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HIGHER ORDER DERIVATIVE ESTIMATES FOR
FINITE-DIFFERENCE SCHEMES FOR LINEAR

ELLIPTIC AND PARABOLIC EQUATIONS

ISTVÁN GYÖNGY AND NICOLAI KRYLOV

Abstract. We give sufficient conditions under which solutions
of finite-difference schemes in the space variable for second order
possibly degenerate linear parabolic and elliptic equations admit
estimates of spatial derivatives up to any given order independent
of the mesh size.

1. Introduction

This is the second part of a series of papers devoted to studying
the smoothness of solutions to finite difference schemes for parabolic
and elliptic partial differential equations given on the whole Rd. These
equations can degenerate, for example be just first order PDEs. As in
[14], the first part of this series, we consider a grid in Rd and a large
class of monotone finite difference schemes in the space variable x in
Rd.

For each small parameter h > 0 the given grid is dilated by h and
for each x ∈ Rd it is shifted so that x becomes a mesh point. We are
interested in the smoothness in x of the solution uh(t, x) of the dif-
ference scheme. In [14] estimates, independent of h, for the first order
derivatives of uh in x were obtained under general conditions introduced
there. In the present paper we investigate the higher order derivatives
of uh in x. The main results give estimates, independent of h, for the
derivatives of uh in x up to any given order m. The conditions extend
those from [14]. Using these results in the continuation of this paper
we estimate the derivatives of uh in h, and that allows us to develop a
new method of obtaining the power series of uh in h. Hence we get ac-
celerated finite-difference schemes by using Richardson’s extrapolation.
Namely, under general conditions we show that the accuracy of finite
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2 I. GYÖNGY AND N. KRYLOV

difference schemes for parabolic and elliptic PDEs can be improved to
any order by taking suitable linear combinations of finite difference ap-
proximations with different mesh-sizes. For elliptic PDEs this result is
announced by Theorem 2.4 in [14] and for parabolic PDEs by Theorem
2.3 below. We hope to develop these results in domains for uniformly
nondegenerate equations later.

Derivative estimates for finite-difference approximations for linear
and for nonlinear PDEs play the paramount role in establishing the
rate of convergence of the approximations. The importance of such
estimates is demonstrated recently by [20], [21] and [22], presenting
the first rate of convergence result in the sup norm of finite-difference
approximations for fully nonlinear degenerate Bellman equations. Ideas
from these publications are used and developed further in [2], [17], [3],
[7], [8], [9] and [16]. Recent results on estimating the Lipschitz constant
and second order differences of finite-difference approximations for a
large class of fully nonlinear degenerate PDEs, including the normalized
Bellman equations are presented in [24]. In [8] first order derivatives
of finite-difference approximations to degenerate linear parabolic and
elliptic PDEs are estimated and are used to establish sharp estimates
on the rate of convergence of the approximations in the sup norm.

Finite-difference methods for solving PDEs have been extensively
studied since the first half of the last century. Let us mention the pio-
neering papers by R. Courant, K.O. Friedrichs and H. Lewy [6], S. Ger-
schgorin [12], and publications by D.G. Aronson, J. Douglas, F. John,
H.O. Kreiss, O. Ladyzhenskaya, P.D. Lax, W. Littman, Lyusternik,
J. von Neumann, I.G. Petrovskii, A.A. Samarskii, G. Strang, A.N.
Tikhonov, V. Thomée, O.B. Widlund and many others (see, e.g., [1],
[10], [18], [19], [27], [28], [29], [30], [32], [33], [36], [40], [41] and the
references there.) We refer also to the review paper [38], handbook
[39], and well-known monographs and textbooks for more information
on the subject ([5], [11], [13], [26], [31], [34], [35], [37]).

The paper is organized as follows. The main results, Theorems 2.1
and 2.2 are presented in Section 2. Here we formulate also a result,
Theorem 2.3, on accelerated finite difference schemes, which we will
prove in the continuation of this paper by using Theorem 2.1. As we
have pointed out above, the idea of the proof of Theorem 2.3 is based
on a power expansion of uh in h. This idea was already applied by
the authors to show how to accelerate other approximation schemes
(see, for instance, [15]) and it seems to the authors that it was never
used before in the framework of finite difference schemes in the sup
norm for degenerate elliptic and parabolic equations although much
effort was applied to developing this and other methods of improved
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approximation for uniformly nondegenerate equations in domains (see,
for instance [4] and the references therein). It is worth saying that, in
contrast with [4] and many other papers dealing with the expansion,
we do not use any information from the theory of PDE and, as a
matter of fact, the existence of smooth solutions for degenerate elliptic
and parabolic equations follows directly from our results. We deduce
Theorem 2.2 from Theorem 2.1, and conclude Section 2 with verifying
the rather delicate conditions of the main results, Assumptions 2.4 and
2.5, for a class of examples, given in Remark 2.2 before the formulation
of the theorems. The proof of Theorem 2.1 is given in Section 3, and the
final section, Section 4, is devoted to further discussions of Assumptions
2.4 and 2.5.

The authors are sincerely grateful to the referees for many useful
comments and suggestions.

2. Formulation of the main results

We take some numbers h0, T ∈ (0,∞) and for each number h ∈
(0, h0] we consider the integral equation

u(t, x) = gh(x) +

∫ t

0

(
Lhu(s, x) + fh(s, x)

)
ds, (t, x) ∈ HT (2.1)

for u, where g = gh = gh(x) and f = fh = fh(s, x) are given real-valued
Borel functions of x ∈ Rd and (s, x) ∈ HT = [0, T ] × Rd, respectively,
and L = Lh is a linear operator defined by

Lhϕ(t, x) = L0
hϕ(t, x)− c(t, x)ϕ(x),

L0ϕ(t, x) = L0
hϕ(t, x) =

1

h

∑
λ∈Λ1

qλ(t, x)δh,λϕ(x) +
∑
λ∈Λ1

pλ(t, x)δh,λϕ(x),

for functions ϕ on Rd. Here Λ1 is a finite subset of Rd such that
0 6∈ Λ1, and pλ(t, x), qλ(t, x) are real-valued functions of (t, x) ∈ H∞ =
[0,∞)× Rd given for each λ ∈ Λ1, and

δλϕ(x) = δh,λϕ(x) =
1

h
(ϕ(x+ hλ)− ϕ(x)), λ ∈ Λ1.

As usual, for multi-indices α = (α1, . . . αd), αi = 0, 1, ..., we use the
notation

Dα = Dα1
1 ...Dαd

d , Di =
∂

∂xi
, |α| =

∑
i

αi, Dij = DiDj.
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For smooth ϕ and integers k ≥ 0 we introduce Dkϕ as the collection
of partial derivatives of ϕ of order k, and define

|Dkϕ|2 =
∑
|α|=k

|Dαϕ|2, [ϕ]k = sup
x∈Rd

|Dkϕ(x)|, |ϕ|k =
∑
i≤k

[ϕ]i.

Let m ≥ 0 be a fixed integer and let K1 ∈ [1,∞) be a constant. We
make the following assumptions.

Assumption 2.1. For any λ ∈ Λ1 the derivatives in x of pλ, qλ, c, f, g
up to order m are continuous functions in (t, x) ∈ HT and, for k =
0, ...,m and some constants Mk we have

sup
HT

( ∑
λ∈Λ1

(|Dkqλ|2 + |Dkpλ|2
)

+ |Dkc|2
)
≤M2

k . (2.2)

By Theorem 2.3 of [14] under Assumption 2.1 for each h ∈ (0, h0],
there exists a unique bounded solution uh of (2.1) and this solution
is continuous in HT along with all its derivatives in x up to order m.
However, the bounds, provided by this theorem for these derivatives
depend on the parameter h. Our aim is to show the existence of bounds,
independent of h, if in addition to Assumption 2.1, the assumptions
below also hold.

Assumption 2.2. For all t ∈ [0, T ]∑
λ∈Λ1

λqλ(t, x) is independent of x. (2.3)

This assumption may look to be a very restrictive condition. Note,
however, that a simple application of Taylor’s formula shows that if our
finite difference operators L0

h appear as finite-difference approximations
of a second-order differential operator, then not only the sum appearing
in the assumption does not depend on x but it is just identically zero.
It is also worth noting that Assumption 2.2 is satisfied in many other
cases, say if qλ(x) are just independent of x or they are independent of
λ and

∑
λ∈Λ1

λ = 0. The reader can find in [14] many more interesting
cases when this and our other assumptions are satisfied.

Introduce

χλ = χh,λ = qλ + hpλ.

Assumption 2.3. For all (t, x) ∈ HT , h ∈ (0, h0], and λ ∈ Λ1,

χλ(t, x) ≥ 0. (2.4)

There exists a constant c0 > 0 such that c ≥ c0.
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Obviously Assumption 2.3 implies that qλ ≥ 0. Note also that
Assumption 2.3 is a standard condition to have a monotone finite-
difference approximation schemes to elliptic differential operators.

Remark 2.1. The above assumption: c ≥ c0 > 0, is almost irrelevant
if we only consider (2.1) on a finite time interval. Indeed, if c is just
bounded, say |c| ≤ C = const, by introducing a new function v(t, x) =
u(t, x)e−2Ct we will have an equation for v similar to (2.1) with L0v −
(c + 2C)v and fe−2Ct in place of Lu and f , respectively. Now for the
new c we have c+ 2C ≥ C.

Take a function τλ defined on Λ1 taking values in [0,∞) and for
λ ∈ Λ1 introduce the operators

Tλϕ = Th,λϕ(x) = ϕ(x+ hλ), δ̄λ = δ̄h,λ = τλh
−1(Tλ − 1).

We introduce weights τλ in order to be able to prove such estimates
of finite differences of solutions, which are applicable to estimating the
finite differences with respect to a parameter entering the equation (see
Remark 5.3 of [14]).

Apart from estimating finite differences of solutions we also estimate
their derivatives and for uniformity of notation we also introduce Λ2

as the set of fixed distinct vectors `1, ..., `d none of which is in Λ1 and
define

δ̄`i = δ̄h,`i = τ0Di, T`i = Th,`i = 1, Λ = Λ1 ∪ Λ2,

where τ0 is a fixed parameter satisfying

τ0 > 0,

so that the derivatives of solutions will be always present in our esti-
mates. For integers k = 1, 2, ... and λi ∈ Λ, i = 1, 2, ..., k, introduce
the multi-vectors

λ = (λ1, ..., λk) ∈ Λk

and the operators

Tλ = Th,λ = Th,λ1 ...Th,λk , δ̄λ = δ̄h,λ = δ̄h,λ1 ...δ̄h,λk .

It is also convenient to set Λ0
1 = Λ0

2 = Λ0 = {0} and to introduce
δ0 = δ̄0 and T0 as unit operators. For µ ∈ Λk and k ≤ m we set

Qϕ = h−1
∑
λ∈Λ1

qλδλϕ, Qµϕ = h−1
∑
λ∈Λ1

(δ̄µqλ)δλϕ,

Pϕ =
∑
λ∈Λ1

pλδλϕ, Pµϕ =
∑
λ∈Λ1

(δ̄µpλ)δλϕ,

L0
µ = Qµ + Pµ,
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Ak(ϕ) = 2
∑
λ∈Λk

(δ̄λϕ)L0
λTλϕ, Q(ϕ) =

∑
µ∈Λ1

χµ(δµϕ)2.

Below B(Rd) is the set of bounded Borel functions on Rd and K is the
set of bounded operators K = Kh = Kh(t) mapping B(Rd) into itself
preserving the cone of nonnegative functions and satisfying K1 ≤ 1.
Set

|Λ1|2 =
∑
λ∈Λ1

|λ|2, ‖Λ1‖2 =
∑
λ∈Λ1

|τλλ|2.

Finally, fix a constant δ ∈ (0, 1].

Assumption 2.4. We have m ≥ 1 and for any h ∈ (0, h0], there exists
an operator K = Kh,m ∈ K, such that

mA1(ϕ) ≤ (1−δ)
∑
λ∈Λ

Q(δ̄λϕ)+K1Q(ϕ)+2(1−δ)cK
(∑
λ∈Λ

|δ̄λϕ|2
)

(2.5)

on HT for all smooth functions ϕ.

Assumption 2.5. We have m ≥ 2 and, for any h ∈ (0, h0] and n =
1, ...,m, there exists an operator K = Kh,n ∈ K, such that

n
∑
ν∈Λ

A1(δ̄νϕ) + n(n− 1)
∑
λ∈Λ2

(δ̄λϕ)QλTλϕ ≤ (1− δ)
∑
λ∈Λ2

Q(δ̄λϕ)

+K1

∑
λ∈Λ

Q(δ̄λϕ) + 2(1− δ)cK
( ∑
λ∈Λ2

|δ̄λϕ|2
)

+K1K
(∑
λ∈Λ

|δ̄λϕ|2
)

(2.6)

on HT for all smooth functions ϕ.

Obviously Assumptions 2.4 and 2.5 are satisfied if qλ and pλ are
independent of x. In the general case, as it is discussed in [14], the
above assumptions impose not only analytical conditions, but they are
related also to some structural conditions, which can somewhat easier
be analyzed under the following symmetry condition:

(S) Λ1 = −Λ1 and qλ = q−λ for all λ ∈ Λ1.

Notice that, if condition (S) holds then

h−1
∑
λ∈Λ1

qλ(t, x)δλϕ(x) = (1/2)
∑
λ∈Λ1

qλ(t, x)∆λϕ(x),

where ∆λ = ∆h,λ and

∆h,λϕ(x) =
ϕ(x+ hλ)− 2ϕ(x) + ϕ(x− hλ)

h2
= −δ−λδλϕ(x).

Notice also that (S) implies that the sum in (2.3) in Assumption 2.2 is
identically zero since the sum changes sign if we replace λ with −λ.
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Remark 2.2. Assumption 2.4 is discussed at length and in many details
in [14]. In this remark we suppose that Assumptions 2.1, 2.2, and 2.3
hold and m ≥ 2. At the end of this section we show that if condition (S)
holds and, for all λ ∈ Λ1, τλ > 0 and qλ ≥ κ, where κ > 0 is a constant,
then both Assumptions 2.4 and 2.5 are satisfied for any c0 > 0 and
δ ∈ (0, 1), if h0 is sufficiently small and τ0 > 0, K1, and K are chosen
appropriately. In the case τλ ≡ 1 it follows immediately from Remark
6.4 of [14] and Remark 4.3 that the above condition κ > 0 can be
dropped, provided, additionally, that c0 is large enough (this time we
need not assume that h is small).

By the way, as we have seen in Remark 2.1, the condition that c0 be
large is, actually, harmless as long as we are concerned with equations
on a finite time interval.

Mixed situations, when c is large at those points where some of
qλ can vanish are considered in Section 4 along with the analysis of
Assumption 2.4 as h ↓ 0.

Now we are in the position to formulate our main results. Recall
that as we have pointed out after Assumption 2.1 all derivatives of uh
with respect to x up to order m are continuous in HT .

Theorem 2.1. Let Assumptions 2.1 through 2.5 hold. Then for h ∈
(0, h0] we have

sup
HT

m∑
k=0

|Dkuh| ≤ N(Fm +Gm), (2.7)

where

Fn =
∑
k≤n

sup
HT

|Dkfh|, Gn =
∑
k≤n

sup
Rd

|Dkgh|,

and N depends only on τ0, m, δ, c0, K1, |Λ1|, ‖Λ1‖, M0, ...,Mm.

We prove this theorem in Section 3. Now we derive from it an esti-
mate for the solution of the equation

Lhv + fh = 0 in Rd, (2.8)

when qλ, pλ, c, and f are independent of t.

Theorem 2.2. Let Assumptions 2.1 through 2.4 be satisfied. Suppose
that qλ, pλ, c, and f are independent of t. Then the following state-
ments hold.

(i) There exists a unique bounded solution v = vh(x) of (2.8). More-
over, all derivatives in x of v up to order m are bounded continuous
functions on Rd.
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(ii) Let Assumption 2.5 be also satisfied. Then

sup
Rd

m∑
k=0

|Dkvh| ≤ NFm,

where

Fm =
m∑
k=0

sup
Rd

|Dkfh|

and N depends only on τ0, m, δ, c0, K1, |Λ1|, ‖Λ1‖, M0, ...,Mm.

Proof. Statement (i) is proved in [14] (see Theorem 2.3 there). To
prove (ii) take ν = c0γ, where γ > 0 is so small that c− ν ≥ c0/2 and
conditions (2.5) and (2.6) hold with c− ν and δ/2 in place of c and δ,
respectively. Define u(t, x) := v(x)eνt and observe that u satisfies

∂

∂t
u = L0u− (c− ν)u+ eνtf.

By Theorem 2.1 for x ∈ Rd

eνT
m∑
k=0

|Dkv(x)| =
m∑
k=0

|Dku(T, x)| ≤ NeνTFm +N
∑
k≤m

sup
Rd

|Dkv(x)|.

By multiplying the extreme terms by e−νT and letting T →∞, we get
the result. �

The above theorems have important applications in the numerical
analysis of finite difference schemes for parabolic and elliptic PDEs.
Using them in the continuation of the present paper we obtain accel-
erated finite difference schemes for second order (possibly) degenerate
parabolic and also for second order (possibly) degenerate elliptic PDEs.
In particular, we will consider the Cauchy problem

∂

∂t
u(t, x) = Lu(t, x) + f0(t, x), t ∈ (0, T ], x ∈ Rd (2.9)

u(0, x) = g0(x), x ∈ Rd (2.10)

with the operator

L := 1
2

∑
λ∈Λ1

d∑
i,j=1

qλλiλjDiDj +
∑
λ∈Λ1

d∑
i=1

pλλiDi − c.

By a solution of (2.9)-(2.10) we mean a continuous function u(t, x) on
HT , such that for each t it is twice continuously differentiable in x, is
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bounded in HT along with its derivatives in x up to second order and
satisfies

u(t, x) = g0(x) +

∫ t

0

[Lu(s, x) + f0(s, x)] ds

in HT .
To formulate one of the main results of the continuation of the paper

we fix an integer k ≥ 0 and set fh = f0, gh = g0,

ūh =
k∑
j=0

bju2−jh,

where u2−jh is the solution to (2.1) with 2−jh in place of h,

(b0, b1, ..., bk) := (1, 0, 0, ..., 0)V −1,

and V −1 is the inverse of the Vandermonde matrix with entries

V ij := 2−(i−1)(j−1), i, j = 1, ..., k + 1.

Theorem 2.3. Let Assumptions 2.3 and 2.1 with m ≥ 3(k + 1) hold.
Also let condition (S) be satisfied. Then (2.9)–(2.10) has a unique
solution u0, and

|ūh(t, x)− u0(t, x)| ≤ Nhk+1 (2.11)

holds for all (t, x) ∈ HT , h ∈ (0, h0], where N is a constant depending
only on T , k, d, |Λ1|, h0, the number of elements in Λ1, on M0, . . . .Mm,
on supt∈[0,T ] |f0(t)|m and on |g0|m.

Now we prove our claim made in Remark 2.2. Instead of condition
(S) we assume the following weaker condition

(S′): Λ1 = −Λ1 and Dqλ = Dq−λ for λ ∈ Λ1,

and proceed with the proof as follows. Clearly,∑
λ∈Λ

(δ̄λϕ)L0
λTλϕ = I1 + I2, (2.12)

with
I1 :=

∑
λ∈Λ1

(δ̄λϕ)L0
λTλϕ, I2 :=

∑
λ∈Λ2

(δ̄λϕ)L0
λϕ. (2.13)

Due to condition (S′)

I1 =
∑
λ∈Λ1

(δ̄λϕ)L0
λϕ+ h

∑
λ∈Λ1

(δ̄λϕ)L0
λδλϕ

= 1
2

∑
λ,µ∈Λ1

(δ̄λϕ)(δ̄λqµ)∆µϕ+
∑
λ,µ∈Λ1

(δ̄λϕ)(δ̄λpµ)δµϕ

+
∑
λ,µ∈Λ1

(δ̄λϕ)(δ̄λχµ)δµδλϕ =: I
(1)
1 + I

(2)
1 + I

(3)
1 ,
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I2 = I
(1)
2 + I

(2)
2 , (2.14)

where in the notation ξ = Dϕ/|Dϕ| and ψ(ξ) = ξiDiψ,

I
(1)
2 = 1

2
τ 2

0

d∑
j=1

∑
µ∈Λ1

(Djϕ)(Djqµ)∆µϕ = 1
2
τ 2

0 |Dϕ|
∑
µ∈Λ1

qµ(ξ)∆µϕ, (2.15)

I
(2)
2 = τ 2

0

d∑
j=1

∑
µ∈Λ1

(Djϕ)(Djpµ)δµϕ = τ 2
0 |Dϕ|

∑
µ∈Λ1

pµ(ξ)δµϕ. (2.16)

Set
τ̄ := max

λ∈Λ1

τλ, τ := min
λ∈Λ1

τλ,

and observe that χλ ≥ κ/2 > 0 for sufficiently small h, and that
c ≥ c0 > 0. Then by Young’s inequality, we obtain

2mI
(j)
1 ≤ 1−δ

3

∑
λ∈Λ1

Q(δ̄λϕ) +NQ(ϕ) for j = 1, 3, 2mI
(2)
1 ≤ NQ(ϕ),

2mI
(1)
2 ≤ 1−δ

3

∑
µ∈Λ1

Q(δ̄µϕ) + τ 2
0Nc

−1
0 c

∑
λ∈Λ2

|δ̄λϕ|2,

2mI
(2)
2 ≤ τ0Nc

−1
0 c
∑
λ∈Λ

|δ̄λϕ|2,

where N is a constant depending only on m, κ, δ, τ̄ , τ , the number of
elements in Λ1, and on the supremum norm of the gradients of pλ and
qλ in x. Summing up these inequalities and taking τ0 > 0 sufficiently
small we get (2.5) with K1 = 3N , unit operator K, and with δ as close
to 1 as we wish.

This result is obviously applicable to δ̄νϕ in place of ϕ for any ν ∈ Λ.
It follows that for any δ ∈ (0, 1) and appropriate constant K1 we have

m
∑
ν∈Λ

A1(δ̄νϕ) ≤ (1− δ)
∑
λ∈Λ2

Q(δ̄λϕ)

+K1

∑
λ∈Λ

Q(δ̄λϕ) + 2(1− δ)c
∑
λ∈Λ2

|δ̄λϕ|2. (2.17)

Now we show that Assumption 2.5 holds. Clearly,∑
λ∈Λ2

(δ̄λϕ)QλTλϕ =
∑
λ∈Λ2

1

(δ̄λϕ)QλTλϕ+ 2
∑

λ∈Λ1×Λ2

(δ̄λϕ)QλTλϕ

+
∑
λ∈Λ2

2

(δ̄λϕ)Qλϕ = I1 + I2 + I3.

Using

∆µTλ = ∆µ + hδλ1δλ2(δµ + δ−µ) + (δλ1 + δλ2)(δµ + δ−µ)
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for λ = (λ1, λ2) ∈ Λ2
1 and µ ∈ Λ1, we have

I1 =
∑
λ∈Λ2

1

(δ̄λϕ)QλTλϕ = I
(1)
1 + I

(2)
1 ,

with

I
(1)
1 = 1

2

∑
λ∈Λ2

1,µ∈Λ1

(δ̄λϕ)(δ̄λqµ)(4δλ1 − δ−µ)δµϕ,

I
(2)
1 = h

∑
λ∈Λ2

1,µ∈Λ1

(δ̄λϕ)(δ̄λqµ)δλδµϕ.

As above, we have∑
λ∈Λ2

1

|δ̄λϕ|2 ≤ N
∑
λ,µ∈Λ1

|δλδµϕ|2 ≤ N
∑
λ∈Λ

Q(δ̄λϕ),

∑
λ∈Λ2

1,µ∈Λ1

|δλδµϕ|2 ≤ N
∑
λ∈Λ2

Q(δ̄λϕ),

and hence, by Young’s inequality

n(n− 1)I
(1)
1 ≤ N

∑
λ∈Λ

Q(δ̄λϕ), (2.18)

n(n− 1)I
(2)
1 ≤ h2N

∑
λ∈Λ2

Q(δ̄λϕ) +N
∑
λ∈Λ

Q(δ̄λϕ), (2.19)

where N is a constant depending only on m, κ, τ̄ , the number of
elements in Λ1 and on the supremum norm of |D2qλ|. Similarly,

n(n− 1)I2 = n(n− 1)τ0

d∑
i=1

∑
ν,µ∈Λ1

(δ̄ντ0Diϕ)(δ̄νDiqµ)Tν∆µϕ

≤ τ0N
∑
λ∈Λ

Q(δ̄ϕ) +Nτ0cK(
∑
µ∈Λ2

δ̄µϕ), (2.20)

n(n− 1)I3 = 1
2
n(n− 1)τ 2

0

d∑
i,j=1

∑
µ∈Λ1

(τ 2
0Dijϕ)(Dijqµ)∆µϕ

≤ Nτ 2
0 c
∑
λ∈Λ2

|δ̄λϕ|2, (2.21)

where N denote some constants depending on m, d, c0, κ, τ̄ , τ , the
number of elements in Λ1 and on the supremum norm of |D2qλ|. Sum-
ming up the inequalities (2.17) through (2.21) and choosing τ0 and h0

sufficiently small we obtain (2.6).
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3. Proof of Theorem 2.1

For m = 1 estimate (2.7) holds by virtue of Theorem 2.1 from [14],
proved by the aid of the following version of the maximum principle
(Corollary 3.2 in [14]).

Lemma 3.1. Let Assumption 2.1 with m = 0 be satisfied and let χλ ≥ 0
for all λ ∈ Λ1. Let v be a bounded function on HT , such that the partial
derivative Dtv := ∂v(t, x)/∂t exists in HT . Let F be a nonnegative in-
tegrable function on [0, T ], and let C be a nonnegative bounded function
on HT such that

ν := sup
HT

(C − c) < 0.

Assume that for all (t, x) ∈ HT we have

Dtv ≤ Lv + Cv̄+ + F, (3.1)

where v̄(t) = sup{v(t, x) : x ∈ Rd}. Then in [0, T ] we have

v̄(t) ≤ v̄+(0) + |ν|−1 sup
[0,t]

F, (3.2)

where a+ := (|a|+ a)/2 for real numbers a.

For the proof of this lemma we refer to [14]. In order to obtain
Theorem 2.1 for m ≥ 2 we need some more lemmas. First we prove
a lemma which will be used a few times in the future. By K in the
lemma and later in the article we mean a generic operator of class K.
This operator may change each time it is mentioned even in one line
(cf. the use of o(n)). Thus, for example, for nonnegative functions α,
β on Rd the formula αK+ βK = (α+ β)K means the simple fact that
for any K1,K2 ∈ K

αK1 + βK2 = (α + β)K3

with
K3 := α

α+β
K1 + β

α+β
K2 ∈ K

(
0
0

:= 0
)
.

Lemma 3.2. Let Assumption 2.1 be satisfied. Let n ≥ 1 be an integer.
Set

A2 = ‖Λ1‖2 + τ 2
0 .

Then for any ϕ ∈ Cn we have∑
λ∈Λn

1

|δ̄λϕ|2 ≤ ‖Λ1‖2nK
(
|Dnϕ|2

)
,

∑
λ∈Λn

|δ̄λϕ|2 ≤ A2nK
(
|Dnϕ|2

)
. (3.3)

Furthermore, if 1 ≤ n ≤ m, then for any ϕ ∈ Cn∑
λ∈Λn

|PλTλϕ|2 ≤ |Λ1|2A2n
(

sup
HT

∑
µ∈Λ1

|Dnpµ|2
)
K(|Dϕ|2)
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≤ τ−2
0 |Λ1|2A2n

(
sup
HT

∑
µ∈Λ1

|Dnpµ|2
)
K
(∑
λ∈Λ

|δ̄λϕ|2
)
, (3.4)

and if assumption (2.3) holds,∑
λ∈Λn

|QλTλϕ|2 ≤ |Λ1|4A2n
(

sup
HT

∑
µ∈Λ1

|Dnqµ|2
)
K(|D2ϕ|2)

≤ τ−4
0 |Λ1|4A2n

(
sup
HT

∑
µ∈Λ1

|Dnqµ|2
)
K
( ∑
λ∈Λ2

|δ̄λϕ|2). (3.5)

Finally,( ∑
λ∈Λ1

qλ(δλϕ)2
)2 ≤M2

0

∑
λ∈Λ1

(δλϕ)4 ≤M2
0

( ∑
λ∈Λ1

(δλϕ)2
)2
.

Proof. It is easy to see that for λ ∈ Λn
1 we have

δ̄λϕ(x) = h−n
∫

[0,h]n
ϕλ(θ, x) dθ,

where, for y(λ, θ) = λ1θ1 + ...+ λnθn and τλ = τλ1τλ2 · ... · τλn ,

ϕλ(θ, x) = τλ

d∑
i1,...,in=1

λ1
i1
· ... · λninDi1 · ... ·Dinϕ(x+ y(λ, θ)).

By Cauchy’s inequality

|δ̄λϕ(x)|2 ≤ h−n
∫

[0,h]n
|ϕλ(θ, x)|2 dθ,

|ϕλ(θ, x)| ≤ τλ|λ| |Dnϕ(x+ y(λ, θ))|,
where |λ| := |λ1| · ... · |λn|. It follows that the first inequality in (3.3)
holds with with Dh in place of K, where

Dhψ(x) = ‖Λ1‖−2n
∑
λ∈Λn

1

τ 2
λ |λ|2h−n

∫
[0,h]n

ψ(x+ y(λ, θ)) dθ
(

1
0

:= 0
)
.

Since ∑
λ∈Λn

1

τ 2
λ |λ|2 = ‖Λ1‖2n,

Dh1 ≤ 1, that is Dh ∈ K and the first inequality in (3.3) is proved.
To prove the second one introduce Dh,k as the operators for which

first inequality in (3.3) holds with k in place of n, recall that Λ0
1 = Λ0

2 =
{0} and δ̄0 is the identity operator, and observe that the left-hand side
of the second inequality equals

n∑
k=0

Ck
n

∑
λ∈Λk

1 ,µ∈Λn−k
2

|δ̄λδ̄µϕ|2 ≤
n∑
k=0

Ck
n‖Λ1‖2kDh,k

( ∑
µ∈Λn−k

2

|δ̄µDkϕ|2
)



14 I. GYÖNGY AND N. KRYLOV

=
n∑
k=0

Ck
n‖Λ1‖2kτ

2(n−k)
0 Dh,k

(
|Dnϕ|2

)
=: (‖Λ1‖2 + τ 2

0 )nEh
(
|Dnϕ|2

)
,

with Eh ∈ K. This proves the first assertion of the lemma.
To prove (3.4) notice that by Cauchy’s inequality and (3.3) for λ ∈ Λn

|PλTλϕ|2 =
∣∣ ∑
µ∈Λ1

(δ̄λpµ)Tλδµϕ
∣∣2

≤
∑
µ∈Λ1

(δ̄λpµ)2Tλ
∑
µ∈Λ1

(δµϕ)2 ≤ |Λ1|2
∑
µ∈Λ1

(δ̄λpµ)2TλDh,1(|Dϕ|2).

Hence the left-hand side of (3.4) is less than

|Λ1|2
∑

µ∈Λ1,λ∈Λn

(δ̄λpµ)2TλDh,1(|Dϕ|2)

=: |Λ1|2A2n
(

sup
HT

∑
µ∈Λ1

|Dnpµ|2
)
Hh(|Dϕ|2).

Here Hh ∈ K, since by (3.3)∑
µ∈Λ1,λ∈Λn

(δ̄λpµ)2 ≤ A2nDh,n
( ∑
µ∈Λ1

|Dnpµ|2
)
≤ A2n sup

HT

∑
µ∈Λ1

|Dnpµ|2.

This proves (3.4). To prove (3.5), notice that
∑

µ∈Λ1
µδλqµ = 0, which

implies that

QλTλϕ = h−1
∑
µ∈Λ1

(δ̄λqµ)Tλ(δµϕ− µiDiϕ) =
∑
µ∈Λ1

(δ̄λqµ)Tλψµ,

where

ψµ = h−1(δµϕ− µiDiϕ).

Hence as above the left-hand side of (3.5) is less than∑
λ∈Λn

∑
µ∈Λ1

(δ̄λqµ)2Tλ
∑
µ∈Λ1

|ψµ|2 =: A2n
(

sup
HT

∑
µ∈Λ1

|Dnqµ|2
)
Fh
( ∑
µ∈Λ1

|ψµ|2
)
,

where Fh ∈ K. Furthermore,

ψµ(x) = h−2

∫ h

0

(h− θ)µiµjDijϕ(x+ µθ) dθ

≤ |µ|2h−1

∫ h

0

|D2ϕ(x+ µθ)| dθ = |µ|2
∫ 1

0

|D2ϕ(x+ hµθ)| dθ,

|ψµ(x)|2 ≤ |µ|4
∫ 1

0

|D2ϕ(x+ hµθ)|2 dθ,
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and we obtain (3.5) with the operator

Kψ := |Λ1|−4Fh
( ∑
µ∈Λ1

|µ|4
∫ 1

0

ψ(·+ hµθ) dθ
)
,

which is in K because

K1 ≤ |Λ1|−4
∑
µ∈Λ1

|µ|4 ≤ 1.

Since the last assertion of the lemma is obvious, the lemma is proved.
�

The following lemma can be proved easily by induction on n. (Sums
over empty sets of indices are defined to be 0 in the lemma, and every-
where in the article.)

Lemma 3.3. Let n ≥ 1 be an integer, ψ and ϕ be n times continuously
differentiable functions on Rd, and λ ∈ Λn. Then

δ̄λ(ψϕ) = ψδ̄λϕ+
n∑
i=1

(δ̄λiψ)δ̄λ̄(i)Tλiϕ

+
∑

1≤i<j≤n

(δ̄λ(i,j)ψ)δ̄λ̄(i,j)Tλ(i,j)ϕ+ ....

+
∑

1≤i1<...<ik≤n

(δ̄λ(i1,...,ik)ψ)δ̄λ̄(i1,...,ik)Tλ(i1,...,ik)ϕ

+...+ (δ̄λψ)Tλϕ, (3.6)

where λ(i1, ..., ik) = (λi1 , ...., λik), λ̄(i1, ..., ik) is the sequence of vectors
λ1, ..., λn from which the vectors standing on the places with numbers
i1, ..., ik are removed, and δ̄λ̄(1) := 1 for n = 1.

Proof of Theorem 2.1. Recall that Λ0 = {0} and δ̄0 = T0 is the
unit operator. Fix h ∈ (0, h0], for 0 ≤ k ≤ m set

u = uh, f = fh, V0 = u2, Vk =
∑
λ∈Λk

|δ̄λu|2, V̄k(t) = sup
Rd

Vk(t, x),

and recall that Fn is introduced in Theorem 2.1. Take an integer n ∈
[1,m]. Then we have

L0
hVn = 2

∑
λ∈Λn

(δ̄λu)L0
hδ̄λu+

∑
λ∈Λn

Q(δ̄λu). (3.7)

By Lemma 3.3

2
∑
λ∈Λn

(δ̄λu)L0
hδ̄λu = 2

∑
λ∈Λn

(δ̄λu)δ̄λL
0
hu−

∑
n≥k≥1

In,k, (3.8)
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where

In,k := Ck
n

∑
µ∈Λn−k

Ak(δ̄µu).

By Assumption 2.4,

nA1(δ̄µu) ≤ (1− δ)
∑
λ∈Λ

Q(δ̄λδ̄µu) +K1Q(δ̄µu)

+2(1− δ)cK
(∑
λ∈Λ

|δ̄λδ̄µu|2
)
. (3.9)

Hence,

In,1 ≤ (1− δ)
∑
λ∈Λn

Q(δ̄λu) +K1

∑
λ∈Λn−1

Q(δ̄λu) + 2(1− δ)cV̄n.

Next, if n ≥ 2, then

In,1 + In,2 = n
∑

µ∈Λn−1

A1(δ̄µu) + 1
2
n(n− 1)

∑
µ∈Λn−2

A2(δ̄µu)

=
∑

µ∈Λn−2

(
n
∑
ν∈Λ

A1(δ̄ν(δ̄µu)) + 1
2
n(n− 1)A2(δ̄µu)

)
,

so that by Assumption 2.5

In,1 + In,2 ≤ n(n− 1)
∑

µ∈Λn−2

∑
λ∈Λ2

(δ̄λδ̄µu)PλTλδ̄µu

+(1− δ)
∑
λ∈Λn

Q(δ̄λu) +K1

∑
λ∈Λn−1

Q(δ̄λu) + 2(1− δ)cV̄n +K1V̄n−1.

By Lemma 3.2

n(n− 1)
∑

µ∈Λn−2

∑
λ∈Λ2

(δ̄λδ̄µu)PλTλδ̄µu+
∑
n≥k≥3

In,k ≤ δ2Vn +N
n−1∑
k=1

V̄k,

where and below by the sum over an empty set we mean zero. It follows
that, for n ∈ [1,m],

L0
hVn ≥ 2

∑
λ∈Λn

(δ̄λu)δ̄λL
0
hu+ δ

∑
λ∈Λn

Q(δ̄λu)−K1

∑
λ∈Λn−1

Q(δ̄λu)

−(2c− 2δc+ δ2)V̄n −N
n−1∑
k=1

V̄k. (3.10)

Next,

2
∑
λ∈Λn

(δ̄λu)δ̄λL
0
hu = DtVn +R1 −R2, (3.11)
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where
R1 := 2

∑
λ∈Λn

(δ̄λu)δ̄λ(cu), R2 := 2
∑
λ∈Λn

(δ̄λu)δ̄λf.

Similarly to (3.8)

R1 = 2cVn + 2
n∑
k=1

Ck
nR1k,

where
R1k :=

∑
λ∈Λn−k

∑
µ∈Λk

(δ̄µδ̄λu)(δ̄µc)Tµ(δ̄λu).

By our assumptions, (3.3), and Cauchy’s inequality∑
λ∈Λn−k

|δ̄µδ̄λu|Tµ|δ̄λu| ≤
( ∑
λ∈Λn−k

(δ̄µδ̄λu)2
)1/2

Tµ
( ∑
λ∈Λn−k

(δ̄λu)2
)1/2

≤ V̄
1/2
n−k
( ∑
λ∈Λn−k

(δ̄µδ̄λu)2
)1/2

,

|R1k| ≤ V̄
1/2
n−kV

1/2
n

( ∑
µ∈Λk

|δ̄µc|2
)1/2 ≤ Ak(sup

HT

|Dkc|)V 1/2
n V̄

1/2
n−k.

Cauchy’s inequality also allows us to estimate R2 and conclude from
(3.10) that, for n ∈ [1,m],

L0
hVn − 2cVn −DtVn ≥ δQn

−K1Qn−1 − (2c− 2δc+ 2δ2)V̄n −N
n−1∑
k=0

V̄k −NF 2
n , (3.12)

where
Qk =

∑
λ∈Λk

Q(δ̄λu).

We now prove (2.7) by showing that for each n ∈ [1,m]

Vk ≤ N(F 2
k +G2

k), k = 0, 1, ..., n. (3.13)

We prove this by induction on n. By Lemma 3.1 we have

V0 ≤ N(F 2
0 +G2

0).

Using this, from (3.12) we obtain (see more details in [14])

V1 ≤ N(F 2
1 +G2

1)

by Lemma 3.1, provided that 0 ≤ 2c − 2δc + 2δ2 ≤ 2c − δ2 which is
true indeed if

3δ ≤ 2c0. (3.14)

This may look like a nontrivial restriction on δ. However, obviously, if
our assumptions are satisfied with a δ ∈ (0, 1), they are also satisfied
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with any δ′ ∈ (0, δ]. Therefore, without losing generality we suppose
that (3.14) is valid. Thus we have obtained (3.13) for n = 1. Let n ≥ 2
and assume that (3.13) holds with n−1 in place of n. Then from (3.12)
for k = 1, ..., n we get

L0
hVk−2cVk−DtVk ≥ δQk−K1Qk−1−CδIk=nV̄n−N(F 2

n +G2
n), (3.15)

with Cδ = 2(c − δc + δ2). Actually, (3.15) is true also for k = 0 if we
set Q−1 = 0, since

L0
h(u

2)− 2cu2 −Dt(u
2) = 2u(L0

hu− cu−Dtu) +Q0(u)

= −2uf +Q0(u) ≥ −N(F 2
1 +G2

1) +Q0(u).

Next we set µ = K1/δ, multiply (3.15) by µn−k and sum up the resulting
inequalities with respect to k = 0, ..., n. Then, for

Wn :=
n∑
k=0

µn−kVk,

we obtain

L0
hWn − 2cWn −DtWn ≥ δQn − CδV̄n −N(F 2

n +G2
n)

≥ −CδW̄n −N(F 2
n +G2

n).

Recalling (3.14) and using Lemma 3.1 shows that (3.13) holds. This
justifies the induction and proves the theorem.

4. Discussion of Assumptions 2.4 and 2.5

Remark 4.1. It may be instructive to see what happens with Assump-
tion 2.4 as h ↓ 0. We suppose that Assumption 2.1 and condition (S)
are satisfied and m = 1. For simplicity we concentrate on the case that
τ0 = τλ ≡ 1.

Take a smooth function ϕ and at a fixed point of HT let h ↓ 0 in
(2.5). Since all terms apart, possibly, from K involve the values of ϕ
and its derivatives only at the chosen point the last term in (2.5) will
become 2(1− δ)c(A−1ξ, ξ), where

A =
∑
λ∈Λ

λλ∗, ξ = ADϕ,

λ∗ is a row vector transpose of λ and Dϕ is a column vector of the
first-order partial derivatives. Also introduce

a =
∑
λ∈Λ1

λλ∗qλ, b =
∑
λ∈Λ1

λpλ.
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Then as is easy to see for h ↓ 0 we have

A1(ϕ)→
∑
λ∈Λ

(Dϕ)∗λ
∑
µ∈Λ1

[
λ∗Dqµµ

∗D2ϕµ+ 2λ∗Dpµµ
∗Dϕ

]
= ξi[tr ((Dia)D2ϕ) + 2(b, A−1ξ)] = tr (a(ξ)D

2ϕ) + 2(b(ξ), A
−1ξ),

where D2φ is the Hessian matrix of ϕ and we use the notation u(ξ) =
(ξ,Du). Next,

Q(ϕ)→ (ξ, A−1aA−1ξ),
∑
λ∈Λ

Q(δλϕ)→
∑
λ∈Λ

∑
µ∈Λ1

qµλ
∗D2ϕµµ∗D2ϕλ

= trA(D2ϕ)aD2ϕ

and (2.5) for m = 1 becomes

tr (a(ξ)D
2ϕ) + 2(b(ξ), A

−1ξ) ≤ (1− δ)trA(D2ϕ)aD2ϕ

+K1(ξ, A−1aA−1ξ) + 2(1− δ)c(A−1ξ, ξ). (4.1)

At our fixed point the values of D2ϕ have no relation to ξ. This
implies that trABaB ≥ 0 for any symmetric matrix B. For B =
ηη∗ with nonzero η ∈ Rd this yields trAηη∗aηη∗ = tr η∗Aηη∗aη =
(Aη, η)(aη, η) ≥ 0 and since (Aη, η) > 0, the matrix a is nonnegative.
Furthermore, simple manipulations show that

sup
B

[
tr a(ξ)B − (1− δ)trABaB

]
=

1

4(1− δ)
lim
ε↓0

trA−1a(ξ)(a+ εI)−1a(ξ) =:
1

4(1− δ)
trA−1a(ξ)a

−1a(ξ),

where I is the unit matrix and a−1 is the pseudo inverse of a. Thus we
come to the condition

1

4(1− δ)
trA−1a(ξ)a

−1a(ξ) + 2(b(ξ), A
−1ξ)

≤ K1(ξ, A−1aA−1ξ) + 2(1− δ)c(A−1ξ, ξ), (4.2)

which should hold for all vectors ξ ∈ Rd. Condition (4.2) is much easier
to analyze than (2.5) but unfortunately (4.2) alone is not enough to
obtain our estimates for finite-difference equations.

In [14] there are many sufficient conditions for Assumption 2.4 to be
satisfied. In the rest of this section we suppose that only Assumptions
2.1 and 2.3 are satisfied and m ≥ 2. Assume also that for a number
τ̄ > 0 we have that, for any λ ∈ Λ1,

either τλ ≥ τ̄ or Dqλ(t, x) = Dpλ(t, x) = 0 for all (t, x). (4.3)

In other words this condition says that if τλ = 0 for a λ ∈ Λ1 then for
that λ the functions qλ and pλ do not depend on x ∈ Rd.
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Recall that by K we denote a generic operator from class K, which
may depend on h and t, and may change each time it is mentioned
even in one line.

Remark 4.2. Assume that m ≥ 2, Λ1 = −Λ1, qλ = q−λ and that for a
constant θ > 0 we have qλ ≤ θχλ (= θ(qλ +hpλ)) for all h ∈ (0, h0] and
λ ∈ Λ1. Then, since qλ are twice continuously differentiable in x and
nonnegative by Assumption 2.3, we know that rλ :=

√
qλ is Lipschitz

continuous in x with the Lipschitz constant independent of t.
In this situation the following may be useful. Conditions (2.5) and

(2.6) involve a mixture of finite differences and derivatives. Therefore,
it is reasonable to try to find conditions in terms only of finite differ-
ences which would imply (2.5) and (2.6).

We claim that (2.5) and (2.6) are satisfied with a τ0 > 0 and, per-
haps, different δ, K, K1 if for all smooth ϕ on HT and n = 1, ...,m we
have

2m
∑
λ∈Λ1

(δ̄λϕ)L0
λTλϕ ≤ (1− δ)

∑
λ∈Λ1

Q(δ̄λϕ)

+K1Q(ϕ) + (1− δ)cK
( ∑
λ∈Λ1

|δ̄λϕ|2
)
, (4.4)

2n
∑
λ,ν∈Λ1

(δ̄λδ̄νϕ)L0
λTλδ̄νϕ+ n(n− 1)

∑
λ∈Λ2

1

(δ̄λϕ)QλTλϕ

≤ (1− δ)
∑
ν∈Λ2

1

Q(δ̄νϕ) +K1

∑
ν∈Λ1

Q(δ̄νϕ)

+(1− δ)cK
( ∑
λ∈Λ2

1

|δ̄λϕ|2
)

+K1K
( ∑
λ∈Λ1

|δ̄λϕ|2
)
. (4.5)

(Notice that the term 2(1 − δ) in (2.5) and (2.6) is replaced now with
1− δ.)

To prove that (2.5) holds we follow the computations given in (2.12)
through (2.16) to get

mA1(ϕ) = 2m
∑
λ∈Λ

(δ̄λϕ)L0
λTλϕ = 2mI1 + 2mI

(1)
2 + 2mI

(2)
2 ,

where 2mI1 is the expression on the left-hand side of (4.4), and I
(j)
2

are given by (2.15) and (2.16). Observe that, for any unit ξ ∈ Rd and
qλ(ξ) := ξiDiqλ we have |qλ(ξ)| ≤ 2Crλ where C is the Lipschitz constant
of rλ. Thus due to (4.3) and the assumption that qµ ≤ θχµ we have( ∑

µ∈Λ1

qµ(ξ)∆µϕ
)2 ≤ N

( ∑
µ∈Λ1

√
qµτµ|∆µϕ|

)2 ≤ N
∑
µ∈Λ1

Q(δ̄µϕ), (4.6)
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where N is a generic constant depending on τ̄ , θ, the Lipschitz con-
stants of rλ and on the number of vectors in Λ1. Furthermore,( ∑

µ∈Λ1

pµ(ξ)δµϕ
)2 ≤ N

( ∑
µ∈Λ1

|δ̄µϕ|
)2 ≤ N

∑
µ∈Λ1

|δ̄µϕ|2,

where ξ := Dϕ/|Dϕ| and N is a constant depending only on the Lips-
chitz constants of pµ, τ̄ , and and on the number of vectors in Λ1. Using
these inequalities we obtain

2mI
(1)
2 ≤ mτ 3

0 |Dϕ|2 + τ0m
( ∑
µ∈Λ1

qµ(ξ)∆µϕ
)2

≤ cmτ0c
−1
0

∑
µ∈Λ2

|δ̄µϕ|2 + τ0mN
∑
µ∈Λ1

Q(δ̄µϕ),

mI
(2)
2 ≤ mτ 3

0 |Dϕ|2 + τ0m
( ∑
µ∈Λ1

pµ(ξ)∆µϕ
)2

≤ cτ0mc
−1
0 N

∑
λ∈Λ

|δ̄λϕ|2

with a constant N depending on τ̄ , θ, the Lipschitz constants of rλ, pλ
and on the number of vectors in Λ1. Taking here τ0 > 0 sufficiently
small we get

2mI
(1)
2 + 2mI

(2)
2 ≤ δ

2

∑
µ∈Λ1

Q(δ̄µϕ) + δ
2
c
∑
λ∈Λ

|δ̄λϕ|2.

Adding this inequality to inequality (4.4) we see that there exist con-
stants δ, τ̄0 ∈ (0, 1] (δ can be taken half of the one in (4.3)), such that

mA1(ϕ) ≤ (1−δ)
∑
λ∈Λ

Q(δ̄λϕ)+K1Q(ϕ)+(1−δ)cK
(∑
λ∈Λ

|δ̄λϕ|2
)

(4.7)

on HT for all smooth functions ϕ provided that τ0 ∈ (0, τ̄0]. Thus,
a condition even somewhat stronger than (2.5) is satisfied. We note
that by using Remarks 5.1 and 5.2 of [14], one can also see that due
to (4.4) and the above mentioned properties of rλ and pλ and due to
(4.3), condition (4.7) holds.

Next, observe that the left-hand side of (2.6) equals

B + A′ + A′′q + A′′p +B′ +B′′,

where B is the left-hand side of (4.5),

A′ = n
∑
ν∈Λ2

A1(δ̄νϕ), A′′q = 2n
∑

λ∈Λ1,ν∈Λ2

(δ̄ν δ̄λϕ)Qν δ̄λϕ,

A′′p = 2n
∑

λ∈Λ1,ν∈Λ2

(δ̄ν δ̄λϕ)Pν δ̄λϕ,
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B′ = 2n(n− 1)
∑

λ∈Λ1×Λ2

(δ̄λϕ)QλTλϕ,

B′′ = n(n− 1)
∑
λ∈Λ2

2

(δ̄λϕ)Qλϕ.

Here by (4.7)

A′ ≤ (1− δ)
∑

ν∈Λ2,λ∈Λ

Q(δ̄λδ̄νϕ) +K1

∑
ν∈Λ2

Q(δ̄νϕ)

+(1− δ)cK
( ∑
λ∈Λ2

|δ̄λϕ|2
)
.

Then,

A′′q = 2nτ 2
0

∑
λ,µ∈Λ1

d∑
j=1

(Dj δ̄λϕ)(Djrµ)[rµ∆µδ̄λϕ]

≤ (1/16)δcτ 2
0

∑
λ∈Λ1

d∑
j=1

(Dj δ̄λϕ)2 +Nτ 2
0

∑
µ∈Λ1,λ∈Λ2

1

qµ(δ̄µδ̄λϕ)2

= (1/16)δc
∑

λ∈Λ1,ν∈Λ2

(δ̄ν δ̄λϕ)2 +Nτ 2
0

∑
µ∈Λ1,λ∈Λ2

1

qµ(δ̄µδ̄λϕ)2

≤ (1/16)δc
∑
λ∈Λ2

(δ̄λϕ)2 +Nτ 2
0

∑
λ∈Λ2

Q(δ̄λϕ),

where and below by N we denote various generic constants independent
of ϕ, (t, x), and τ0. Next, quite similarly

A′′p = 2nτ 2
0

∑
λ,µ∈Λ1

d∑
j=1

(Dj δ̄λϕ)(Djpµ)δ̄µδ̄λϕ

≤ (1/16)δcτ 2
0

∑
λ∈Λ1

d∑
j=1

(Dj δ̄λϕ)2 +Nτ 2
0

∑
λ∈Λ2

1

(δ̄λϕ)2

≤ (1/16)δc
∑
λ∈Λ2

(δ̄λϕ)2 +Nτ 2
0

∑
λ∈Λ2

(δ̄λϕ)2.

Now we estimate B′ and B′′. We have

B′ = n(n− 1)τ 2
0

∑
λ,µ∈Λ1

d∑
j=1

(Dj δ̄λϕ)(Dj δ̄λqµ)∆µTλϕ.

Here

∆µTλ = ∆µ + (δµ + δ−µ)δλ,
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and it is seen that

B′ ≤ (1/16)δcτ 2
0

∑
λ∈Λ1

d∑
j=1

(Dj δ̄λϕ)2 +Nτ 2
0

∑
λ∈Λ2

(δ̄λϕ)2

≤ (1/16)δc
∑
λ∈Λ2

(δ̄λϕ)2 +Nτ 2
0

∑
λ∈Λ2

(δ̄λϕ)2.

Similarly,

B′′ = (1/2)n(n− 1)τ 4
0

d∑
j,k=1

∑
µ∈Λ1

(Djkϕ)(Djkqµ)∆µϕ

≤ (1/16)δc
∑
λ∈Λ2

(δ̄λϕ)2 +Nτ 4
0

∑
λ∈Λ2

(δ̄λϕ)2.

By combining the above estimates we see that the left-hand side of
(2.6) is majorated by

(1− δ +Nτ 2
0 )
∑
ν∈Λ2

Q(δ̄νϕ) +K1

∑
ν∈Λ

Q(δ̄νϕ) +K1K
(∑
λ∈Λ

|δ̄λϕ|2
)

+c
[
2(1− δ)K

( ∑
λ∈Λ2

|δ̄λϕ|2
)

+ ((1/4)δ +Nτ 2
0 )
∑
λ∈Λ2

|δ̄λϕ|2
]
.

It follows easily that by choosing τ0 small enough we will satisfy (2.6)
as well as (2.5) with δ/2 in place of δ and appropriate K1.

Remark 4.3. In [14] we have seen that even Assumption 2.4 imposes
certain nontrivial structural conditions on qλ which cannot be guaran-
teed by the size of c0 if qλ is only once continuously differentiable.

In contrast, given that Assumptions 2.1, 2.2, 2.4 are satisfied and
m ≥ 2, we claim that Assumption 2.5 is also satisfied if c0 is large
enough.

To prove our claim we notice that by (3.5)∑
λ∈Λ2

|QλTλϕ|2 ≤ NK(
∑
µ∈Λ2

|δ̄µϕ|2),

so that

n(n− 1)
∑
λ∈Λ2

(δ̄λϕ)QλTλϕ

≤ m(m− 1)
[ ∑
λ∈Λ2

|δ̄λϕ|2 +NK(
∑
µ∈Λ2

|δ̄µϕ|2)
]

=: N ′K(
∑
µ∈Λ2

|δ̄µϕ|2).

Now assume that c is so large that

N ′ ≤ δc.
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Then it follows from (2.5) that the left-hand side of (2.6) is majorated
by

(1− δ)
∑

λ∈Λ1,ν∈Λ2

χλ|δλδ̄νϕ|2 +K1

∑
λ∈Λ1,ν∈Λ

χλ|δλδ̄νϕ|2 + I,

where
I = 2(1− δ)cK

( ∑
λ∈Λ2

|δ̄λϕ|2
)

+ δcK
( ∑
µ∈Λ2

|δ̄µϕ|2
)

=: 2(1− δ/2)cK
( ∑
λ∈Λ2

|δλϕ|2
)
.

We thus obtain (2.6) with δ/2 in place of δ.

Remark 4.4. It is interesting to have sufficiently simple conditions on
the coefficients of differential operators L which guarantee that there
exist finite-difference schemes for which our assumptions hold. Here we
will only give a one dimensional example. This example is based on the
results of Remark 4.5 below, which can also be used to analyze many
multi-dimensional situations as well in the spirit of the comments in
[14].

Take d = 1 and

Lϕ(x) = a(x)ϕ′′(x) + b(x)ϕ′(x)− c(x)ϕ(x).

We assume that a ≥ 0 and r :=
√
a, b, and c are m-times continuously

differentiable with bounded derivatives. We take Λ1 = {±1} and define

qµ = a, pµ = (1/2)µb+ θ,

where θ is a constant such that pµ ≥ 1. By using an argument in
Remark 6.7 of [14] and using our Remark 4.5, one can easily derive
that, for a sufficiently small τ0 and τµ ≡ 1, Assumptions 2.4 and 2.5
are satisfied for all sufficiently small h (with perhaps different δ and
K1) if, for n ≤ m,

75n2(r′)2 + 2nb′ ≤ (1− δ)c+K1a

(cf. (4.2)). Again as in [14] we see that at points where a is close to
zero either c should be large or b′ be sufficiently negative.

Remark 4.5. Condition (4.4) and its implications are discussed in many
details in [14] (with 2c in place of c). Here we give sufficient conditions
for (4.4) and (4.5) to be satisfied without involving test functions ϕ.
For simplicity, we only do it in case

τλ = 1 for all λ ∈ Λ1.

It is obvious that if we define ξλµ = δλδµϕ, then condition (4.5) can
be rewritten in terms of ξλµ. What is nontrivial is that one can give
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sufficient conditions for (4.5) to hold in terms of ξλ and not the two-
parameter object ξλµ. In addition, we will see that these sufficient
conditions are obtained just by slightly strengthening the corresponding
conditions from [14] guaranteeing the first-order derivatives estimates.
As in [14] one could extract further implications and simplifications
of the new conditions of the type that on the set where c is small we
need χλ to be uniformly bounded away from zero or pλ be sufficiently
strongly monotone (see [14] for more details).

As in Remark 4.2 we assume that Λ1 = −Λ1, qλ = q−λ (≥ 0) and,
for a constant θ > 0, we have qλ ≤ θχλ for all h ∈ (0, h0] and λ ∈ Λ1.
Moreover, we assume additionally that rλ :=

√
qλ is twice continuously

differentiable in x and is bounded on HT along with first and second-
order derivatives in x. Also we fix a constant δ ∈ (0, 1/4] and assume
that on HT there are functions rλµ = rhλµ, pλµ = phλµ ≥ 0, λ, µ ∈ Λ1,
such that

m(m− 1)h2(δλrµ)2 ≤ δ(χλ + χµ) + h2r2
λµ,

∑
µ∈Λ1

sup
λ∈Λ1

r2
λµ ≤ δc, (4.8)

h2|δλpµ| ≤ δ2(χλ + χµ) + δh2pλµ,
∑
µ∈Λ1

sup
λ∈Λ1

pλµ ≤ δc. (4.9)

By virtue of Remark 6.1 of [14] one can always find approximations L′h
of the zero operator such that Lh + L′h will still be approximating L
and for the coefficients p′λ of Lh + L′h we will have p′λ ≥ 1. Obviously,
for Lh + L′h conditions (4.8) and (4.9) are satisfied with rλµ = pλµ = 0
for sufficiently small h.

For a function ξλ given on Λ1 let us write

|ξ|2 =
∑
λ∈Λ1

|ξλ|2

and let us drop the summation sign over repeated indices in Λ1. Then
we claim that

Conditions (4.4) and (4.5) are satisfied with appropriate K1, K, and
δ if on HT for all functions ξλ and n = 1, ...,m we have

28n2(1− 4δ)−1J1 + (9/2)n2(1− 4δ)−1J2 + (1/2)n2J3

+2δn2
∑
λ,µ∈Λ1

ξ2
λ|δλpµ|+ 2nξλξµ(δλpµ + (δλrµ)2)

≤ (1− 4δ)c|ξ|2 +K1ξ
2
λχλ + δh−2χλ|ξλ + ξ−λ|2, (4.10)

where

J1 =
∑
µ,λ∈Λ1

ξ2
λ(δλrµ)2, J2 =

∑
µ∈Λ1

( ∑
λ∈Λ1

ξλδλrµ
)2
, J3 =

∑
λ,µ∈Λ1

(δλrµ)2ξ2
µ.
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To prove this claim, introduce

J1(ϕ) =
∑
µ,λ∈Λ1

(δλϕ)2(δλrµ)2,

J2(ϕ) =
∑
µ∈Λ1

( ∑
λ∈Λ1

(δλϕ)δλrµ
)2
, J3(ϕ) =

∑
λ,µ∈Λ1

(δµϕ)2(δλrµ)2

and first recall that by Remarks 6.2 and 6.3 of [14] after replacing there
c with c/2 we obtain

2n
∑
λ∈Λ1

(δλϕ)L0
λTλϕ+ 18n2J1(ϕ) + (5/2)n2J2(ϕ) + (1/2)n2J3(ϕ)

≤ (1− δ)
∑
λ∈Λ1

Q(δλϕ) +K1Q(ϕ) + (1− δ)cK
( ∑
λ∈Λ1

|δλϕ|2
)
.

In particular condition (4.4) is satisfied. Furthermore, by substituting
δνϕ in place of ϕ and summing up over ν ∈ Λ1, we get

2n
∑
λ,ν∈Λ1

(δνδλϕ)L0
λTλδνϕ+ 18n2

∑
ν∈Λ1

J1(δνϕ)

+(5/2)n2
∑
ν∈Λ1

J2(δνϕ) + (1/2)n2
∑
ν∈Λ1

J3(δνϕ)

≤ (1− δ)
∑
λ∈Λ2

1

Q(δλϕ) +K1

∑
ν∈Λ1

Q(δνϕ) + (1− δ)cK
( ∑
λ∈Λ2

1

|δλϕ|2
)
.

It follows that to prove our claim, it suffices to prove that

n(n− 1)
∑
λ∈Λ2

1

(δλϕ)QλTλϕ ≤ 18n2
∑
ν∈Λ1

J1(δνϕ) + (5/2)n2
∑
ν∈Λ1

J2(δνϕ)

+(1/2)n2
∑
ν∈Λ1

J3(δνϕ) + (2/3)δ
∑
ν∈Λ2

1

Q(δνϕ)

+(1/3)δcK
( ∑
ν∈Λ2

1

|δνϕ|2
)

+N
∑
ν∈Λ1

Q(δνϕ) +NK
( ∑
ν∈Λ1

|δνϕ|2
)
, (4.11)

where and below by N we denote generic constants independent of ϕ
and (t, x) (and various ε’s once they appear). Observe that for λ =
(λ1, λ2) ∈ Λ2

1 and µ ∈ Λ1,

Tλ = 1 + h2δλ1δλ2 + h(δλ1 + δλ2), ∆µ = h−1(δµ + δ−µ)

and hence

∆µTλ = ∆µ + hδλ1δλ2(δµ + δ−µ) + (δλ1 + δλ2)(δµ + δ−µ),
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implying that ∑
λ∈Λ2

1

(δλϕ)QλTλϕ = S1 + S2,

where
S1 = (1/2)

∑
λ∈Λ2

1,µ∈Λ1

(δλϕ)(δλqµ)(4δλ1 − δ−µ)δµϕ,

S2 = h
∑

λ∈Λ2
1,µ∈Λ1

(δλϕ)(δλqµ)δλδµϕ.

Next, as it is easy to see for λ ∈ Λ2
1

δλqµ = 2(δλ1rµ)δλ2rµ + 2rµδλrµ

+2h(δλ1rµ + δλ2rµ)δλrµ + h2(δλrµ)2.

Estimating S2. First we estimate the term S2, which contains the
third-order differences of ϕ. For the main term in S2 we have

B1 := 2h
∑
λ∈Λ2

1

(δλϕ)(δλ1rµ)(δλ2rµ)δλδµϕ

≤ 16
∑

λ,µ,ν∈Λ1

(δλδνϕ)2(δλrµ)2 + (1/16)h2
∑

λ,µ,ν∈Λ1

(δλrµ)2(δλδµδνϕ)2

=: 16
∑
ν∈Λ1

J1(δνϕ) + (1/16)E,

where by assumption (4.8) and Lemma 6.1 of [14]

n(n− 1)E ≤ 2δ
∑
ν∈Λ2

1

Q(δνϕ) + 4δcK
( ∑
λ∈Λ2

1

(δλϕ)2
)
.

Hence,

n(n− 1)B1 ≤ 16n2
∑
ν∈Λ1

J1(δνϕ)

+(1/8)δ
∑
ν∈Λ2

1

Q(δνϕ) + (1/4)δcK
( ∑
λ∈Λ2

1

(δλϕ)2
)
. (4.12)

Next, obviously, for any ε > 0, (here we use that qλ ≤ θχλ)

B2 := 2h
∑

λ∈Λ2
1,µ∈Λ1

(δλϕ)rµ(δλrµ)δλδµϕ

≤ ε−1h2
∑

λ∈Λ2
1,µ∈Λ1

(δλϕ)2(δλrµ)2 + ε
∑

λ∈Λ2
1,µ∈Λ1

qµ(δλδµϕ)2

≤ Nε−1K
( ∑
λ∈Λ1

(δλϕ)2
)

+ ε
∑
ν∈Λ2

1

Q(δνϕ).
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It follows that (with ε > 0 different from the one from above but still
arbitrary)

n(n− 1)B2 ≤ Nε−1K
( ∑
λ∈Λ1

(δλϕ)2
)

+ ε
∑
ν∈Λ2

1

Q(δνϕ). (4.13)

Also
n(n− 1)h2

∑
λ∈Λ2

1,µ∈Λ1

|(δλϕ)δλδµϕ|

≤ εδc
∑
λ∈Λ2

1

(δλϕ)2 +Nε−1K
( ∑
λ∈Λ1

(δλϕ)2
)
.

Upon combining this with (4.12) and (4.13) we obtain

n(n− 1)S2 ≤ (ε+ δ/8)
∑
ν∈Λ2

1

Q(δνϕ) + 16n2
∑
ν∈Λ1

J1(δνϕ)

+(ε+ 1/4)δcK
( ∑
λ∈Λ2

1

(δλϕ)2
)

+Nε−1K
( ∑
λ∈Λ1

(δλϕ)2
)
. (4.14)

Estimating S1. We again start with the main term in S1, which we
split into two parts writing

(4δλ1 − δ−µ)δµϕ = 4δλ1δµϕ+ ∆µϕ.

We have
4

∑
λ∈Λ2

1,µ∈Λ1

(δλϕ)(δλ2rµ)(δλ1rµ)δλ1δµϕ

= 4
∑
ν,µ∈Λ1

[ ∑
λ∈Λ1

(δλ(δνϕ))δλrµ
]
(δνrµ)δνδµϕ

≤ 2
∑
ν,µ∈Λ1

[ ∑
λ∈Λ1

(δλδνϕ)δλrµ
]2

+ 2
∑
ν,µ∈Λ1

(δνrµ)2(δνδµϕ)2

≤ 2
∑
ν∈Λ1

J2(δνϕ) + 2
∑

ν,µ,λ∈Λ1

(δνrµ)2(δνδλϕ)2

= 2
∑
ν∈Λ1

J2(δνϕ) + 2
∑
λ∈Λ1

J1(δλϕ).

Furthermore, ∑
λ∈Λ2

1,µ∈Λ1

(δλϕ)(δλ1rµ)(δλ2rµ)∆µϕ

=
∑
ν,µ∈Λ1

[ ∑
λ∈Λ1

(δλδνϕ)δλrµ
]
(δνrµ)∆µϕ

≤ (1/2)
∑
ν,µ∈Λ1

[ ∑
λ∈Λ1

(δλδνϕ)δλrµ
]2

+ (1/2)
∑
ν,µ∈Λ1

(δνrµ)2(∆µϕ)2
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≤ (1/2)
∑
ν∈Λ1

J2(δνϕ) + (1/2)
∑
ν∈Λ1

J3(δνϕ).

Next, obviously

4
∑

λ∈Λ2
1µ∈Λ1

[(δλϕ)(δλrµ)]rµδλ1δµϕ ≤ εcδ
∑
λ∈Λ2

1

(δλϕ)2 + ε−1N
∑
λ∈Λ1

Q(δλϕ),

∑
λ∈Λ2

1

[(δλϕ)(δλrµ)]rµ∆µϕ ≤ εcδ
∑
λ∈Λ2

1

(δλϕ)2 + ε−1N
∑
λ∈Λ1

Q(δλϕ).

Finally,

h
∑

λ∈Λ2
1,µ∈Λ1

|(δλϕ)δλ1δµϕ| ≤ εcδ
∑
λ∈Λ2

1

(δλϕ)2 + ε−1NK
( ∑
λ∈Λ1

(δλϕ)2
)
.

Upon combining the above estimates we obtain

n(n− 1)S1 ≤ n2
∑
ν∈Λ1

[2J1(δνϕ) + (5/2)J2(δνϕ) + (1/2)J3(δνϕ)]

+εcδ
∑
λ∈Λ2

1

(δλϕ)2 + ε−1N

(∑
λ∈Λ1

Q(δλϕ) +K
( ∑
λ∈Λ1

(δλϕ)2
))
.

This along with (4.14) leads to (4.11) after appropriately choosing ε
and proves our claim.
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