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ON FINITE DIFFERENCE SCHEMES FOR DEGENERATE
STOCHASTIC PARABOLIC PARTIAL DIFFERENTIAL
EQUATIONS

ISTVAN GYONGY

ABSTRACT. Finite difference approximations in the space variable for
possibly degenerate stochastic parabolic PDEs is investigated. Sharp
estimates for the rate of convergence are obtained, and sufficient con-
ditions are presented under which the speed of approximations can be
accelerated to any given order of convergence by Richardson’s method.
The main theorems generalise some results from [5] and [6] to degenerate
SPDEs.

1. INTRODUCTION

We study spatial discretisations
duf (z) = (L} (x)uf (z) + fi(z dt+z M;Pup () + gf (x)) dwf,  (1.1)

€ [0,T], z € Gy, for stochastic parabohc PDEs

dug(x) = (Lewg(w) + fi(@)) dt + Y (M{uy(x) + gf (x)) duwf, (1.2)
p=1
€ [0, T, x € RY, with initial condition
up(z) = ¥(z), =R (1.3)
Here (w”)S° p—1 18 a sequence of independent F;-Wiener processes carried on

a probability space (£, F, P), equipped with the filtration F = (F})¢>o.
The operators L and M?, p = 1,2, ..., are differential operators in x, with
random time dependent coefficients, adapted to the filtration F, such that
L is a second order differential operator and M?” are first order operators,
of the form

d d
L= a}’(@)DaDs and M? = bt**b(z)Da, p=12,..,
«,B=0 a=0

respectively. The stochastic parabolicity condition is assumed (see Assump-
tion 2.1 below). Such equations arise in filtering theory of partially observed
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2 I. GYONGY

diffusion processes Z = (X,Y), as equations for the unnormalised density of
the signal process X at time t, given the observation process Y until time ¢.
Therefore effective numerical algorithms for solving (1.2)-(1.3) are of great
practical importance. There are many methods introduced to solve (1.2)-
(1.3) numerically. We take here finite difference operators L" and M" to
approximate the solution u of (1.2)-(1.3) by the solution u” of (1.1) with
initial condition u} = on a fixed grid G, of mesh-size |h]|.

Finite difference approximations for deterministic PDEs are studied ex-
tensively in the literature. See for instance [2] and the references therein.
However, there are only a few results published for degenerate equations.
Sharp rate of convergence estimates are obtained in [3] for deterministic
(possibly) degenerate parabolic and elliptic SPDEs with monotone finite
difference schemes. Rate of convergence estimates of finite difference approx-
imations for stochastic parabolic PDEs are are obtained under the strong
stochastic parabolicity condition, i. e., when there is a constant x > 0 such
that

(2aij — bipbjp)zizj > k2l

for all w € Q, t > 0 and = € R%.

About hundred years ago L. F. Richardson suggested a method of acceler-
ating the convergence of numerical approximations depending on a parame-
ter, for example on the mesh-size |h| of the grid in the case of finite difference
approximations (see [9] and [10]). He demonstrated that the accuracy of the
approximations can be dramatically increased if one takes suitable mixtures
of approximations with different step-sizes. His idea is based on the exis-
tence of an expansion of the finite difference approximation in powers of
the step-size, which makes it possible to find such mixtures where the lower
order powers are cancelled out. Therefore it is important to find sufficient
conditions under which numerical approximations admit power expansions
with respect to a parameter which is proportional to the error of the method.
The possibility of such expansions have been studied thoroughly in numer-
ical analysis. See, for example, the book [8] on Richardson’s idea applied
to finite difference approximations for deterministic PDEs. In [6] Richard-
son’s idea is implemented to a class of monotone finite difference schemes for
(possibly) degenerate parabolic and elliptic PDEs, and in [?] Richardson’s
idea is implemented to stochastic PDEs satisfying the strong parabolicity
conditions. Both in[6] and [?] general conditions are obtained under which
the accuracy of finite difference approximations in the supremum norm can
be made as high as desired. In the present paper we generalise some results
from [6] and [?] to SPDEs satisfying only the stochastic parabolicity con-
ditions. We present sharp rate of convergence estimate and give sufficient
conditions under which the accuracy of the accelerated schemes is as high as
we wish. In the special case of when the finite difference approximations are
defined by replacing the partial derivatives 99x* by centred finite differences
along the basis vector e; our main theorem reads as follows: The accuracy
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of the (spatial) finite difference approximations to (1.2)-(1.3) be accelerated
to any order if the initial condition and free terms are sufficiently smooth in
2 and the matrix

() := (2a9 — biPHIP)
can be decomposed as
a(x) = oy(w)of (x) (1.4)

by a sufficiently smooth matrix ¢ in x. Clearly, requiring a sufficiently
smooth factorization (1.4) is a rather restrictive condition. Nevertheless this
condition is easily applicable to the equation of the unnormalised conditional
density in nonlinear filtering, since this factorization condition is satisfied
even in the general setting of correlated signal and observation noises when
the diffusion coefficients of the signal noise is sufficiently smooth.

For survey papers on the application of Richardson’s method to various
numerical approximations we refer to [1] and [4]

The paper is organised as follows. In Section 2 basic notions and notation
are introduced and the main results are presented. In Section 3 the main
tools are given. The proof of the main theorems are given in the last section,
Section 4

We fix a probability space (€2, F, P), equipped with an increasing family
of o-algebras (F;)¢>0, such that Fy contains the P-zero sets of F. The o-
algebra of predictable subsets of € x [0,00) is denoted by P. We fix also
a sequence of independent Wiener processes (w} )z":l, such that w{ is Fi-
measurable and wf —w§ is independent of Fs for 0 < s < ¢, for every integer
p > 1. Unless otherwise stated, the summation convention with respect to
repeated integer-valued indices is used throughout the paper.

2. FORMULATION OF THE MAIN RESULTS

We consider the equation

dug = (Loug + fr) dt + (MJug + gf) dwy, (2.1)
for w € Q, (t,r) € [0,T] x RY =: Hy with some initial condition
u(z) = Y(z), @R, (2.2)

where
Lip = a?’DoDgg, MPb = b2 Dy,

Here and below the summation with respect to a and 3 is performed over
the set {0, 1, ...,d} and with respect to p, over the positive integers {1, 2, ...}.

Assume that a2’ = a”(z) are real-valued, b = (b ()52 are lp-valued
P x B(R?)-measurable functions on Q x Hr for all o, 8 € {0,1,...}.
A necessary condition that the Cauchy problem (2.1)-(2.2) be well-posed

is the condition of stochastic parabolicity:
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Assumption 2.1. For all (w,t,2) € Q x Hy and z € R?

d
Z (2ay — b b}P)2'27 > 0.
ij=1
To formulate an existence and uniqueness theorem for the generalised
solution we need to require smoothness conditions on the coefficients a®?,
b“, the initial value v, and free terms f, g.
Let m > 0 be an integer and let W™ be the usual Hilbert-Sobolev space
of functions on R? with norm || - ||y

Assumption 2.2. For each (w,t) the functions a;’ are max(m, 2) times, the

functions af, a¥, a° are m times continuously differentiable in z for i, j €
{1,...,d}. The lp-valued functions bf = (b*?)72, are m-times continuously

differentiable in z. There are constants K, [ = 0, ..., max(m, 2) such that
ID'a| < K; for | < max(m, 2),

D' < K;, |D'a| < K;, |DW|, < K, |D'by, < K; forl<m
for all @ € {0,1...,d} and 4,5 € {1,...,d}.

Assumption 2.3. We have ¢ € Ly(Q2, Fo, W3"). The function f; is W3-
valued, g7, p = 1,2,..., are W2m+1—valued predictable functions given on
Q x [0, T]. Moreover, for g, := (g/)5; and

oo
laelyy = 3 912
p=1
we have

T
B [ il + ol + Blluolfyp = K2, < .

Remark 2.1. If Assumption 2.3 holds with m > d/2 then by Sobolev’s em-
bedding of W3 into C}, the space of bounded continuous functions, for al-
most all w we can find a continuous function of x which equals to ug almost
everywhere. Furthermore, for each ¢ and w we have continuous functions of
x which coincide with f; and g, for almost every & € R?. Therefore when
Assumption 2.3 holds with m > d/2, we always assume that v, f; and g
are continuous in x for all £.

We look for the solution of (2.1)-(2.2) in H™(T'), the Banach space of
W3'-valued weakly continuos predictable processes u = (ut);c[o,7] With the
norm defined by

[l oy = B sup_[Ju(t) [y < o
t€[0,T]

We use the notation (¢, $) for the inner product of ¢ and ¢ in La(R?).
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Definition 2.1. A Wj-valued weakly continuous predictable process u =
(ut)iejo,r) is a solution to (2.1)-(2.2) if almost surely for all € C3°(RY)

t
(ut, ) = (uo, ) + / (—ad Djus, Dip) + (alDjus, ¢) + (asus, ) ds
0

¢
+/ (bé’”Dius + 02, ) dw?
0

for all t € [0, T], where o/ := —D;a” + a% + a/° and the summation in the
repeated indices i, j is performed over their range {1,2...,d}.

The following result is known from [7] (see also [1]).

Theorem 2.1. Let Assumptions 2.2, 2.3 and 2.1 hold. Then (2.1)-(2.2) has
a unique solution u. Moreover, u € H™, it is a strongly continuous process
with values in ng_l, and there exists a constant N depending only on T,
d, m and Kj,j < max(m,2), such that

Esup [ulfip < NKZ,. (2.3)
t<T

Remark 2.2. We are going to assume that m > d/2. Then by Sobolev
embedding theorems the solution wu;(x) from Theorem 2.1 is a continuous
function of (¢,z) (a.s). More precisely, with probability one, for any t one
can find a continuous function of x which equals u;(z) for almost all x and,
in addition, the so constructed modification is continuous with respect to
the couple (t,x).

We are interested in approximating the solution by means of solving a
semidiscretized version of (2.1) when partial derivatives are replaced with
finite differences. For A € R?\ {0} and h € R\ {0} define

u(x + hA) — u(x
Busa) = M) =)
and let 0y, 9 be the unit operator.

Let A € R? be a finite set containing the zero vector and consider the
following finite difference equation

1
, =0k = 5(511,,\ +0_p2)s

duj' = (Ljuf + fo) dt + (M u} + gf) duf, (2:4)

ug =1, (2.5)
with
L = aoholh + > (p™0ha — q0np), M =600k,
AE€Ag
where the summation is performed over A\, € A and in (2.4) also with
respect to p € {1,2,...}. Assume that a’ = ai‘“(:r), p =pMx), ¢ = ¢ (2)
are real-valued, and b* = (b;\ ()22, are lp-valued, P x B(R%)-measurable

p=1
bounded functions on Q x Hrp, for all A, u € A.
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Introduce
Gy, = {Alh +..+X\h:n=12,... N\ €EAU (—A)},
and let I2(Gy,) be the set of real-valued functions u on Gy, such that
|U\122(Gh) = |h\d Z |u(z)]* < oo.
z€Gy

The notation l2(Gy) will also be used for la-valued functions like g.

Remark 2.3. Notice that equation (2.4) is just an infinite system of ordinary
It6 equations for {u(z) : © € Gp}. Therefore if, for instance, (a.s.)

T
/0 (felt@ny + 19l c,) dt < oo,

and Assumption 2.5 (i) holds then equation (2.4) has a unique solution with
continuous trajectories in lo(Gy) provided that the initial data uff € I2(Gy,)
(a.s.). By Sobolev’s embedding of W3 into C, we have W3 C I3(Gy) if
r > d/2, see Lemma 4.2 below. Therefore if

T
[lis + [ £ + a0y ds < o0 (@),
then (2.4)-(2.5) has a unique l3(Gp)-valued Fi-adapted continuous solution
(u?)te[O,T}-

It is easy to see that in order u” approximate the solution of (2.1)-(2.2)
the following consistency condition is necessary.

Assumption 2.4. For alli,j =1,....dand p=1,2,...

S oY i, 25)
AUEA A€o
Z a/\O)\i+ Z Clou,ui—F Z p)\>\z _ Z q)\'ul :aio_'_a?i’
AEAY NN HEAo AEAY

00 _ 00 (0p _ 30p
a;- =a; , b =0b".

There are many ways of constructing appropriate coefficients a, p, q and
b, satisfying this condition.

Example 2.1. Set A = {eg, e1,...,eq4}, where eg = 0 and e; is the ith basis
vector, and let

€ag __ _af eap _ pap _
o =a", b;"=0b", o B=01,..d.

qea :pea :O a76:17...7d.

Thus each derivative D; in (2.1) is approximated by the symmetric finite
difference (52.
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Example 2.2. We take the same set A as in the previous example, and
define p®, q% for o € {1,2,...,d} and define

00 __ 00 eals __ _aff _
a-=a, a " =a;, a,B=1,...,d,

b =2, o, =0,1,....d,

and take also nonnegative P ® B(R?)-measurable functions p®e, q° for a €
{1,...,d}, such that

pea _ qea — O _'_aa0)? = {1,2,,d}

To formulate our theorem on the accuracy of the approximation u” we fix
an integer [ > 1, constants Ag,..., A;11 and impose the following condition.

Assumption 2.5. (i) For each (w,t), z € R? we have
PP >0, q*>0, XeA.

(ii) For some integer d; > 1 for each A € Ag there are F ® B(Hr)-
measurable real functions o*!,..., 0*% on Q x Hr such that for all (w,t,z) €
Q x HT

A= 20" — b)¥bM = ZO’AkUuk A, 1 € Ay. (2.7)

(iii) Let { > 1 be an integer. For \ € Ao the functions o**, b)‘ and bo are
[+ 1 times continuously differentiable in 2, and a®*, a*? a% p* and q° are I
times continuously differentiable in x. For all values of arguments we have

|DIg?F| + | DIoN + | D700 < A; for j <141,

D7) + | D70 + [D7a®|| D7p?| + |DIgh| < A for j <1,
forall A € Ag, k=1,...,d;.
Remark 2.4. Clearly, Assumption 2.5 (ii) implies
Z ElA“zAz# >0 for (w,t,x) € Qx Hp, zy € R, A € Ay,
A:FLEAO

which, together with (2.6), implies Assumption 2.1. If in addition Assump-
tions 2.2 and 2.3 are also satisfied with m > 24d/2, then (2.1)-(2.2) admits a
unique generalised solution, which by virtue of Sobolev’s embedding almost
surely equals to a function u for every ¢ € [0, 7] and almost every z € R?,
such that u and its derivatives in x up to second order are continuous func-
tions on H7 and almost surely

duy(x) = (Lyug(z) + fe(z)) dt + M{uy(z) + g°(x) dwy,  uo(z) = ()
for all t € [0,7] and x € R,
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Theorem 2.2. Let Assumptions 2.2 through 2.5 hold with m > 3 4+ 1 and
[ >d/2. Then for h >0
E sup sup |[ul(z) —u(t,z)|? < NW* K, (2.8)
t€[0,T] z€Gy,

where N is a constant depending only on T, A, I, d, m, Ky,....,K,, and
AO,....,A[J’_l.

We prove this theorem after the next section. Now we are going to for-
mulate the main result of the paper. Namely, that under additional smooth-
ness conditions, for a given integer k > 0 there exist random fields ugj )(a:),
(t,z) € Hrp, such that they are independent of h, u© is the solution of
(2.1)-(2.2), and for h # 0 almost surely

k .
ho
ul(2) = —u? (z) + R}(z) (2.9)
i=0 7
for all t € [0,7] and = € Gy, where ul! is the solution to (2.4)-(2.5), and R"
is an l3(Gyp,)-valued adapted continuous process, such that
E sup sup |RP(z)> < NR2E+HD 2 (2.10)
t€[0,T] z€Gy,
with a constant N independent of h.

Assumption 2.6. Let m > 0 be a fixed integer. For A\, u € A the derivatives
in z € R? of a™ and the lo-valued functions b* up to order max(m — 4,0),
and for A\ € Ag the derivatives in z of p*, ¢* up to order max(m — 2,0) are
functions, bounded by a constant Cy, for all w € Q and (¢,x) € Hyp.

Theorem 2.3. Let Assumptions 2.2 through 2.6 hold with
m=m2>2k+3+1 (2.11)

and | > d/2, where k > 0 is an integer. Then for h > 0 expansion (2.9)
and estimate (2.10) hold with a constant N depending only on d, m, I, T,
A, K@,...,Km, Ao,...,AlJrl and Cm
If p* = ¢ =0 for A\ € Ag then (2.9)-(2.10) hold for all h # 0. Moreover,
u) =0 for odd j < k, and if k is odd then to have (2.9) and (2.10) we need
only
m>2k+2+1

instead of (2.11).

Remark 2.5. Actually u'(x) is defined for all x € R? rather than only on
Gy, and, as we will see from the proof of Theorem 2.3, one can replace Gy,

in (2.10) with R?.
Equality (2.9) clearly yields
k hi 4
St (z) =) ?511,)\“5,])(1:) + On R} (x)
i=0 7"
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for any A = (A1,..., A\,) € A" and integer n > 0, where A = {0} and
5h,/\ = 5h,)\1 Cet 5h,)\n-
Theorem 2.3 can be generalized as follows.

Theorem 2.4. Let A\ € A" for an integer n > 0. Let Assumptions 2.2
through 2.6 hold with

m=m>n+2k+3+1 (2.12)
and 1 > d/2. Then for h > 0 we have (2.9) and
E sup sup |0p RMz)[? < NR2KHDK2 | (2.13)
t€[0,T] z€Gy,

with a constant N depending only on d, m, n, k, I, T, A, Ky, ..., K, Cp,
AO;"'7AZ+1- )

Ifp* = q* = 0 for X\ € Ay then v\9) =0 for odd j < k, and if k is odd
then instead of (2.12)we need only

m>n+2k+2+1
to have (2.9) and the estimate (2.13).

We prove Theorem 2.4 in Section 4 after some preliminaries presented in
Section 3.

To accelerate the rate of convergence of u" we fix an integer k£ > 0 and
define

R ;
ah = bt A= b (2.14)

where

V1 is the inverse of the matrix

Vi =2 0=D0=D =1 k1,
and V1 is the inverse of matrix

ViU = 4=GD6-D =1 k41
Theorem 2.5. Let Assumptions 2.2 through 2.6 hold with

m=m>2%k+3+1 (2.15)
and 1 > d/2, where k > 0 is an integer. Then for h > 0 we have
Esup sup |a'(z) — ul” (2)2 < NR2*kHD K2, (2.16)

t<T zeGp,
with a constant N = N(T,m,k,d,l, A, Ko, ..., K;n, Ag, ..., Aj11,Chy).
If p* = ¢* =0 for X € Ay, then

Esup sup |i(z) — ul” (z)2 < N|h[2ED 2 (2.17)
t<T xeGy,
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for h #0, and if k is odd then to have (2.17) we need only
m=m>2k+2+1
instead of (2.15).

Proof. We prove only (2.17), since estimate (2.16) can be obtained in the
same way. By Theorem 2.3

k
k+1 2~ Jh .
u? Z uw +h j=0,1,..,k,

with r27’h ;.= B~ D R277h Hence with 7 := Sk, r27h

k k ko k
_ = g - = h* ;
=3 bt = (S hu® + 575k, B w2 4 phtigh

=0 §=0 =0 i=1

h2i ) k
_ () (2i) i pktah _ o (0) o pktlgh
ut’ + ;E 7(21,)!11 E O] +h + BT

since

by the definition of (by, ..., b; 7). Thus owing to (2.10) we have

E sup sup |a" —ul? < B2FTVE sup sup [fi(z)|> < NR2FHDK2
te[0,T] z€Gy, te[0,T] z€Gy,
and the theorem is proved. O

Remark 2.6. Notice that without acceleration, i.e., when £ =0 and k£ = 1
n (2.15) and (2.16), respectively, in the above theorem for h > 0 we have

E sup sup |u" —u®> < NRZKZ,
t€[0,T] z€Gy,

and when p* = g = 0 for A\ € Ay we have

E sup sup |u" —u®? < NRKZ,
t€[0,T] z€Gy,

respectively. These are sharp estimates by virtue of Remark 2.21 in [3] on
finite difference approximations for deterministic parabolic PDEs.
Remark 2.7. Let p» = ¢ = 0 for A € Ag. Let n > 0 and assume the
conditions of Theorem 2.3 with

m>n+2k+3+d/2,
with an integer n > 0. Then for A € A™ (2.17) holds with 5h,>\71h and (5h,>\u(0)

in place of @ and u(9), respectively, with a constant N depending on T', m,

k‘, n, d, b, A, Ko,...,Km, AO,...,A[+1 and Cm
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Proof. This follows from Theorem 2.4 in the same way as Theorem 2.5 fol-
lows from Theorem 2.3. U

By the above remark one can construct fast approximations for the deriva-
tives of u(®) via suitable linear combinations of finite differences of @".

Example 2.3. Assume that we have d = 2. m = 10 and p* = ¢* = 0 in
A € Ag. Then

“h._ 4, h/2 1,k
u' = zu U
satisfies

E sup sup |u§0)(x) —al(z)> < NKE.
t<T zeGy

Example 2.4. Consider the SPDE
du; = aD?*uy dt + bDuy dwy  t > 0,reR

with initial data ug(z) = cosz, z € R, coefficients a = b = 2 and a one-
dimensional Wiener process w. Notice that 2a — b?/2 = 0, i.e., this is a
degenerate parabolic SPDE. The unique bounded solution is

ur(x) = cos(x + 2wy).
The finite difference equation (2.4) is the following:

duh () = ul(z + 2h) — 2up(z) + ul(z — 2h) dt+u?(x +h) — ul(x — h)

2h? h

dwt .

Its unique bounded solution with initial condition ug(z) = cosz is

up () = cos(x + 2¢pwy),

where ¢y, =sinh/h. For t =1, h = 0.1, and w; = 1 we have

u1(0) ~ —0.4161468365,

ul(0) ~ —0.4131150562, u//*(0) ~ —0.415389039,

@ (0) = 4ul?(0) — Lul(0) =~ 0.4161470333.

Such level of accuracy by u/(0) is achieved with h = 0.0008, which is more
than 60 times smaller than h/2.

Note that this example does not quite fit into our scheme because wug is
not square summable over R, but one can extend our approach to weighted
Sobolev spaces and then the above example can be included formally.
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3. AUXILIARY FACTS

Recall the notation

1 1 1
e — T — I = h = - _ = — T - T —
h( ha—1), 0x=0} 2(5h,)\+5 hA) 2h( b — Th—2),
for h # 0, A € R%, where for all h € R
Thap(z) =@z +hN), x€ R?

for functions ¢ on R?. Set

On\

1
=1 = §(Th,A +Th—»),

1
Ay = AL = E(5h,A + 0n,—x) = O N0—p ) = (5];/2)2

The following useful identities can easily be verified.
Lemma 3.1.
Sna(uv) = (Opau)v + (0p \v)Thau
= (Opau)v + (Sp20)u + h(Op,Au)(Op,20), (3.1)

1
(5)\(71,’[)) = ((5,\u)v + 5{(5h7/\v)Th,)\u + ((Lh,,\v)Th’,)\u}
2

= (Oru)v + (0 v) [hu + %(A/\v)éku
= (O u)v + (0rv)u + h;{((SAu)AAv + (Ayu)dyv} (3.2)

For linear operators A and B we use the notation
[A,B] = BA— AB.

Lemma 3.2.

1 h?
du(ady) = ad,dx + 5(5ua)(5>\+u +0x—p) + ?(Aua)d)\du, (3.3)
1 1
4825, = 2(b(8,) — a(530)) 8 + 1 (b(3,0) + a(BrB)r,
h2
+5 (0(Aua) — a(Axb)0x0,,  (34)

[a(Sh’M, bT}L)\] = (b(dh,)\a) — a((5h7ub))Th7)\+'u — b(dhy)\a)Thy)\ (3.5)

1
[adu, 0Th, 2] =5 (0(0n,xa) = a(0h,u0)) (T4 — Thr-u)
— a(éh,ub)Th,A,H (36)
Let I > 0 be an integer and K > 0 be a constant. In the next lemma
M and N denote difference operators of the form M = 37, b and

N =3 e, b 0y, with functions by on R?, and (, ) denotes the inner product
in Ly(R%).



ACCELERATED SCHEMES 13

Lemma 3.3. The following estimates hold for all multi-indices o, |a| < 1,
and functions p € Wi on RZ.

(i) If b* > 0 for A € Ao, and they, together with their derivatives up to
order IV 1 are functions, bounded by K, then for h > 0

(D*Mep, D*0) < Nl (3.7)

(ii) If for each A € Ag, b and its derivatives up to order IV 1 are
functions, bounded by K then for h # 0

(DN, D%0)| < Nl (3.8)

(iii) If for A € Ag the coefficients b* and its derivatives up to order (I +
1) V2 are functions on R, bounded by K, and b° and its derivatives
up to order I + 1 are functions, bounded by K, then for h # 0

(DN N @, D*g) + (DN, D°Ng)| < Nl (3.9)

In these estimates N denotes a constant that depends only on Ag, d, | and
K.

Proof. To prove (i) notice that by (3.1)

1 h 1
A _ A 9 A 9 A 9
E PO = 5 E b op A (9%) — 5 E b (Gp ) < B E b 0,2 (7).
AEAp AEAp AEAo AEAp

Hence, taking into account that 5;‘M, the adjoint of dy, ) in Lo, is 0 —», we
have

1
(Mo, ¢) < 5 > (Gn-ab %) (3.10)
AEAQ

which yields (3.7) for [ = 0. For |o| =1 >1

Y D DWaaAD e, DY) < Nl

1<y, y+B=a AEAo

Hence

(D*Mep, D) < Nliglfy: + (MDp, D),
which yields (3.7), since by (3.10)

(MD"p, D) < Nllglls;.

To prove (ii) notice notice that

N, ) = (Tp, p) (3.11)
with

1 1
T = WHN) == 3 (0nab)Tr + (0-nabn)Thos),  (3.12)

DX
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where N* denotes the adjoint of A/ in Lo. Hence

K
(Ve o) < > NATwselizs + 1 Th el llell 2
XS

K
== Tos (3.13)
S Dl
AEAY
which proves (3.8) for a = 0. For |a| =1>1

Yo 2 IDWNeAD e, D) < Nllelfs.
1<)yl y+B=a A€o
Hence
(DN, D%) < Nl + (ND*p, D%),
which implies (3.8), since due to (3.10) we have
VD%, DY) < Nlpllj-
Now we prove (iii). From (3.11) by polarization we get

(N, ¢) + N, ) =2(Tp, )

for functions ¢, € Ly. Substituting here Ny in place of 1, using T* = T
and N* = 2T — N, we obtain

(NN, @) + N, No) = 2(Tp, Np) = (TN + N*T)p, ¢)
= (TN = NT +2T%)p, ¢) = (N, Tlp,¢) + 2(Tp, T).
Hence using (3.12) and the identity (3.5) we easily get (3.9) for « = 0. To

deal with the case a # 0 we fix ¢ € W} and use the notation f ~ g for
functions f, g € L1, which may depend also on the parameter h, if

|| 0@) = g(a)) de] < Nigl
with a constant N depending only on A, [, d and K. Clearly,
(D*N@)D% ~ (ND%p) D%
For multi-indices v, |y| < m, set
N = 3 (D7)
AEAQ

and notice that for multi-indices 8 # 0, v # 0, p, such that 5+ v+ p = «
we have

(N(ﬂ)N(V)DP(p)Da(p ~ 0.
Similarly, for multi-indices 8 # 0, v # 0, B and 7 such that 8+ 8 = a and
v+ ¥ = a we have )

(N(B)D5¢)N(7)D7g0 ~ 0,
and if 5 =0 and 0 < v < o we have

VDN DT ~ (D*Q)N* N DT ~ 0,
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owing to
" 1
N*=-N + B Z {(5h,)\CA)Th,)\ + (5—h,)\CA)Th,—/\}‘ (3.14)
XS
Thus for
J = (D*NNp)D + (D*Np)D*Np
we get
J ~ Joo + Z Jofy + Z Jﬁg, (3.15)
0<v<a 0<BLa

with

Jgy := (NONO DPO) DY + NG DB N DY,
where B
Bry+p=a, B+f=a, y+y=a
By (3.9) with o = 0
Joo ~ 0. (3.16)
Using (3.14) we have
NNODI) DY ~ (N DIQIN* D ~ (N DTN D,
that for v < «, |y| =1 yields
Joy = WNOIDIQ) D + (ND )N DV ~ 0. (3.17)
For f < «, |B] = 1 identity (3.4) yields
WOND o) D ~ (NN D o) D,
that for 5 < «, |8] = 1 implies

Jg0 ~ Jog ~ 0. (3.18)
For v < a, |y| > 2 it is easy to see that
Joy ~ 0, (3.19)
and similarly, for § < a, || > 2 it is easy to see that
Jgo0 ~ 0. (3.20)

Using (3.14) we get
NN @)D ~ —(N D) ND%p,
that yields
Joa ~ 0. (3.21)
Clearly,
(NIN@) DY ~ 0,
and
W WRN D ~ (NN W) D% ~ (NN W) D ~ 0.

(This is the only place where we need that the coefficients of A have bounded
derivatives up to [+ 1, not only up to [ V2 as in the rest of the proof.) Hence
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Jao ~ 0, that together with (3.15)—(3.16) and (3.17)—(3.21) implies J ~ 0,
which proves (3.9). O

Remark 3.1. Let (N?)02; be a sequence of operators of the form N* =

Z/\GA b**5y, where b = (b/\p)p 1 is an lp-valued Borel function on Rd for
each A € Ag. Let [ > 0 be an integer. Then the following statements hold
for all multi-indices a, |a| < I and functions ¢ € W&

(i) If b* and their derivatives up to order max(l, 1) are functions, bounded

by K for all A € Ay, then

oo
> ID NP, D)2 < Nty
p=1

(ii) If b* and their derivatives up to order (I+1)V?2 are lo-valued functions,
bounded by K, for all A € Ay, then

(o.9] o
(DY) NPNPp, DY) + Y (DN?p, D°N?¢)| < N|¢|5,:.
p=1 p=1
In these estimates N is a constant depending only on K, [ and d.
Proof. Taking into account that >, |DYb|? < K for |a| < max(l,1) and
for || < max(l + 1,2) respectively, we can get these estimates in the same

way as estimates (3.8) and (3.9) are obtained. O

Lemma 3.4. Let Assumption 2.5 hold. Then for multi-indices o, |a] <1
we have

Qf(p) := [ 2D%(x)DLlp(x) + Y [D*M"p(x)]* dx < N[,
R4 1 2
p:
where N depends only on [, K, d and A.
Proof. Set M = > xeho b 5. Then M" = M" 1 % and by Remark
3.1
> (DM, DM ) < —(D* Y MM, D) + N[y,
P P
where (,) denotes the inner product in Ly and N is a constant depending
only on K, [ d and A. By equality (3.3)
MY MMP =N 6656, + M
A€o
with )
M=2 D 07(8,6%) (Onip + Ormp)
A EAg

+ D (OB + 00— Torte = Tro—r = Tirepe + Tnap)
7/"61\0
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+6%76% + 3" 6605 + Y 67605,
AEA) nEAg

% > {6 (65, 6%) Ty + 6#° (8, 0% )T},
HEAQ
where the summation convention with respect to the repeated index p is
used. By Lemma (3.3) (i) and (ii) for h > 0

(D™ pPonap, DY) < H@ll%vé, (D* Y a*0h_ap, D) < IIWI%VZ;,
AE€Ag AE€Ao

and

(DM, D9)] < Nlgllyg, (D%, D*(a™ +a*)5x0)] < Ny,

(D%, DM ) < Nllp|lyy

for h # 0. Here, and everywhere in this proof, N stands for constants
depending only on I, K, d and A. Hence

Q*(p) < (D%, D% Y @M0xdup) + Nl (3.22)
A?NEAO
Owing to Assumption 2.5 (ii) and equality (3.3) we have
dy ~
> @M=D NN N
A€o r=1
with
dy
N™ = Z oMy, N = ZNT,
A€y r=1
where for each r = 1,....,d;

\ T 1 r T
N' =3 > AV Orkp + Sur}
A u€Ag

1
T3 D (@ +81-2)0") Tirty = Thi—pmr = Tir—p + Thap)-

A €N
By Lemma 3.3 (ii) and (iii) for A # 0
(D*Ng, D%0)| < Nl

(D" NN, D%) =3 (D*N"N", D) < N|gllj,.

Hence

(D%, D* Y @"8:0u0) < Nl
Au€Ng

which along (3.22) finishes the proof. O
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We consider the finite difference scheme (2.4)-(2.5) now on [0, 7] x R?
rather than on [0,7] x Gy,.

We use the notation W5 (T') and W5(T,l2) for the Banach spaces of
W3-valued predictable processes ( ft)te[O,T] and sequences of W3"* valued

processes g; = (g7 )te[o,T}, p = 1,2, ..., respectively, with the norms defined
by

T
1 Bogery = | 17t NolBogiry = /0 an )yt

For short we write also W3*(T') in place of W5 (T, l2).

Theorem 3.5. Let Assumption 2.5 hold. Let ) be a Wé—valued Fo-measurable
random variable, f € WY(T) and g € WS (T,1y). Then for each h # 0 there

exists a unique continuous Ly-valued solution u" = (u}')ieio. 1) to (2.4)-(2.5).

h

Moreover, u” is a ng—valued continuous process, and for h > 0

T
Esupllutllwz<NEHu0||Wz+NE/ (HftHWerHgtHWm) dt,  (3.23)

with a constant N depending only on d, 1, A, Ag, ..., A1 and T. If p* =
A =0 for A € Ao, then this estimate holds for all h # 0.

Proof. Since (2.4) is an ordinary It6 equation with Lipschitz continuous
coefficients for Lo-valued processes, it has a unique Lo-valued continuous
solution u” for each h # 0. Similarly, it has a unique Wé—valued continuous
solution and, since Wi C Lo, it follows that u" is actually a continuous Wi-
valued adapted process. One can easily get estimate (3.23) with a constant

N which depends on h. In particular we have that the solution is in WO’Z( T).
We assume EHuH y < 00, otherwise (3.23) is trivial. To prove (3.23) with

a constant NV mdependent of h, we take any multi-index «, |a| <1 and use
Ito’s formula for the Lo-valued process D?u” to find

h
d|| Duy|I7,

= {Q¢ (uf') + 2(Du}', D™ i) + 2(D“b™6sul, D) + > | D9l |17,} dt

+2(D%ult, DO M™MPult + DgP) duw?, (3.24)
where Q% is defined in Lemma 3.4. Clearly,

2((Duy', D fo)] < lluell g + I fell
and by integration by parts

2((D0Yoxuy, D) < Nluellwallgllyer < N(lluellfy + lgl13yz40)-
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Thus, using Lemma 3.4, from (3.24) we have

d Z I D*up||7, SN(HU?H%,V% + HftH{Q/VQl + HgtH%/VQl) dt
lal <l

+2) " (Dupt, D*M"Puf + DgF) duwf (3.25)

laf <l
for h > 0 and if p* = g* = 0 for A\ € A, then it holds for all A # 0. Hence

h
Eluf 3y < Blluolly

t
INE / (120 + 1ol + 9ol 00) ds < 00, (3.26)
0 2 2 2

which by Gronwall’s lemma yields

t
Bl Iy < NEluollyg + VB [ (1l + ladiype) ds @27

for t € [0,T]. Now we return to (3.25) and use Davis’s inequality to get

Esup e 13y < Bllwollfys

+NE/ (fell3 + lgell?,260) dt + NyJ, (3.28)
0 2 2

where
/ SO (D, DMl + Do) dt) .
p=1 |a|<l
By the Cauchy-Bunyakovsky-Schwarz inequality
SIS (0o, DN < gl
p=1 |a|<l

and by Remark 3.1 (i)

oo
D1 (Duft, DM Pup )P < N[y

p=1 |a|<l
Hence
J < T+ o,
where
'S 1/2 1/2
_E(/ SIS (Do, DM 2 dt) Y gNE(/ luf I3y dt) /
0
p=1 |o|<i

T
1/2
< NE (sup !l ( / g 13 ) )
t<T 0
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Esup ||Ut HWl + NQE/ Hut Wy ds.
t<

- 4N1
_E(/ ZI Z (Dul', D*¢PY)|? dt)l/z SNE(/T”Ut”Wngt’W’ dt)1/2
0 p=1 Jal<i 0
<E <SUP [Juf HWI(/ lgr ||Wz df)1/2>
1

< B It + N8 [ ol s
Thus from (3.28) we get

Esupllutllwz<ElluoH Lt Esupllutllwz

T
2 2
VB [l + ol ) ds
which proves (3.23). 0

Lemma 3.6. Let n > 0 be an integer, let ¢ € WQ"H, (S W2"+2, and
A€ RN\ {0}, Set

¢ = AN'D;p, Ory = 0Oy

Then we have

( aah) Spad(z / 00y p(x + hON) db, (3.29)
" n an+1
( By SR (x 0 OV o(x + hOX) db, (3.30)
871
1 1 gt
= 1 / / (916)\ + Hgau)”a,\uw(x + h(gl)\ + 92#)) df1dbs, (3.31)
—1J-1
for almost all = € RY, for each h € R. Hence
" 1 n+1 o"
(6h) —— Aﬁb‘h 0 n+ 1 A P, (ah (5)\¢‘h 0 + 1 P, (3-32)
a T n—r
@9 ZAn,raAHau Ty, (3.33)
r=0
where
0 ifn is odd 0 ifn orr is odd
By, = ; ; ; Anr = n! . .
1 ifn is even FEDn=r 1) if n and r are even

(3.34)



ACCELERATED SCHEMES 21
Furthermore, if | > 0 is an integer and ¢ € Wy and p € W33 then

’“stWl < ) (3.35)
h - hl 141 ’h‘nJrl n+-2
[REEDS i B el < Gyl el (3.36)
=0

[6%Rp = > " h1 > Ai,rﬁgﬂf)ﬁf”leWé < N|h|"+1HwHW21+n+3, (3.37)
=0 r=0
where N = N(|A|, |u],d,n).

Proof. Clearly, it suffices to prove the lemma for ¢, € C§° (R%). For n =0
formulas (3.29) and (3.30) are obtained by applying the Newton-Leibnitz
formula to ¢(z + Oh\) and ¢(x + OhA) — ¢(xz — OhN) as functions of 6 from
[0,1] and [—1, 1], respectively. Applying (3.30) one more time derives (3.31)
from (3.30) for n = 0. After that for n > 1 one obtains (3.29)-(3.31) by
differentiating both parts of these equations written with n = 1.

Next by Taylor’s formula for smooth f(h) we have

n i i n+1 1 n+1
1) =3 G O+ o [ a0y romas

Applying this to

Shad(x / O (x + hON) dO, Sz / Oro(x + hON) db

as functions of h, and verifying (3.32) we see that

Shad(a) =Y — i O o(x)

o G+

hn+1 1 2

/ / (1= 02)"0m L0 22 + ho1 02 )\) dB, b, (3.38)

0 0
n Bi '
h _ i+l
R(w) = Z PO

hn+1
QTL' / / 1 — )"0"“6"”@5(9@ + h9192)\) df1d0s. (3.39)

Hence we get (3.35) and (3.36) by noting that by Minkowski’s inequality the
Wi-norm of the last terms in equations (3.38) and (3.39) is less than the
Wi-norm of 9524 times

|h|n+1 / / n0n+1 dg d@ _ |h|n+1
(n +2)!
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Similarly, to get (3.37) from (3.31) we need only verify (3.33) and see that

the left-hand side of (3.37) is the Wi-norm of

hn+1
4n!

/ / /1(1—93)”(918)\+928u)n+1a)\u1/1($+h93(91/\+92u)) df1dOydbs,

and apply Minkowski’s inequality. O
Remark 3.2. Formula (3.29) with n = 1 and Minkowski’s inequality imply
that

10n 7Pl 22 < [|OA0| L,

By applying this inequality to finite differences of ¢ and using induction we
easily conclude that WQHT C W,llg, where for integers [ > 0 and r > 1 we

denote by W,llg the Hilbert space of functions ¢ on R?
defined by

lollfrn =D lohx - nr el (3.40)
ALy ArEA

We also set W,ZLD2 = WQI Then for any ¢ € WQHT we have
el < Nliellyer,
where N depends only on [Ag|* := 7y, [A|* and .

Set

Z at 8)\(9 + Z —qt EA, M( = Zb”’c‘h

A\ pEA AEAQ AEA

and for integers n > 1 introduce the operators

£ = 5" a3 A, i+ 1) Y (@0 + o) Bt

A pEANg r=0 AEAQ
+n+ 1)) (0 + (1) ) oy,
AEAQ
M =+ 1)1 ST 6B,
A€Ag

(n h7 : 7
Z ,C Rt )P tp_ZﬁMg)p
i=0
where A,,, and B,, are defined by (3.34).

Remark 3.3. Formally, for n > 1 the values E,@(b and M,ﬁ””’ ¢ are obtained
as the values at h = 0 of the n-th derivatives in h of L'¢ and Mth’qu.
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Remark 3.4. Owing to Assumption 2.4 we have
£ =, MO =M. (3.41)

Notice also that by (3.35)-(3.37) under Assumptions 2.2 and 2.6 with m = m,
for ¢ € Wit and ¢ € W33 we have for | < m

h
10 ™l < MR8 yygnso.

h(n n
IR Sl < NIRH [ gprense, (3.42)

where N denotes constants depending only on n, d, m, Kg,..., Kmnv2, Cn
and A.

Let k € [1,m/2] be an integer. The functions u™),..., u(*) we need in
expansion (2.9) will be obtained as the result of embedding in Cy(R?) ap-
propriate functions vV ... ,v*) with values in certain Sobolev spaces. We
determine the functions vt(l),...,vt(k) as follows. We define vfo) as the solution
of (2.1) from Theorem 2.1 and we are going to find v ,..., v*) by solving

the following system of stochastic PDEs:

7 = (ol + 3 (L)

(MO Z (MDY G =1,k (3.43)

Theorem 3.7. Let Assumptzons 2.1, 2.2, 2.8 and 2.6 hold with m = m >
2k. Then there exists a unique set vV, ... v®) of solutions of (3.43) with
initial condition v((]l) =..= U(()k) = 0 and such that v™ € H™2"(T), n =
1,....k. Furthermore, with probability one 0™ are continuous Wy 1=2n_

valued predictable processes and there exists a constant N dependmg only on
T,d, A, m, k, Ko,..., Ky, and Cy,, such that form=1,....k

E sup Hvt )|| < NKZ, (3.44)
t<T

Wm 2n

for h > 0. Moreover, if py = q* = 0 for A € Ag, then (3.44) holds for all
h # 0, and hence v\™) =0 for odd n < k.

(n)

Proof. Since for each n =1,...,k the equation for v; ~ does not involve the
unknown functions v .. v(™  we can prove the theorem recursively on
n < k. Denote
S — Z (?)ﬁ(l)v(n—l)’ RMp — Z (TZ})/\/{(Z)PU(H—Z)7
=1 =1

and first let n» = 1. By Theorem 2.1 we have v(?) € H™(T) such that
estimate (2.3) holds. Notice that R(Y) = 0 and owing to Assumption 2.6

1 0 0
180 g < N0t e,
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which by Theorem 2.1 implies that there exists a unique v € H™2(T)
satisfying (3.43) with zero initial condition. Furthermore, vt(l) is a continu-
ous Wi 3-valued function (a.s.) and (3.44) holds with n = 1. Passing to
higher n we assume that m > k > 2 and for an n € {2, ..., k} we have found

v 01 with the asserted properties. Then M™M= = and

1 1) -1 -1
o me 20 < NJv" )HW;n—zmz = NlJv}" )HW;JWW

and for i > 2

12t o™ Pllygan < Nt ym-znscsrn < Nlo" ™l yymozo-n,

ZHM Jogyn= Z)HQ m—2n+t1 < N||v(” Z)||2 m- 2n+414(i+1)
k=1

< N2,

m 2(n—1i)-*

It follows by the induction hypothesis that
T
E / ISR o dt < N3, E / IREIZ s di < NK2,, (3.45)
0 2

which by Theorem 2.1 yields that there exists a unique v € H™2"(T)
satisfying (3.43) with zero initial condition. This theorem also yields the
continuity property of vt(") and an estimate, that combined with (3.45) yields
(3.44) for h > 0. The proof of the existence of v(V),....v*) with the stated
properties is complete. We obtain the uniqueness by inspecting the above
proof in which each v(™ is found uniquely.

Notice that M™ = 0 for odd n < k by (3.32). Assume now that p* =
g = 0 for A € Ag. Then also £ = 0 for odd n < k by (3.32) and (3.33).
Hence S = 0 and RV = 0, which implies v(?) = 0. Assume that k£ > 2 and
that for an odd n < k we have v = 0 for all odd I < n. Then £~y =0
and M=Dy(® = 0 for all i = 1,...,n, since either i or n — ¢ is odd. Thus

S =0 and R™ = 0, and hence v(® =0 for all n < k. O
Lemma 3.8. Let Assumptions 2.1, 2.2, 2.8, 2.5(iii) and 2.6, hold with
m=1+2k+2

for some integers k >0, [ > 0. Set

k
Z Q' : (3.46)

where v" is the unique Lo-valued solution of (2.4)-(2.5), v is the solution
of (2.1)-(2.2), and (v™)E_, is the solution of (3.43), given by Theorem 3.7.
Then vl =0, v € Wo’l(T), and

drlt = (LM} + El)y dt + (M]Pr] + GIP) du?, (3.47)
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where

Ay .
Fth: ]‘(’)( =3y, J Z

Finally, F" € Wé( ) and G" € WEHH(T).

Proof. We have v®) € H/(T) due to Assumptions 2.1 and 2.5(iii), and v\ €
H'(T), for j < k by Theorems 2.1 and 3.7. Hence r* € H'. Using the
equations for v and v(™ for n = 0, ..., k, we can easily see that (3.47) holds
with F' and G in place of F' and G, respectively, where

Fh — phy© _ £u<°+ZLh(J ZL ——Ih

1<j<k ! 1<j<k
Ghr = M0y ® — pey© 1 3 Mh,pvwh S M g,
1<5<k J! 1<j<k J:
with

Jhe — Z Z G z)pv(j—i)hj’

where, as usual, surnmatlons over empty sets mean zero. Notice that

ZZM—Z ) =i g

=1 j=1
k k—i k—1 k—I1
Rt ht
() (l I+i o e
=303 L0 PIET
=1 [=0 =0 i=1
k - k—j
h? h'
E 7' 7‘5 v,
7=0 J: =1 v

and similarly,
h RN = LT
o33 o <3S o
7j=11=1 J= =1

After that the fact that ' = F and G = @ follows by simple arithmetics.
To prove the last assertion notice that for j =0,1,....k

l+k—j+2<m-2j, l+k—j+1<m-—-25—1.
Thus by Lemma 3.6 for j =0,1,....,k, (t,w) =1[0,7] x Q

h k74 . o y
”Ot( j)vng)”WQl < N\lvt(j)HWyH*? < NHUIEJ)”WSRJJ',
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h k_' . s ]
HRt( j)Ut(J)”WQZ < Nvaj)sz“'k_jH < NHUt(J)HWQm_Qj_l,

which implies F" € W5(T) and G € W, (T) by Theorems 2.1 and 3.7.
U

4. PROOF OF THEOREMS 2.2 AND 2.4

First we present a theorem which, as we will see it later, is more general
than Theorem 2.4. Theorem 2.2 can be obtained similarly.

Theorem 4.1. Let Assumptions 2.2, 2.3, 2.4, 2.5 and 2.6 hold with
m=m=10+4+2k+3 (4.1)
for some integer k > 0. Then for rf, defined as in Lemma 3.8, we have

Esup I 15y, < NIBPEFVEE, (4.2)

for h > 0, where N depends only onT, d, A, m, I, Ko,...,Kp,, Cp, and
Aqg,..., A1, Moreover, if p* = ¢ = 0 for X\ € Ao, then vl h =0 in (3.46)
for odd j <k, and if k is odd then it is sufficient to assume m > 1+ 2k + 2
in place of m =1+ 2k + 3 in (4.1) to have estimate (4.2).

Proof. By Lemma 3.8 we have F* € W,(T) and G" € W5H(T), which by
Lemma 3.8 and Theorem 3.5 yields

EfggHT Pl < NE/ (I 15y + 167 IIWm) (4.3)

with a constant N depending only on d, I, T" and Ay,...,A;+1 Let (4.1)
hold. Then for j =0, ...,k

I+k—j+3<m—-2j, Il+k—7574+2<m-—2j+1, (4.4)
and by Remark 3.4 we have

h(k— —j
[tex (k—3) (J)Hwé < NI|hJ* HIHU 1+r—j+s < N|h[F= ]+1Hvt])HWm 2j

i
h(k— -J
IR (k=) (])HWQZ < N‘h‘k J+1Hv Ik_jra < N|h’k’ J+1H’U HWQm—Qj—l.

(4.5)

i

Hence, using Theorem 3.7 we see that
T
B[Ry + 16" e < NP,
0 2 2

which by virtue of Theorem 3.5 implies estimate (4.2). If p* = ¢* = 0 for
A € Ag then by Theorem 3.7 we know that vU) = 0 for odd j < k (Remark
that this follows also from (4.2) valid now for all h # 0, since v" = v="
due to that v" and v™" are the unique Ls solutions of the same problem
(2.4)-(2.5)). If in addition k is odd then v*) = 0. Thus (4.5) obviously holds
for j = k and to have it also for j < k — 1 we need only m =1+ 2k +2. O
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By Sobolev’s theorem on embedding W2 into Cj, for I > d/2 there exists
a linear operator I : W} — Cy such that Ip(z) = () for almost every
r € R? and

sup [To| < Nlolly,
Rd

for all p € WQl, where NNV is a constant depending only on d. One has also
the following lemma on the embedding Wi C Io(Gy,), that we have already
referred to, when we used Remark 2.3 on the existence of a unique l2(Gp,)-
valued continuous solution {u:(z) : © € G} to equation (2.4).

Lemma 4.2. For all ¢ € WY(R?), 1 > d/2, h € (0,1)
> He@)Ph? < Nllgllf,, (4.6)
zeGy

where N is a constant depending only on d.

Proof. This lemma is a straightforward consequence of Sobolev’s theorem

on embedding W functions on the unit ball By of R? into C(Bj), the space
of continuous functions on Bj. (See, e.g., [6].) O

Set R = Ir}. Recall that A° = {0}, 6, is the identity operator and
5}1’,\ = (5}17)\1 * e (5}17)\” for ()\17---;)\11) S An, n > 1. Then we have the
following corollary of Theorem 4.1

Corollary 4.3. If for some integer n > 0 we have I > n + d/2 in Theorem
4.1. Then for X € A™ we have

E sup sup [gp2Rf ()] < NRPEFDLC,
tE[O,T] xERd
for h > 0 with a constant N depending only on A, d, m, , T, Ky, ..., K,
Ao, Ary1 and C,.

Proof. Set j =n—1. Then j > d/2 and by Sobolev’s theorem on embedding
W3 into C, and by Remark 3.2, from Theorem 4.1 we get

E sup sup |6y R (2)]> < CLE sup [|R}|),.,
te[0,T] zeR? t€[0,T

< CoFE sup R[5 < NR2ETDEE.
te[0,7] 2

Similarly, by Lemma 4.2 and Remark 3.2

E sup Y |GaR) (2)*h? < CLE sup [[dnaRY3,
t€[0,7) 2€Gy), t€[0,T) 2

< CyF sup ||RPZ, < NR*FFDEZ
t€[0,T 2
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Now we show that Theorem 2.4 follows from the above corollary. We

define
ah =1t W9 =109, j=0,..k,

where v" is the unique Fj-adapted continuous Ly(R?)-valued solution of
equation (2.4) with initial condition 1, the processes v v*) are given
by Theorem 3.7, I is the embedding operator from W' into Cj. By virtue
of Theorem 3.5 v" is a continuous Wé—valued process, and by Theorem 3.7
v, =1,2,..,k, are Wgnf%—valued continuous processes. Since [ > d/2
and hence m — 2k > d/2, the processes @ and u) are well-defined and
clearly (3.46) implies (2.9). To show that Corollary 4.3 yields Theorem 2.4
we need only show that almost surely

" (z) = ul(z) forall t € [0,T] (4.7)

for each = € Gy, where u” is the unique F-adapted lp-valued continuous
solution of (2.4). To see this let ¢ be a compactly supported nonnegative
smooth function on R% with unit integral, and for a fixed = € Gy, set

p=(y) = o((y — x)/e)
for y € R and ¢ > 0. Since @

for each € almost surely

Ltwewar= [ awea [ [ @i+ 1.m)em s

is a continuous Lo-valued solution of (2.4),

* /0 /Rd(MSh’pﬂ'; (y) + gg(y))gps (y) dy dw?

for all t € [0,T]. Letting here ¢ — 0 we see that both sides converges in
probability, uniformly in ¢t € [0, 7], and thus we get that almost surely

t t
i (a) = uo(o) + [ Lhib(a) + fulayds + [ MPOA) + glle) du?
0 0

forallt € [0,T]. (Remember that ug, f and g are continuous in x by virtue of
Remark 2.1.) Moreover, owing to Lemma 4.2 the restriction of 4; onto Gy, is
a continuous /2 (G}, )-valued process. Hence, because of the uniqueness of the
l2(Gp)-valued continuous Fi-adapted solution of (2.4) for any lo-valued Fo-
measurable initial condition, we have (4.7), that finishes the proof Theorem
2.4.
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