ ∼ (NDαϕ)Dαϕ.

For multi-indices γ, |γ| ≤ m, set

N (γ) =
∑
λ∈Λ0

(Dγbλ)δλ,

and notice that for multi-indices β 6= 0, γ 6= 0, ρ, such that β + γ + ρ = α
we have

(N (β)N (γ)Dρϕ)Dαϕ ∼ 0.

Similarly, for multi-indices β 6= 0, γ 6= 0, β̄ and γ̄ such that β + β̄ = α and
γ + γ̄ = α we have

(N (β)Dβ̄ϕ)N (γ)Dγ̄ϕ ∼ 0,

and if β = 0 and 0 < γ < α we have

(NDαϕ)N (γ)Dγ̄ϕ ∼ (Dαϕ)N ∗N (γ)Dγ̄ϕ ∼ 0,
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owing to

N ∗ = −N +
1

2

∑
λ∈Λ0

{(δh,λcλ)Th,λ + (δ−h,λcλ)Th,−λ}. (3.14)

Thus for
J := (DαNNϕ)Dαϕ+ (DαNϕ)DαNϕ

we get

J ∼ J00 +
∑

0<γ≤α
J0γ +

∑
0<β≤α

Jβ0, (3.15)

with
Jβγ := (N (β)N (γ)Dρϕ)Dαϕ+ (N (β)D(β̄)ϕ)N (γ)Dγ̄ϕ,

where
β + γ + ρ = α, β + β̄ = α, γ + γ̄ = α.

By (3.9) with α = 0
J00 ∼ 0. (3.16)

Using (3.14) we have

(NN (γ)Dγ̄ϕ)Dαϕ ∼ (N (γ)Dγ̄ϕ)N ∗Dαϕ ∼ −(N (γ)Dγ̄ϕ)NDαϕ,

that for γ ≤ α, |γ| = 1 yields

J0γ = (NN (γ)Dγ̄ϕ)Dαϕ+ (NDαϕ)N (γ)Dγ̄ϕ ∼ 0. (3.17)

For β ≤ α, |β| = 1 identity (3.4) yields

(N (β)NDβ̄ϕ)Dαϕ ∼ (NN (β)Dβ̄ϕ)Dαϕ,

that for β < α, |β| = 1 implies

Jβ0 ∼ J0β ∼ 0. (3.18)

For γ < α, |γ| ≥ 2 it is easy to see that

J0γ ∼ 0, (3.19)

and similarly, for β < α, |β| ≥ 2 it is easy to see that

Jβ0 ∼ 0. (3.20)

Using (3.14) we get

(NN (α)ϕ)Dαϕ ∼ −(N (α)ϕ)NDαϕ,

that yields
J0α ∼ 0. (3.21)

Clearly,

(N (α)Nϕ)Dαϕ ∼ 0,

and

(N (α)ϕ)NDαϕ ∼ (N ∗N (α)ϕ)Dαϕ ∼ −(NN (α)ϕ)Dαϕ ∼ 0.

(This is the only place where we need that the coefficients ofN have bounded
derivatives up to l+1, not only up to l∨2 as in the rest of the proof.) Hence
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Jα0 ∼ 0, that together with (3.15)–(3.16) and (3.17)–(3.21) implies J ∼ 0,
which proves (3.9). �

Remark 3.1. Let (N ρ)∞ρ=1 be a sequence of operators of the form N ρ =∑
λ∈Λ0

bλρδλ, where bλ = (bλρ)∞ρ=1 is an l2-valued Borel function on Rd for
each λ ∈ Λ0. Let l ≥ 0 be an integer. Then the following statements hold
for all multi-indices α, |α| ≤ l and functions ϕ ∈W l

2.
(i) If bλ and their derivatives up to order max(l, 1) are functions, bounded

by K for all λ ∈ Λ0, then
∞∑
ρ=1

|(DαN ρϕ,Dαϕ)|2 ≤ N‖ϕ‖4
W l

2
.

(ii) If bλ and their derivatives up to order (l+1)∨2 are l2-valued functions,
bounded by K, for all λ ∈ Λ0, then

|(Dα
∞∑
ρ=1

N ρN ρϕ,Dαϕ) +
∞∑
ρ=1

(DαN ρϕ,DαN ρϕ)| ≤ N‖ϕ‖2
W l

2
.

In these estimates N is a constant depending only on K, l and d.

Proof. Taking into account that
∑

ρ |Dαbλρ|2 ≤ K for |α| ≤ max(l, 1) and

for |α| ≤ max(l + 1, 2) respectively, we can get these estimates in the same
way as estimates (3.8) and (3.9) are obtained. �

Lemma 3.4. Let Assumption 2.5 hold. Then for multi-indices α, |α| ≤ l
we have

Qα
t (ϕ) :=

∫
Rd

2Dαϕ(x)DαLhϕ(x) +
∞∑
ρ=1

|DαMhρϕ(x)|2 dx ≤ N‖ϕ‖2
W l

2
,

where N depends only on l, K, d and Λ.

Proof. Set Mhρ =
∑

λ∈Λ0
bλρδλ. Then Mhρ = Mhρ + b0ρ, and by Remark

3.1 ∑
ρ

(DαMhρϕ,DαMhρϕ) ≤ −(Dα
∑
ρ

MhρMhρ, Dαϕ) +N‖ϕ‖2
W l

2
,

where (, ) denotes the inner product in L2 and N is a constant depending
only on K, l d and Λ. By equality (3.3)

MhρMhρ =
∑

λ,µ∈Λ0

bλρbµρδλδµ + M̃

with

M̃ =
1

2

∑
λ,µ∈Λ0

bµρ(δµb
λρ)(δλ+µ + δλ−µ)

+
1

8

∑
λ,µ∈Λ0

((δh,µ + δh,−µ)bλρ)(Th,λ+µ − Th,µ−λ − Th,λ−µ + Th,−λ−µ)
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+b0ρb0ρ +
∑
λ∈Λ0

b0ρbλρδλ +
∑
µ∈Λ0

bµρb0ρδµ

+
1

2

∑
µ∈Λ0

{bµρ(δh,µb0ρ)Th,µ + bµρ(δh,−µb
0ρ)Th,−µ},

where the summation convention with respect to the repeated index ρ is
used. By Lemma (3.3) (i) and (ii) for h > 0

(Dα
∑
λ∈Λ0

pλδh,λϕ,D
αϕ) ≤ ‖ϕ‖2

W l
2
, (Dα

∑
λ∈Λ0

qλδh,−λϕ,D
αϕ) ≤ ‖ϕ‖2

W l
2
,

and

|(DαM̃ϕ,Dαϕ)| ≤ N‖ϕ‖W l
2
, |(Dαϕ,Dα(a0λ + aλ0)δλϕ)| ≤ N‖ϕ‖W l

2
,

(Dαb0ρϕ,DαMhρϕ) ≤ N‖ϕ‖W l
2

for h 6= 0. Here, and everywhere in this proof, N stands for constants
depending only on l, K, d and Λ. Hence

Qα(ϕ) ≤ (Dαϕ,Dα
∑

λ,µ∈Λ0

ãλµδλδµϕ) +N‖ϕ‖2
W l

2
. (3.22)

Owing to Assumption 2.5 (ii) and equality (3.3) we have∑
λ,µ∈Λ0

ãλµδλδµ =

d1∑
r=1

N rN r − Ñ

with

N r =
∑
λ∈Λ0

σλrδλ, Ñ =

d1∑
r=1

Ñ r,

where for each r = 1, ..., d1

Ñ r =
1

2

∑
λ,µ∈Λ0

σλr(δλσ
µr){δλ+µ + δµ−λ}

+
1

8

∑
λ,µ∈Λ0

((δh,λ + δh,−λ)σµr)(Th,λ+µ − Th,−µ−λ − Th,λ−µ + Th,−λ−µ).

By Lemma 3.3 (ii) and (iii) for h 6= 0

|(DαÑϕ,Dαϕ)| ≤ N‖ϕ‖2
W l

2
,

(Dα
∑
r

N rN r, Dαϕ) =
∑
r

(DαN rN r, Dαϕ) ≤ N‖ϕ‖2
W l

2
.

Hence

(Dαϕ,Dα
∑

λ,µ∈Λ0

ãλµδλδµϕ) ≤ N‖ϕ‖2
W l

2
,

which along (3.22) finishes the proof. �
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We consider the finite difference scheme (2.4)-(2.5) now on [0, T ] × Rd
rather than on [0, T ]×Gh.

We use the notation Wm
2 (T ) and Wm

2 (T, l2) for the Banach spaces of
Wm

2 -valued predictable processes (ft)t∈[0,T ] and sequences of Wm
2 valued

processes gt = (gρt )t∈[0,T ], ρ = 1, 2, ..., respectively, with the norms defined
by

‖f‖2Wm
2 (T ) =

∫ T

0
‖f(t)‖2Wm

2
dt, ‖g‖2Wm

2 (T,l2) =

∫ T

0

∞∑
ρ=1

‖gρ(t)‖2Wm
2
dt.

For short we write also Wm
2 (T ) in place of Wm

2 (T, l2).

Theorem 3.5. Let Assumption 2.5 hold. Let ψ be a W l
2-valued F0-measurable

random variable, f ∈Wl
2(T ) and g ∈Wl+1

2 (T, l2). Then for each h 6= 0 there
exists a unique continuous L2-valued solution uh = (uht )t∈[0,T ] to (2.4)-(2.5).

Moreover, uh is a W l
2-valued continuous process, and for h > 0

E sup
t≤T
‖uht ‖2W l

2
≤ NE‖u0‖2W l

2
+NE

∫ T

0

(
‖ft‖2W l

2
+ ‖gt‖2W l+1

2

)
dt, (3.23)

with a constant N depending only on d, l, Λ, A0, . . . , Al+1 and T . If pλ =
qλ = 0 for λ ∈ Λ0, then this estimate holds for all h 6= 0.

Proof. Since (2.4) is an ordinary Itô equation with Lipschitz continuous
coefficients for L2-valued processes, it has a unique L2-valued continuous
solution uh for each h 6= 0. Similarly, it has a unique W l

2-valued continuous
solution and, since W l

2 ⊂ L2, it follows that uh is actually a continuous W l
2-

valued adapted process. One can easily get estimate (3.23) with a constant

N which depends on h. In particular we have that the solution is in W0,l
2 (T ).

We assume E‖u‖2
W l

2
< ∞, otherwise (3.23) is trivial. To prove (3.23) with

a constant N independent of h, we take any multi-index α, |α| ≤ l and use
Itô’s formula for the L2-valued process Dαuh to find

d‖Dαuht ‖2L2

= {Qα
t (uht ) + 2(Dαuht , D

αft) + 2(Dαbλρδλu
h
t , D

αgρt ) +
∑
ρ

‖Dαgρt ‖2L2
} dt

+2(Dαuht , D
αMh,ρuht +Dαgρt ) dwρt , (3.24)

where Qα is defined in Lemma 3.4. Clearly,

2|(Dαuht , D
αft)| ≤ ‖ut‖2W l

2
+ ‖ft‖2W l

2
,

and by integration by parts

2|(Dαbλρδλu
h
t , D

αgρt )| ≤ N‖ut‖W l
2
‖g‖W l+1

2
≤ N(‖ut‖2W l

2
+ ‖g‖2

W l+1
2

).
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Thus, using Lemma 3.4, from (3.24) we have

d
∑
|α|≤l

‖Dαuht ‖2L2
≤N

(
‖uht ‖2W l

2
+ ‖ft‖2W l

2
+ ‖gt‖2W l

2

)
dt

+ 2
∑
|α|≤l

(Dαuht , D
αMh,ρuht +Dαgρt ) dwρt (3.25)

for h > 0 and if pλ = qλ = 0 for λ ∈ Λ0, then it holds for all h 6= 0. Hence

E‖uht ‖2W l
2
≤ E‖u0‖2W l

2

+NE

∫ t

0

(
‖uhs‖2W l

2
+ ‖fs‖2W l

2
+ ‖gs‖2W l+1

2

)
ds <∞, (3.26)

which by Gronwall’s lemma yields

E‖uht ‖2W l
2
≤ NE‖u0‖2W l

2
+NE

∫ t

0

(
‖fs‖2W l

2
+ ‖gs‖2W l+1

2

)
ds (3.27)

for t ∈ [0, T ]. Now we return to (3.25) and use Davis’s inequality to get

E sup
t≤T
‖uht ‖2W l

2
≤ E‖u0‖2W l

2

+NE

∫ T

0

(
‖ft‖2W l

2
+ ‖gt‖2W l+1

2

)
dt+N1J, (3.28)

where

J = E
( ∫ T

0

∞∑
ρ=1

|
∑
|α|≤l

(Dαuht , D
αMh,ρuht +Dαgρt ))|2 dt

)1/2
.

By the Cauchy-Bunyakovsky-Schwarz inequality
∞∑
ρ=1

|
∑
|α|≤l

(Dαuht , D
αgρt ))|2 ≤ ‖uht ‖2W l

2
‖gt‖2W l

2
,

and by Remark 3.1 (i)

∞∑
ρ=1

|
∑
|α|≤l

(Dαuht , D
αMh,ρuht )|2 ≤ N‖ut‖4W l

2
.

Hence

J ≤ J1 + J2,

where

J1 = E
( ∫ T

0

∞∑
ρ=1

|
∑
|α|≤l

(Dαuht , D
αMh,ρuht )|2 dt

)1/2 ≤ NE( ∫ T

0
‖uht ‖4W l

2
dt
)1/2

≤ NE

(
sup
t≤T
‖uht ‖W l

2

( ∫ T

0
‖uht ‖2W l

2
dt
)1/2)

,
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≤ 1

4N1
E sup
t≤T
‖uht ‖2W l

2
+N2E

∫ T

0
‖uht ‖2W l

2
ds.

J2 = E
( ∫ T

0

∞∑
ρ=1

|
∑
|α|≤l

(Dαuht , D
αgρt ))|2 dt

)1/2 ≤ NE( ∫ T

0
‖uht ‖2W l

2
‖gt‖2W l

2
dt
)1/2

≤ E

(
sup
t≤T
‖uht ‖W l

2

( ∫ T

0
‖ght ‖2W l

2
dt
)1/2)

,

≤ 1

4N1
E sup
t≤T
‖uht ‖2W l

2
+N2E

∫ T

0
‖gt‖2W l

2
ds.

Thus from (3.28) we get

E sup
t≤T
‖uht ‖2W l

2
≤ E‖u0‖2W l

2
+

1

2
E sup
t≤T
‖uht ‖2W l

2

+NE

∫ T

0
‖ft‖2W l

2
+ ‖gt‖2W l+1

2

)
ds,

which proves (3.23). �

Lemma 3.6. Let n ≥ 0 be an integer, let φ ∈ Wn+1
2 , ψ ∈ Wn+2

2 , and
λ, µ ∈ Rd \ {0}. Set

∂λφ = λiDiφ, ∂λµ = ∂λ∂µ.

Then we have

∂n

(∂h)n
δh,λφ(x) =

∫ 1

0
θn∂n+1

λ φ(x+ hθλ) dθ, (3.29)

∂n

(∂h)n
δhλφ(x) =

1

2

∫ 1

−1
θn∂n+1

λ φ(x+ hθλ) dθ, (3.30)

∂n

(∂h)n
δλδµψ(x)

=
1

4

∫ 1

−1

∫ 1

−1
(θ1∂λ + θ2∂µ)n∂λµψ(x+ h(θ1λ+ θ2µ)) dθ1dθ2, (3.31)

for almost all x ∈ Rd, for each h ∈ R. Hence

∂n

(∂h)n
δh,λφ

∣∣
h=0

=
1

n+ 1
∂n+1
λ φ,

∂n

(∂h)n
δhλφ
∣∣
h=0

=
Bn
n+ 1

∂n+1
λ φ, (3.32)

∂n

(∂h)n
δλδµψ

∣∣
h=0

=
n∑
r=0

An,r∂
r+1
λ ∂n−r+1

µ ψ, (3.33)

where

Bn =

{
0 if n is odd
1 if n is even

, Anr =

{
0 if n or r is odd

n!
(r+1)!(n−r+1)! if n and r are even

.

(3.34)
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Furthermore, if l ≥ 0 is an integer and φ ∈Wn+2+l
2 and ψ ∈Wn+3+l

2 , then∥∥δh,λφ− n∑
i=0

hi

(i+ 1)!
∂i+1
λ φ

∥∥
W l

2
≤ |h|n+1

(n+ 2)!
‖∂n+2

λ φ‖W l
2

(3.35)

∥∥δhλφ− n∑
i=0

hi

(i+ 1)!
Bi∂

i+1
λ φ

∥∥
W l

2
≤ |h|n+1

(n+ 2)!
‖∂n+2

λ φ‖W l
2

(3.36)

∥∥δhλδhµψ − n∑
i=0

hi
i∑

r=0

Ai,r∂
r+1
λ ∂i−r+1

µ ψ
∥∥
W l

2
≤ N |h|n+1‖ψ‖W l+n+3

2
, (3.37)

where N = N(|λ|, |µ|, d, n).

Proof. Clearly, it suffices to prove the lemma for φ, ψ ∈ C∞0 (Rd). For n = 0
formulas (3.29) and (3.30) are obtained by applying the Newton-Leibnitz
formula to φ(x+ θhλ) and φ(x+ θhλ)− φ(x− θhλ) as functions of θ from
[0, 1] and [−1, 1], respectively. Applying (3.30) one more time derives (3.31)
from (3.30) for n = 0. After that for n ≥ 1 one obtains (3.29)–(3.31) by
differentiating both parts of these equations written with n = 1.

Next by Taylor’s formula for smooth f(h) we have

f(h) =

n∑
i=0

hi

i!

di

(dh)i
f(0) +

hn+1

n!

∫ 1

0
(1− θ)n dn+1

(dh)n+1
f(θh) dθ.

Applying this to

δh,λφ(x) =

∫ 1

0
∂λφ(x+ hθλ) dθ, δhλφ(x) =

1

2

∫ 1

−1
∂λφ(x+ hθλ) dθ

as functions of h, and verifying (3.32) we see that

δh,λφ(x) =

n∑
i=0

hi

(i+ 1)!
∂i+1
λ φ(x)

+
hn+1

n!

∫ 1

0

∫ 1

0
(1− θ2)nθn+1

1 ∂n+2
λ φ(x+ hθ1θ2λ) dθ1dθ2, (3.38)

δhλφ(x) =
n∑
i=0

hi

(i+ 1)!
Bi∂

i+1
λ φ(x)

+
hn+1

2n!

∫ 1

0

∫ 1

−1
(1− θ2)nθn+1

1 ∂n+2
λ φ(x+ hθ1θ2λ) dθ1dθ2. (3.39)

Hence we get (3.35) and (3.36) by noting that by Minkowski’s inequality the
W l

2-norm of the last terms in equations (3.38) and (3.39) is less than the

W l
2-norm of ∂n+2

λ φ times

|h|n+1

n!

∫ 1

0

∫ 1

0
(1− θ2)nθn+1

1 dθ1dθ2 =
|h|n+1

(n+ 2)!
.
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Similarly, to get (3.37) from (3.31) we need only verify (3.33) and see that
the left-hand side of (3.37) is the W l

2-norm of

hn+1

4n!

∫ 1

0

∫ 1

−1

∫ 1

−1
(1−θ3)n(θ1∂λ+θ2∂µ)n+1∂λµψ(x+hθ3(θ1λ+θ2µ)) dθ1dθ2dθ3,

and apply Minkowski’s inequality. �

Remark 3.2. Formula (3.29) with n = 1 and Minkowski’s inequality imply
that

‖δh,λφ‖L2 ≤ ‖∂λφ‖L2 .

By applying this inequality to finite differences of φ and using induction we

easily conclude that W l+r
2 ⊂ W l,r

h,2, where for integers l ≥ 0 and r ≥ 1 we

denote by W l,r
h,2 the Hilbert space of functions ϕ on Rd with the norm ‖ϕ‖l,r,h

defined by

‖ϕ‖2l,r,h =
∑

λ1,...,λr∈Λ

‖δh,λ1 · ... · δh,λrϕ‖2W l
2
. (3.40)

We also set W l,0
h,2 = W l

2. Then for any φ ∈W l+r
2 we have

‖ϕ‖l,h,r ≤ N‖ϕ‖W l+r
2
,

where N depends only on |Λ0|2 :=
∑

λ∈Λ0
|λ|2 and r.

Set

L(0)
t =

∑
λ,µ∈Λ

aλµt ∂λ∂µ +
∑
λ∈Λ0

(pλt − qλt )∂λ, M(0)ρ
t =

∑
λ∈Λ

bλρt ∂λ

and for integers n ≥ 1 introduce the operators

L(n)
t =

∑
λ,µ∈Λ0

aλµt

n∑
r=0

An,r∂
r+1
λ ∂n−r+1

µ + (n+ 1)−1
∑
λ∈Λ0

(aλ0
t + a0λ

t )Bn∂
n+1
λ

+(n+ 1)−1
∑
λ∈Λ0

(pλt + (−1)n+1qt)∂
n+1
λ ,

M(n)ρ
t = (n+ 1)−1

∑
λ∈Λ0

bλρt Bn∂
n+1
λ ,

Oh(n)
t = Lht −

n∑
i=0

hi

i!
L(i)
t , Rh(n)ρ

t = Mh,ρ
t −

n∑
i=0

hi

i!
M(i)ρ

t ,

where An,r and Bn are defined by (3.34).

Remark 3.3. Formally, for n ≥ 1 the values L(n)
t φ andM(n)ρ

t φ are obtained

as the values at h = 0 of the n-th derivatives in h of Lht φ and Mh,ρ
t φ.
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Remark 3.4. Owing to Assumption 2.4 we have

L(0)
t = Lt, M(0)ρ

t =Mρ
t . (3.41)

Notice also that by (3.35)-(3.37) under Assumptions 2.2 and 2.6 with m = m,

for φ ∈Wn+2+l
2 and ψ ∈Wn+3+l

2 we have for l ≤ m

‖Oh(n)
t ψ‖W l

2
≤ N |h|n+1‖ψ‖W l+n+3

2
,

‖Rh(n)
t φ‖W l

2
≤ N |h|n+1‖φ‖W l+n+2

2
, (3.42)

where N denotes constants depending only on n, d, m, K0, . . . ,Km∨2, Cm
and Λ.

Let k ∈ [1,m/2] be an integer. The functions u(1),..., u(k) we need in
expansion (2.9) will be obtained as the result of embedding in Cb(Rd) ap-

propriate functions v(1),...,v(k), with values in certain Sobolev spaces. We

determine the functions v
(1)
t ,...,v

(k)
t as follows. We define v

(0)
t as the solution

of (2.1) from Theorem 2.1 and we are going to find v(1),..., v(k) by solving
the following system of stochastic PDEs:

dv
(n)
t =

(
Ltv(n)

t +

n∑
l=1

(
n
l

)
L(l)
t v

(n−l)
t

)
dt

+
(
Mρ

t v
(n)
t +

n∑
l=1

(
n
l

)
M(l)ρ

t v
(n−l)
t

)
dwρt , n = 1, ..., k. (3.43)

Theorem 3.7. Let Assumptions 2.1, 2.2, 2.3 and 2.6 hold with m = m ≥
2k. Then there exists a unique set v(1), ..., v(k) of solutions of (3.43) with

initial condition v
(1)
0 = ... = v

(k)
0 = 0 and such that v(n) ∈ Hm−2n(T ), n =

1, ..., k. Furthermore, with probability one v(n) are continuous Wm−1−2n
2 -

valued predictable processes and there exists a constant N depending only on
T , d, Λ, m, k, K0,...,Km and Cm, such that for n = 1, ..., k

E sup
t≤T
‖v(n)
t ‖2Wm−2n

2
≤ NK2

m (3.44)

for h > 0. Moreover, if pλ = qλ = 0 for λ ∈ Λ0, then (3.44) holds for all

h 6= 0, and hence v(n) = 0 for odd n ≤ k.

Proof. Since for each n = 1, . . . , k the equation for v
(n)
t does not involve the

unknown functions v(l+1),..., v(n) , we can prove the theorem recursively on
n ≤ k. Denote

S(n) =

n∑
i=1

(
n
i

)
L(i)v(n−i), R(n)ρ =

n∑
i=1

(
n
i

)
M(i)ρv(n−i),

and first let n = 1. By Theorem 2.1 we have v(0) ∈ Hm(T ) such that

estimate (2.3) holds. Notice that R(1) = 0 and owing to Assumption 2.6

‖L(1)
t v

(0)
t ‖Wm−2

2
≤ N‖v(0)

t ‖Wm
2
,
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which by Theorem 2.1 implies that there exists a unique v(1) ∈ Hm−2(T )

satisfying (3.43) with zero initial condition. Furthermore, v
(1)
t is a continu-

ous Wm−3
2 -valued function (a.s.) and (3.44) holds with n = 1. Passing to

higher n we assume that m ≥ k ≥ 2 and for an n ∈ {2, ..., k} we have found

v(1),...,v(n−1) with the asserted properties. Then M(1)v(n−1) = 0 and

‖L(1)
t v

(n−1)
t ‖Wm−2n

2
≤ N‖v(n−1)

t ‖Wm−2n+2
2

= N‖v(n−1)
t ‖

W
m−2(n−1)
2

,

and for i ≥ 2

‖L(i)
t v

(n−i)
t ‖Wm−2n

2
≤ N‖v(n−i)

t ‖
W
m−2n+(i+2)
2

≤ N‖v(n−i)
t ‖

W
m−2(n−i)
2

,

∞∑
k=1

‖M(i)ρv(n−i)‖2
Wm−2n+1

2
≤ N‖v(n−i)‖2

W
m−2n+1+(i+1)
2

≤ N‖v(n−i)
t ‖2

W
m−2(n−i)
2

.

It follows by the induction hypothesis that

E

∫ T

0
‖S(n)

t ‖2Wm−2n
2

dt ≤ NK2
m, E

∫ T

0
‖R(n)

t ‖2Wm−2n+1
2

dt ≤ NK2
m, (3.45)

which by Theorem 2.1 yields that there exists a unique v(n) ∈ Hm−2n(T )
satisfying (3.43) with zero initial condition. This theorem also yields the

continuity property of v
(n)
t and an estimate, that combined with (3.45) yields

(3.44) for h > 0. The proof of the existence of v(1),...,v(k) with the stated
properties is complete. We obtain the uniqueness by inspecting the above
proof in which each v(n) is found uniquely.

Notice that M(n) = 0 for odd n ≤ k by (3.32). Assume now that pλ =

qλ = 0 for λ ∈ Λ0. Then also L(n) = 0 for odd n ≤ k by (3.32) and (3.33).

Hence S(1) = 0 and R(1) = 0, which implies v(0) = 0. Assume that k ≥ 2 and
that for an odd n ≤ k we have v(l) = 0 for all odd l < n. Then L(n−i)v(i) = 0
and M(n−i)v(i) = 0 for all i = 1,...,n, since either i or n − i is odd. Thus
S(n) = 0 and R(n) = 0, and hence v(n) = 0 for all n ≤ k. �

Lemma 3.8. Let Assumptions 2.1, 2.2, 2.3, 2.5(iii) and 2.6, hold with

m = l + 2k + 2

for some integers k ≥ 0, l ≥ 0. Set

rht = vht −
k∑
j=1

hj

j!
v

(j)
t , (3.46)

where vh is the unique L2-valued solution of (2.4)-(2.5), v(0) is the solution

of (2.1)-(2.2), and (v(n))kn=1 is the solution of (3.43), given by Theorem 3.7.

Then rh0 = 0, rh ∈W0,l
2 (T ), and

drht = (Lht r
h
t + F ht ) dt+ (Mh,ρ

t rht +Gh,ρt ) dwρt , (3.47)
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where

F ht :=

k∑
j=0

hj

j!
Oh(k−j)
t v

(j)
t , Gh,ρt :=

k∑
j=0

hj

j!
Rh(k−j)
t v

(j)
t .

Finally, F h ∈Wl
2(T ) and Gh,· ∈Wl+1

2 (T ).

Proof. We have v(h) ∈ Hl(T ) due to Assumptions 2.1 and 2.5(iii), and v(j) ∈
Hl(T ), for j ≤ k by Theorems 2.1 and 3.7. Hence rh ∈ Hl. Using the

equations for vh and v(n) for n = 0, ..., k, we can easily see that (3.47) holds

with F̂ and Ĝ in place of F and G, respectively, where

F̂ h = Lhv(0) − Lv(0) +
∑

1≤j≤k
Lhv(j)h

j

j!
−
∑

1≤j≤k
Lv(j)h

j

j!
− Ih,

Gh,ρ = Mh,ρv(0) −Mρv(0) +
∑

1≤j≤k
Mh,ρv(j)h

j

j!
−
∑

1≤j≤k
Mρv(j)h

j

j!
− Jh,ρ,

with

Ih =
∑

1≤j≤k

j∑
i=1

1

i!(j − i)!
L(i)v(j−i)hj ,

Jh,ρ =
∑

1≤j≤k

j∑
i=1

1

i!(j − i)!
M(i)ρv(j−i)hj ,

where, as usual, summations over empty sets mean zero. Notice that

Ih =
k∑
i=1

k∑
j=i

1

i!(j − i)!
L(i)v(j−i)hj

=
k∑
i=1

k−i∑
l=0

1

i!l!
L(i)v(l)hl+i =

k−1∑
l=0

hl

l!

k−l∑
i=1

hi

i!
L(i)v(l)

=

k∑
j=0

hj

j!

k−j∑
i=1

hi

i!
L(i)v(j),

and similarly,

Jh,ρ =

k∑
j=1

j∑
i=1

1

i!(j − i)!
M(i)ρv(j−i)hj =

k∑
j=0

hj

j!

k−j∑
i=1

hi

i!
M(i)ρv(j).

After that the fact that F̂ = F and Ĝ = G follows by simple arithmetics.
To prove the last assertion notice that for j = 0, 1, ..., k

l + k − j + 2 ≤ m− 2j, l + k − j + 1 ≤ m− 2j − 1.

Thus by Lemma 3.6 for j = 0, 1, ..., k, (t, ω) = [0, T ]× Ω

‖Oh(k−j)
t v

(j)
t ‖W l

2
≤ N‖v(j)

t ‖W l+k−j+2
2

≤ N‖v(j)
t ‖Wm−2j

2
,
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‖Rh(k−j)
t v

(j)
t ‖W l

2
≤ N‖v(j)

t ‖W l+k−j+1
2

≤ N‖v(j)
t ‖Wm−2j−1

2
,

which implies F h ∈ Wl
2(T ) and Gh,· ∈ Wl+1

2 (T ) by Theorems 2.1 and 3.7.
�

4. Proof of Theorems 2.2 and 2.4

First we present a theorem which, as we will see it later, is more general
than Theorem 2.4. Theorem 2.2 can be obtained similarly.

Theorem 4.1. Let Assumptions 2.2, 2.3, 2.4, 2.5 and 2.6 hold with

m = m = l + 2k + 3 (4.1)

for some integer k ≥ 0. Then for rkt , defined as in Lemma 3.8, we have

E sup
t≤T
‖rht ‖2W l

2
≤ N |h|2(k+1)K2

m (4.2)

for h > 0, where N depends only on T , d, Λ, m, l, K0,...,Km, Cm and
A0,..., Al+1. Moreover, if pλ = qλ = 0 for λ ∈ Λ0, then v(j) = 0 in (3.46)
for odd j ≤ k, and if k is odd then it is sufficient to assume m ≥ l+ 2k + 2
in place of m = l + 2k + 3 in (4.1) to have estimate (4.2).

Proof. By Lemma 3.8 we have F h ∈ Wl
2(T ) and Gh,· ∈ Wl+1

2 (T ), which by
Lemma 3.8 and Theorem 3.5 yields

E sup
t≤T
‖rht ‖2W l

2
≤ NE

∫ T

0
(‖F ht ‖2W l

2
+ ‖Ght ‖2W l+1

2

) dt (4.3)

with a constant N depending only on d, l, T and A0, . . . , Al+1 Let (4.1)
hold. Then for j = 0, ..., k

l + k − j + 3 ≤ m− 2j, l + k − j + 2 ≤ m− 2j + 1, (4.4)

and by Remark 3.4 we have

‖Oh(k−j)
t v

(j)
t ‖W l

2
≤ N |h|k−j+1‖v(j)

t ‖W l+k−j+3
2

≤ N |h|k−j+1‖v(j)
t ‖Wm−2j

2
,

‖Rh(k−j)
t v

(j)
t ‖W l

2
≤ N |h|k−j+1‖v(j)‖

W l+k−j+2
2

≤ N |h|k−j+1‖v(j)‖
Wm−2j−1

2
.

(4.5)

Hence, using Theorem 3.7 we see that

E

∫ T

0
‖F ht ‖2W l

2
+ ‖Gh‖2

W l+1
2

dt ≤ N |h|2(k+1)K2
m,

which by virtue of Theorem 3.5 implies estimate (4.2). If pλ = qλ = 0 for

λ ∈ Λ0 then by Theorem 3.7 we know that v(j) = 0 for odd j ≤ k. (Remark
that this follows also from (4.2) valid now for all h 6= 0, since vh = v−h

due to that vh and v−h are the unique L2 solutions of the same problem
(2.4)-(2.5)). If in addition k is odd then v(k) = 0. Thus (4.5) obviously holds
for j = k and to have it also for j ≤ k− 1 we need only m = l+ 2k+ 2. �
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By Sobolev’s theorem on embedding W l
2 into Cb for l > d/2 there exists

a linear operator I : W l
2 → Cb such that Iϕ(x) = ϕ(x) for almost every

x ∈ Rd and

sup
Rd
|Iϕ| ≤ N‖ϕ‖W l

2

for all ϕ ∈ W l
2, where N is a constant depending only on d. One has also

the following lemma on the embedding W l
2 ⊂ l2(Gh), that we have already

referred to, when we used Remark 2.3 on the existence of a unique l2(Gh)-
valued continuous solution {ut(x) : x ∈ Gh} to equation (2.4).

Lemma 4.2. For all ϕ ∈W l
2(Rd), l > d/2, h ∈ (0, 1)∑

x∈Gh

|Iϕ(x)|2hd ≤ N‖ϕ‖2
W l

2
, (4.6)

where N is a constant depending only on d.

Proof. This lemma is a straightforward consequence of Sobolev’s theorem
on embedding W l

2 functions on the unit ball B1 of Rd into C(B1), the space
of continuous functions on B1. (See, e.g., [6].) �

Set Rht = Irht . Recall that Λ0 = {0}, δh,0 is the identity operator and
δh,λ = δh,λ1 · ... · δh,λn for (λ1, . . . , λn) ∈ Λn, n ≥ 1. Then we have the
following corollary of Theorem 4.1

Corollary 4.3. If for some integer n ≥ 0 we have l > n+ d/2 in Theorem
4.1. Then for λ ∈ Λn we have

E sup
t∈[0,T ]

sup
x∈Rd

|δh,λRht (x)|2 ≤ Nh2(k+1)K2
m

for h > 0 with a constant N depending only on Λ, d, m, l, T , K0, ..., Km,
A0,...,Al+1 and Cm.

Proof. Set j = n− l. Then j > d/2 and by Sobolev’s theorem on embedding

W j
2 into Cb and by Remark 3.2, from Theorem 4.1 we get

E sup
t∈[0,T ]

sup
x∈Rd

|δh,λRht (x)|2 ≤ C1E sup
t∈[0,T ]

‖Rht ‖2j,h,n

≤ C2E sup
t∈[0,T ]

‖Rht ‖2W l
2
≤ Nh2(k+1)K2

m.

Similarly, by Lemma 4.2 and Remark 3.2

E sup
t∈[0,T ]

∑
x∈Gh

|δh,λRht (x)|2hd ≤ C1E sup
t∈[0,T ]

‖δh,λRht ‖2W j
2

≤ C2E sup
t∈[0,T ]

‖Rht ‖2W l
2
≤ Nh2(k+1)K2

m.

�
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Now we show that Theorem 2.4 follows from the above corollary. We
define

ûh = Ivh, u(j) = Iv(j), j = 0, ..., k,

where vh is the unique Ft-adapted continuous L2(Rd)-valued solution of

equation (2.4) with initial condition ψ, the processes v(0),...,v(k) are given
by Theorem 3.7, I is the embedding operator from W l into Cb. By virtue
of Theorem 3.5 vh is a continuous W l

2-valued process, and by Theorem 3.7

v(j), j = 1, 2, ..., k, are Wm−2k
2 -valued continuous processes. Since l > d/2

and hence m − 2k > d/2, the processes ûh and u(j) are well-defined and
clearly (3.46) implies (2.9). To show that Corollary 4.3 yields Theorem 2.4
we need only show that almost surely

û
(h)
t (x) = uht (x) for all t ∈ [0, T ] (4.7)

for each x ∈ Gh, where uh is the unique Ft-adapted l2-valued continuous
solution of (2.4). To see this let ϕ be a compactly supported nonnegative
smooth function on Rd with unit integral, and for a fixed x ∈ Gh set

ϕε(y) = ϕ((y − x)/ε)

for y ∈ Rd and ε > 0. Since ûh is a continuous L2-valued solution of (2.4),
for each ε almost surely∫
Rd
ûht (y)ϕε(y) dy =

∫
Rd
û(y)ϕε(y) dy +

∫ t

0

∫
Rd

(Lhs û
h
s (y) + fs(y))ϕε(y) dy ds

+

∫ t

0

∫
Rd

(Mh,ρ
s ûhs (y) + gρs (y))ϕε(y) dy dwρs

for all t ∈ [0, T ]. Letting here ε → 0 we see that both sides converges in
probability, uniformly in t ∈ [0, T ], and thus we get that almost surely

ûht (x) = u0(x) +

∫ t

0
Lhs û

h
s (x) + fs(x) ds+

∫ t

0
Mh,ρ
s ûhs (x) + gρs (x) dwρs

for all t ∈ [0, T ]. (Remember that u0, f and g are continuous in x by virtue of
Remark 2.1.) Moreover, owing to Lemma 4.2 the restriction of ût onto Gh is
a continuous l2(Gh)-valued process. Hence, because of the uniqueness of the
l2(Gh)-valued continuous Ft-adapted solution of (2.4) for any l2-valued F0-
measurable initial condition, we have (4.7), that finishes the proof Theorem
2.4.
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