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ON FINITE-DIFFERENCE APPROXIMATIONS FOR
NORMALIZED BELLMAN EQUATIONS

ISTVAN GYONGY AND DAVID SISKA

ABSTRACT. A class of stochastic optimal control problems involving
optimal stopping is considered. Methods of Krylov [15] are adapted
to investigate the numerical solutions of the corresponding normalized
Bellman equations and to estimate the rate of convergence of finite dif-
ference approximations for the optimal reward functions.

1. INTRODUCTION

Stochastic optimal control and optimal stopping problems have many ap-
plications in mathematical finance, portfolio optimization, economics and
statistics (sequential analysis). Optimal stopping problems can be in some
cases solved analytically [20]. With most problems, one must resort to nu-
merical approximations of the solutions. One approach is to use controlled
Markov chains as approximations to controlled diffusion processes, see e.g.
[19]. A thorough account of this approach is available in [18].

We are interested in the rate of convergence of finite difference approx-
imations to the payoff function of optimal stopping and control problems.
Using the method of randomized stopping (see [10]) such problems can be
treated as optimal control problems with the reward and discounting func-
tions unbounded in the control parameter. This leads us to approximating
a normalized degenerate Bellman equation.

Until quite recently, there were no results on the rate of convergence of
finite difference schemes for degenerate Bellman equations. A major break-
through is achieved by Krylov in [11] for Bellman equations with constant
coefficients, followed by rate of convergence estimates for Bellman equations
with variable coefficients in [12] and [13]. The estimate from [13] is improved
in [2] and [1]. Finally, Krylov [14] (published in [15]) establishes the rate of
convergence 71/* 4+ h1/2 of finite difference schemes to degenerate Bellman
equations with Lipschitz coefficients given on the whole space, where 7 and
h are the mesh sizes in time and space respectively. This is later extended to
finite difference approximations of Bellman equations on cylindrical domains
in [4].

In the present paper we extend this estimate to cover normalized degen-
erate Bellman equations corresponding to optimal stopping of controlled
diffusion processes with variable coefficients. Adapting ideas and techniques
of [14] we obtain the rate of convergence 7/ +h!/2, as in [14]. There are two
key ideas which are already introduced in [11] -[13]. The first idea is that
the original equation and its approximation should play symmetric roles.

Key words and phrases. Finite-dierence approximations, Normalized Bellman equa-

tions, Fully nonlinear equations, Optimal stopping and control.
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2 SECTION 1

The other idea is to ‘shake’ the original equation and its approximation,
and to mollify the solutions of the ‘shaken equations’ to obtain smooth su-
persolutions to the original equation and to its approximation, respectively,
which are close to their true solutions. To implement these ideas one needs
appropriate estimates on the regularity of the solutions to the original equa-
tion and to its approximation. The necessary regularity estimates on the
optimal reward functions, i.e., the solutions of the Bellman equations are
well-known, see [10]. Namely, under general conditions the optimal reward
funtions are Lipschitz continuous in the space variable and they are Holder
continuous, with exponent 1/2, in the time variable. The main problem
is to obtain the corresponding regularity estimates for the finite difference
approximations. In [15] a discrete gradient estimate in the space variable is
proved for the solutions to finite difference schemes for degenerate Bellman
equations. Hence not only the Lipschitz continuity in the space variable of
the finite difference approximations follows but a suitable estimate on their
time regularity as well.

Our first main task in the present paper is to extend the discrete gradient
estimate from [15] to the case of finite difference schemes for normalized
Bellman equations. This is Theorem 4.1 below. We note that in [17] a more
general estimate is proved. From Theorem 4.1 the Lipscitz continuity in the
space variable of the finite difference approximations follows easily. However,
due to the normalizing factor in the finite difference scheme, Theorem 4.1
does not imply the estimate we need on the time regularity of the finite dif-
ference approximations. In fact, the time regularity of the solutions does not
hold in general, unless we assume stronger conditions on the finite difference
scheme than those of Theorem 4.1. Since our main concern in the present
paper is the rate of convergence of finite difference approximations for the
reward function of optimal stopping of controlled diffusion processes, we es-
tablish the necessary time regularity estimate only for these approximations.
This is Theorem 6.4, which is the discrete counterpart of Theorem 6.2 on the
Holder continuity in time of the optimal reward function. Hence, using also
the regularity of the optimal reward functions and the maximal principle
for normalized Bellman equations and for their ‘monotone approximations’,
we prove our rate of convergence estimate, Theorem 2.4 by a straitforward
adaptation of the method of ‘shaking and smoothing’ from [15].

Rate of converge results for optimal stopping are proved for general con-
sistent approximation schemes in [7]. However, the rate 7V/4 4+ h'/2 is ob-
tained only when the diffusion coefficients are independent of the time and
space variables. For further results on numerical approximations for Bellman
equations we refer to [8], [9] and [3].

The paper is organized as follows. The main result, Theorem 2.4 is for-
mulated in the next section. In Section 3 the existence and uniqueness of
solutions to finite difference schemes, Theorem 3.4, is proved together with
a result on comparison of the solutions, Lemma 3.9. The gradient estimate
on the solutions of finite difference schemes is proved in Section 4, together
with important corollaries. An estimate on Lipschitz continuity in the space
variable for the reward functions and a result on comparison of the reward



3 SECTION 2

functions with supersolutions to Bellman equations are presented in Sec-
tion 5. The estimate on Holder continuity in time of the reward functions
together with the corresponding estimates for their finite difference approx-
imations are given in Section 6. Theorem 2.4 is proved in Section 7.

2. THE MAIN RESULT

Fix T € (0,00), and set Hy = [0,T) x R? and Hy = [0,7] x R?. Let
(Q, F, P) be a probability space, carrying a d’ dimensional Wiener martin-
gale W = (W})¢>0 with respect to a filtration (F;)¢>0. Below we introduce
some basic notions and notation of the theory of controlled diffusion pro-
cesses from [10]. The notation [a] = (3, ; a?j)l/z, b = (32, b:)Y? and
ct =cp = (lc|+¢)/2, ¢ =c_ = (—c); is used for matrices a € RF*!
vectors b € R* and real numbers ¢. Unless otherwise stated, the summation
convention with respect to repeated indices is in force throughout the paper.

Let A be a separable metric space and let 0 = 0“(t,z), and § = (¢, x)
be given Borel functions of (a,t,z) € A x R x R%, taking values in R4
and R?, respectively. Assume that A = U | A,, for an increasing sequence
of Borel sets A,, of A such that the following assumption holds.

Assumption 2.1. For every integer n > 1 there is a constant K, such that
for all « € A,

0% (t, ) — o (t, y)[ +8%(t, 2) — Bt y)| < Knlz —y| (2.1)

|0 (t, 2)| + [B%(t, 2)| < Kn(1+ |z]) (2.2)
for all (t,r) € Hr.

A progressively measurable process a = (a¢)¢>0 with values in A is called
an (admissible) strategy if there is an integer n > 1 such that oy (w) € A, for
all t > 0 and w € Q. The set of strategies with values in A, is denoted by
2, and so A = [J;2 ; Ay, is the set of all strategies. By the classical existence
and uniqueness theorem of It6, Assumption 2.1 ensures that for each o € 2,
5 €[0,T] and = € R? there is a unique solution %% = {x, : t € [0,T — s]}

of
t

t
Ty =+ / o (s + u, zy)dWy, + / B (s + u, zy,)du. (2.3)
0 0

Let f = f%(t,z) and ¢ = c®(t, ) be Borel functions of (a, ¢, z) € AxRxRY
with values in R and R, respectively, and let g = g(¢, z) be a Borel function
of (t,x) € R x R? with values in R such that the following assumption holds.

Assumption 2.2. The function g is continuous and there are some con-
stants K and ¢ > 0 such that

lg(t,z)| < K(1+ |x|?) for all (t,z) € Hr. (2.4)

For every integer n > 1 there are constants K, and ¢, > 0 such that for all
a€ A,

't x) < Kn(L+|2|™),  [f*(t2)] < Kn(1+ [2|*™) (2.5)
for all (¢,z) € Hy.



4 SECTION 2

For s € [0,T] we use the notation T(T' — s) for the set of stopping times
7 < T — s. Consider the following optimal reward functions:

v(s,z) = supv®, (s,x) € Hr, (2.6)
ac
w(s,x) =sup sup w*(s,x), (s,x)€ Hr, (2.7)

aclAre3(T—s)

where

T—s
v*(s,x) = ES, [/ [ (s +t,zp)e Ptdt + g(T, xTS)e“’TS] , (2.8)
0
w (s, ) = ES, [/ [ (s +tw)e” i+ g(s + 7, fﬁf)e_%] ;o (29
0

t
8, T (e} a,s,T
0 = ¢ _/ (s +r,zy®T)dr,
0

and ' denotes the expectation of the expression behind it, with z" in
place of x; everywhere. We call v and w the optimal reward functions for the
optimal control problem, and for the optimal control and stopping problem,
respectively, with strategies from 2(, under utility rate f, terminal utility g
and discount rate c. It is useful to notice that for

T

vn(s,x) = sup v¥(s,x), wy(s,x):= sup sup wW*"(s,x)
acdy, a€p, Te€X(T—s)

we have vy, (s,z) T v(s,z) and wy(s,z) T w(s,z) as n — co. Our aim is to
investigate finite difference approximations for a class of nonlinear PDEs,
called normalized Bellman PDEs, to approximate w via finite difference
schemes for appropriate normalized Bellman PDEs, and to study the accu-
racy of these approximations.

Using the method of randomized stopping, it is very useful to rewrite (2.7)
in the form of (2.6), by extending A,, and 2, as follows. Set

A=Ax[0,00) =U A, A, = A, x][0,n],
identify o € A with (a,0) € A, and extend the definition of o, 3, f, g and
¢ by setting

ol =0% pT=pY fI=fY+rg, =c+r, fory=(a,r) €A

Let 2, denote the set of progressively measurable processes with values in
2, and set 2 = U,2A,. Notice, that if Assumptions (2.1)-(2.2) hold then
these assumptions remain valid with A, and A in place of 4, and A, with
the obvious extension of the metric on A onto A. Moreover, the following
result holds.

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Then w = SUP.cqi v
for every (s,z) € [0,T], where v is defined by (2.8) with v € A in place of
ac .

This theorem, under somewhat stronger assumption is known from [10]
when A = A,,, K = K,,, m = m,, for n > 1. For the proof we refer to [6].



5 SECTION 2

From [10] one also knows that under some assumptions (more restrictive
than Assumptions 2.1-2.2) w satisfies the normalized Bellman PDE

sup mY(Zw+ L'w+ f7) =0 on Hr (2.10)
vyEA

with terminal condition
w(T,z) = g(T, z) for € RY, (2.11)
where m” = (1 +7)~! and

1 v 7 o Yap s
LTw = 50,,0),Wgizs + B wy — cTw. (2.12)

Therefore it is natural to design approximations for w as finite difference
approximations for problem (2.10)-(2.11). To this end we fix a constant
K > 1 and make the assumptions below.

Assumption 2.3. There exist a natural number di, vectors ¢, € R? and
functions

a RxR'—= Ry, 0:RxRI—R,, fork==1,...,+d; and a € A,
such that |0;| < K, {, = —l_y, aff =a%, for k==£1,...,+£d;, a € A, and

B = bR, (2.13)
Lo8o% = aftill, (2.14)

forae Aandi,j=1,2,...,d.

Remark 2.2. For given functions % it is easy to find a set of vectors {{}
and functions b)) > 0 such that (2.13) holds. We can take, for example,
(4 = ey, with the standard basis {eF} in RY, and set Y = (BY)+.
It is proved in [16] that, if the matrix o®c®* is uniformly nondegenerate,
then there always exist a set of vectors ¢, € R?\ {0} and functions af for
k =4+1,...,%d; for some integer dy such that {_; = —{}, a®, = af > 0 for
all k£, (2.14) holds, af are as smooth as c“0®* is, and af > k > 0, where &
is a constant. It is also proved in [16] that if all values of the matrix oo ®*
lie in a closed convex polyhedron in the set of nonnegative matrices and the
first and second order derivatives in z € R? of 0%c®* are bounded functions,
then again there exist {/;} and af satisfying the above assumption such

that ,/aj are Lipschitz continuous in .
Clearly, (2.13) and (2.14) imply

1 _a _« a2 « i«
50ipTipUaizi = ap Dy u, B uz = by Dy u

for smooth functions u, where we use the notation
Dyu = u,l* for £ € RY.

Thus setting a] = af and b} = b for v = (o, r) € A, for the operator L?
given by (2.12) we have

L'u=a] D%k u+b/ Dy u—cu, forvye A
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For 7 >0, h > 0 and | € R? define
8 ult, x) = YT ulD) ) — - A (T — t)

5T u(t,z) == U(t+TT(t),x)7u(t’x)’

ult,et+hl)—u(t.z) (2.15)
h )

(5h’lu(t, .%') =
Apgu = —06p16p,—u = 3 (Opgu+ 0p,—u).
for t € [0,T), € R% and consider the finite difference scheme

supm?(6X u+ Lju+ f7) =0 on Hr (2.16)
~EA

w(T,x) = g(x) for z € RY, (2.17)
where

LZu = CLZ Ap g v+ bz One, u— clu.

Remark 2.3. Equation (2.10) is often written in the form

max [%w + sup(L®w + f*),g —w] =0 on Hr, (2.18)
acA
and similarly, equation (2.16) can be written as
max[(gu—i—sup( fu+ f*),9—u] =0 on Hr. (2.19)
acA

Clearly, equation (2.18) is equivalent to
%w—i—sup[Lo‘w—i—fo‘] <0, g—w<0 onHrp,
acA

Sw+sup [L*w+ f] =0, on {(t,z) € Hr: g(t,x) < w(t,z)},
acA

and similarly equation (2.19) is equivalent to

6Tu+sup [L¢u+ f4] <0, g—u<0 on Hr,
acA

6L+ sup [L¢u+ f4]=0 on {(t,x) € Hy: g(t,x) < u(t,z)}.
acA

Proof. By setting ¢ = 1—}” equations (2.10) and (2.16) can be rewritten as
sup |esup (Fw+ Lo+ f*) + (1 —¢)(g — w)} =0 on Hp
e€l0,1] L acA

and

sup |esup (6$u + Lyu+ f*)+(1—e)(g— u)] =0 on Hr,
e€l0,1] L acA

respectively. Hence we finish the proof of the remark by noticing that for
any numbers p,q € R

sup (ep + (1 — €)g) = max(p, q).
€€[0,1]

O

Instead of Assumptions 2.1 and 2.2 we make now the following assump-
tion.



7 SECTION 3

Assumption 2.4. The functions o, af, b, f¢ and ¢ > 0 are Borel
measurable in ¢t and are continuous in a € A for each £k = +1,...,d;.
Moreover, for ¥ := ¢%, \/@, by, c®, f gforac Aand k= +£1,...,+d; we
have

W(t,a) = U(ty)| < Klo—yl,  [6(ta)] < K (2.20)
for all t € R and = € R

Notice that Assumption 2.3 and 2.4 imply Assumptions 2.1 and 2.2. Fi-
nally we make an assumptions on Holder continuity of ,/aj’, b, ¢* and

I
Assumption 2.5. For ¥ := | /af, by, c, f¥ gfora € A, k= =£1,...,£d;
we have
[(t,x) = $(t,2)| < Kt — 5|/
for all z € R? and s,t € R.

The following result is the main theorem of the paper. It extends Theorem
2.3 from [15] to the reward function w defined by (2.7).

Theorem 2.4. Let Assumptions 2.3 through 2.5 hold. Then (2.16)-(2.17)
has a unique bounded solution w;y, and there is a constant N depending
only on K,d,d1,T such that for T,h <1

lw — wrp| < N4 4 B2 (2.21)

on Hr. Moreover, there is a constant \g depending only on K and dy such
that if X > Ao then N is independent of T'.

3. ON FINITE DIFFERENCE SCHEMES

Let A be a set and consider for a@ € A the finite difference operator
Lg = aZ‘ Ah,fk —l—bg 5Mk —c%,

where af, b}, ¢, f* and g are some functions on H, := [0, 00) X R for each
a € Aand k= £1,...,£d;. Recall that {¢ : k = +1,4+2,...,+d;} are
given vectors in R? such that |¢;| < K for all k = £1,...,%d; and [}, = —I,
where K > 1 is a fixed constant.

Let m® be a function of a € A taking values in (0, 1]. Recall that Hr =
[0, T) xR? for a fixed T € [0, 00). For fixed 7 > 0 and h > 0 we are interested
in the problem

sup m“ (6?1}—{—L%U+fa) =0 on Hr, (3.1)
acA
o(T,z) = g(T,z) xeR? (3.2)
for a function v = v, , defined on Hy = [0,7] x R?. Notice that problem
(3.1)-(3.2) is a collection of separate problems given on each grid

{((to + jT) NT,xg+ (:l:ilgl i idlgdl)h} (3.3)

associated with points (to, 7o) € [0,7)xR?, where i1,...,ig, and j run through
the nonnegative integers. The grid associated with the point (tg, zg) := (0,0)
is

My ={(Gr AT, £irhly £ ---tig hly,) : 5,01, ..,0q, =0,1,...}.
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Clearly, results obtained for equations on subsets of
Mrp = MpN ([0,T) x ]Rd)

can be translated into results for for equations on subsets of all other grids
of the type (3.3).
In this section we consider the finite difference problems

sup m® (52 u+Lfu+f*)=0 on Q, (3.4)
acA
u=gon Mr\Q (3.5)
and
max |sup m*(6X w + L w + f*),g—w| =0 on Q, (3.6)
acA
w=gon Mr\Q (3.7)

where @ is a fixed subset of M7 and g is a bounded function on H.. Let
A > 0 be a constant and make the following assumptions.

Assumption 3.1. We have m® € (0,1], aff > 0, b3 > 0, aff = a%, and
c*>Nforall o € A, (t,z) € Hy and k = £1,£2,...,£d;.

Assumption 3.2. For all k = +1,...,+d;, a € A, (t,z) € Hyp
[m®ag| + [m b | + [m®c*| + [m® f*] < K.
Assumption 3.3. There exists a constant p > 0 such that
m(1+c*—X)>p (3.8)
on H, for all o € A.

Remark 3.1. Consider A = A x [0,00), identify every a € A with (o, 0) €
A, and set for v = (a,r) € A

m = me(Lr), ] —af, b=,

R

th?
LZ = ag Ah,fk —i—bz 5h,fk —c7.

Then, as Remark 2.3 is shown, it is easy to see that equation (3.6) can be
cast into equation (3.4) with A in place of A. Clearly, if Assumption 3.1
holds, then it holds also with A in place of A. If Assumption 3.3 holds, then
it is easy to show that it holds with A in place of A and with min(p, 1) in
place of p. If Assumption 3.2 holds and |g| < K on H, then it is easy to see
that Assumption 3.2 holds also with A in place of A, with constant 2K + 1
in place of K. Thus we obtain the results of this section immediately for
both equations (3.4) and (3.6), by proving them only for (3.4) and verifying
that the conditions formulated with A hold also with A in place of A.

The following simple examples show that if condition (3.8) does not hold
then problem (3.4)-(3.5) may have many solutions or may have no solution.
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Example 3.2. Let A = [0,00), m* = (1 + «)~!. Consider the problem

sup m® ((fu) =0on My, u=1 on Mg\ Mr.

acA
Notice that here infoeqa m®(1 4 ¢*) = 0, i.e. the condition (3.8) is violated.
If w: Mpr — R is any non-increasing function in ¢, then m® 5Zu < 0.
Hence, letting a@ — oo, we see that u satisfies the equation. Consequently
the solution to the above problem is not unique.

Example 3.3. Let A = [0,00), m® = (1 +«a)~! and f* =1+ . Consider
now the equation

sup m*(6L u + f&) = supm® 6L u+1=0on Mrp.

a€cA acA
If u is a solution then we have m® 6. u < 0. Hence Sup,e 4 m® 6Tu =0,
which contradicts the equation. Thus the above equation has no solution.

Theorem 3.4. Let Assumptions 3.1 through 5.3 hold. Let g be a bounded
function on M. Then the finite difference problems (3.4)-(3.5) and (3.6)-
(3.7) admit a unique bounded solution uw and w, respectively.

Proof. By virtue of Remark 3.1 it suffices to prove the lemma for (3.4)-
(3.5). Let v = (0,1) and define & recursively as follows: &(T) = 1, £(t) =
v~ 1E(t + 7r(t)) for t < T. Then for any function v

6T (¢v) = v€ 6T v — vév, where v = 1_77

Solving (3.4)-(3.5) for u is equivalent to solving

v = Hlo] = H[(f%), g,0] i= 1y 0Lg + 10Glo], (3.9)
with u = &v, where for € > 0,
Glv] == v +e& P supm® (6F u+ Ly u+ f*). (3.10)
Then
Glv] = sup [p¢ Tr v + pff Thy, v+ p™v + em"‘{_lf"‘] , (3.11)
with

PE=eytIm® >0, pf =e(2h 2l +h7)m™ > 0,

pY=1—-p%— E P —evm® —emc”.
k

Notice that p¢ <eK(h™2+ h™') and
evm® +em®c® <et !4 eK, p®<er !,
so for all € smaller than some g we have p® > 0. Also by taking into account

(3.8) we have

0< Y pp+p+pf =1—em®(v+c®) <1—e(1Av)m (1 +c%)
k
<1l—-e(lAv)p=:0<1,
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for sufficiently small e > 0. Notice also [m®f%| < K. Hence H maps
bounded functions on M7 into bounded functions on M. Furthermore
|H[’U](t,$) - H[?U](t,l‘” < (5sup |U - w‘
Mr
Thus the operator H is a contraction on the space of bounded functions on

M. By Banach’s fixed point theorem (3.9) has a unique bounded solution.
U

Set Mr g = {(t,z) € Mr,|z| < R} and M%,R = {(t,z) € My, |z| > R}
for R > 0.

Remark 3.5. Let v be a function on Mr. The operator H defined by (3.9)
has the following property: if there exists R > 0 such that v = f* = 0 on
MG g for all a € A, then there exists R’ such that

HI(f),g,0)(t2) =0 on M5, .

Corollary 3.6. Let Assumptions 3.1 through 3.3 hold. Let u be the bounded
solution of (3.4)-(3.5) with Q = Mp. Assume there exists R > 0 such that
forallae A
f*=g=0 on M%R.
Then
lim sup |u(t,z)| = 0.

r—00 1
MT,T

Proof. Let £ be defined as in the proof of Theorem 3.4 and let v = {u. For a
fixed (f*) and g we define H"[v] for functions v on My recursively in n as
follows: H'[v] = H[(f%),g,v] and H"[v] = H'[H" ![v]] for n > 2. From
the proof of Theorem 3.4 we see that H is a contraction on the space of
bounded functions on M. Hence for any € > 0 there is ng such that
sup |[H"[0] —v| < g, for n > ny.
My
By Remark 3.5 there exist R, such that H™[0] = 0 on ./\;l% r.- Hence
sup || <e,
M7 Re
which proves the corollary. (]

For the next lemma we need some remarks from [14]. Let D? denote the
collection of all n-th order derivatives in x.

Remark 3.7. For any sufficiently smooth function n(x) by Taylor’s formula
| Ln(z) — Lj n(z)| < N(h* sup |Dgzn|+h sup |DZq)),

By (x) Bg ()
where B (z) is the ball of radius K centered at z.

Remark 3.8. Let us introduce T” as the least integer multiple of 7 not less
than T'. Notice that problem (3.4)-(3.5) can be rewritten as

sup (6ra+Lya+ f4) =0, onQ
acA

a:.g OHMT/\Qa
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where a(t,z) = u(t,z) on My, @(T",x) = u(T,z), § = g on M7 and
g(T",z) = g(T,x). Observe that

~ (T~ T
0y =0, =0, uon Mg

Lemma 3.9. Assume that af, bi} and ¢ satisfy Assumptions 3.1 and 3.2.
Let f{* and f$ be functions on A x My such that

supm®fst < oo, fir < f3 onQ for every a € A.
(e}
Let uy and ug be functions on M such that for some constants >0 and
C > 0 the functions uy (t, z)e " and uy(t, z)e=H*| are bounded on My and

sup m® (52 ur + Ly uy + f{ 4+ O)

[0}

> supm® (52 ug + L ug + f5) on @, (3.12)

(6
up <uz  on Mr\ Q. (3.13)
Assume also that h < 1. Then there exists a constant 7 depending only on
K,dy,p such for T € (0,7%)

uy < ug +T'C on Mr. (3.14)
If uy, ug are bounded on Q then (3.14) holds for all positive T and h.

Proof. By using Remark 3.8 we may assume that 7 = 7" and 67 = §,. Let
w =u; —ug — C(T" —t). Then from (3.12)

supm® (0 w + L7 w) >0, on Q.
[0

Notice that, as in (3.11) with v = 1 (hence £ = 1 and v = 0) and f* =0,
we have

Glw] = w + esupm® ((gw + Lﬁw) = sup[py Tr w + pj Thy, w+ p“w),
o acA

with
P =ertm* >0, p¥=em®2h%a® +h7¢) >0
and
pr=1-pF = > pi—em®c,
k

where one can see that also p* > 0 if € is sufficiently small. Thus G is
a monotone operator in the sense that for any ¢ > w on Mg we have
G[¢Y] > Glw] on Mp. So for any sufficiently small fixed € > 0 and ¢ > w
on Mr
Y+ esupm® (6, ¢ + Li ) > w, on Q. (3.15)
«

Let v € (0,1). Use ¢ from the proof of Theorem 3.4. Then
07 E=E1(v—1).
Let n(x) = cosh(u|z|) and ¢ = n&. Introduce
Ny = sup wT*
My
Due to the assumption that u; (t, x)e Ml and uy(t, z)e=#*! are bounded on
My, we have Ny < co. Our aim now is to show that, in fact Ny = 0.
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By Remark 3.7, taking into account that for every p > 0 and integer
n > 1 there is a constant N such that for all 2 € R?

D7 cosh(sla])| < N cosh(plal),
we get
m® Lj; n(x) < m*L(x) + Ni(h* + h) cosh(ulz| + pK)
< Ny cosh(plz| + pK) < N3 cosh(u|z|), (3.16)

where N1 and N» are constants depending on pu,d;, K, and

cosh(ul|-+.K)

cosh(ulal) < O

N3 = NQ sup
zcRd
Thus
m® (8, C+ Ly Q) <C[r (v = 1) + N,
Let
b= NoC > ¢ > w.
Then by (3.15)

w < 1+ esupm®(0L o + L) < C(No + ek) (3.17)

holds on @, where k = k() = 771(y — 1) + N3. Notice that x(0) < 0 for
T T = Ng_l, and k(1) > 0. So there is a y € (0, 1), which we choose now,
such that k < 0 and Ny + e~ > 0. Thus by (3.17) and (3.13)

w < ((Ng + er) on Mr.

Hence
Ny = sup == < Ny + ek, (3.18)
M
which implies Ny = 0, since ex < 0. This completes the proof of the first
assertion of the lemma.
Assume now that u; and ug are bounded on (). Then we can take p = 0,
i.e., n =1. We do not need estimate (3.16), hence there is no restriction on
h. We can take N3 = 0 and hence we do not need any restriction on 7. [

Corollary 3.10. Let Assumptions 3.1 through 3.8 hold. Let Q) be a subset
of Mr. Assume that g is a bounded function on My and let u and w denote
the unique bounded solutions of (3.4)-(3.5) and (3.6)-(3.7), respectively. Let
Y be a function on My such that for some constant p > 0 the function
e H(t, ) is bounded on M. Then the following statements hold:

(i) Let
L+ LY+ f* <0 onQ for each o € A.
Thenzngon/\;lji\Qimplieswzuon./\;l:p, and v > g on My
implies ¥ > w on Mrp.
(ii) Let
LY +LEY + >0 on Q for some a € A,
and ¥ > g on M7\ Q. Then v < u and ) < w on Mr.

Proof. The statements concerning u follow immediately from the previous
lemma. Hence the statements concerning w follow by Remark 3.1. O
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Let us consider now problem (3.1)-(3.2) and

max |sup m® (6L w + L¢w + f*),g —w| =0 on Hrp, (3.19)
acA
w(T,z) = g(T,z) for z € R (3.20)
Corollary 3.11. Let Assumptions 3.1 through 3.3 hold. Let ¢y > 0 be a
constant such that

e 1) < A (3.21)
Then problem (3.1)-(3.2) has a unique bounded solution u, and
Ju(t,z)] < N* + e~ sup [g(T, @), (3.22)
z€R?

holds on Hy, where

N = Kp 'OA Y1 —e Y +1) when X>0,
T Kp N T +1) when A = 0.
In addition to the above conditions assume that |g| < K on Hp. Then

problem (3.19)-(3.20) has a unique bounded solution w and (3.22) holds for
w in place of u, with 2K + 1 in place of K in (3.23).

(3.23)

Proof. 1t suffices to prove the corollary for problem (3.1)-(3.2). Hence we
get the statement of the corollary also for (3.19)-(3.20), by rewriting it into
the form of (3.1)-(3.2), as it is explained in Remark 3.1. By Theorem 3.4
problem (3.1)-(3.2) has a unique solution u, which is bounded on each grid
defined by (3.3). Hence it suffices to prove estimate (3.22) on the grid M.
As before, by virtue of Remark 3.8 we may assume that 7 = T and so
67 =6,. Let A > 0. Then set N := sup, |g(T, z)| and
€t)=Kp A M1 —e M) 1} 4 emaT-O N,
Then on Mrp
m*(6: & + Ly &4 f%) = m™{0- & — A — (" = N)E+ [}

Ko Lma | AT e 1
=~ Kpmim® |
_}_maNTfl(eclf - 1)ec1(Tft) - ma)\Nefcl(Tft) + mafa'

Thus, due to

— 1) + 1| —=m®(c* = A)¢

AT

> L (2 KpTh mtfr<K
and conditions (3.8) and (3.21) we have
m0, E+LYEF f) < —Kp 'm*(1+c¢*—AN)+K <0 on Mrg.
Clearly

&(T) > Sgp\g(T, z)| > g(T, ).

Hence applying Lemma 3.9 with u and £ in place of u; and us, respectively,
we get u < &€ on Mrp. Similarly, by using —¢ in place of £, we get u > —€ on
Mrp. If A =0 then ¢; = 0, and taking ¢ = Kp~1(T + 1) + N we get (3.22)
in the same way as above. O

Finally we can show that Lemma 3.8 of [14] remains valid in our setting.
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Lemma 3.12. Assume that Assumptions 3.1 through 3.3 hold. Let u be the
solution of (3.4)-(3.5) for a bounded function g on R. For every integer
n > 1 let f¢ and g, be functions on A x Hy and on RY, respectively such
that

sup sup |m® | +sup|gn| < K for alln > 1,

ac€A Ay R4
lim (sup m®|f® — f&| 4+ |g —gn|) =0 for every t € [0,T], = € R%
(6%

n—oo

Then u, — u on My as n — oo, where u, is the bounded solution of
(3.4)-(3.5) with f& and gy in place of f* and g, respectively.

Proof. Having Theorem 3.4 and Corollary 3.11 at our disposal we can get
this lemma in the same way as Lemma 3.8 in [14] is proved: Since by Corol-
lary 3.11 u,, is bounded uniformly in n, any subsequence of {u,} contains
a subsequence converging to a solution of (3.4)-(3.5), which is unique and
equals u. Therefore the whole sequence u,, converges to u. O

4. GRADIENT ESTIMATES FOR FINITE DIFFERENCE SCHEMES

Thorough this section we assume that Assumption 3.1 holds. Recall that
T’ denotes the smallest integer multiple of 7 which is greater than or equal
to T. For a fixed number ¢ € (0, Kh] and a unit vector [ € RY, set h, = h
forr = +1,...,4dy and h, = ¢ for r = £(d1 +1), and £y (g, 1) = £l. Define

Mr(e) == {(t,x +icl) : (t,x) € Mp,i=0,%1,...},
Mo(e) := Mp(e) N ([0,T) x RY).
Let Q@ C Mrp(e) be a nonempty finite set. Define Q' = Q N ([0,7) x RY),
QY= {(t,z): (t+7r(t),2) € Q,(t,x + hyly) € Q,Vr=+1,...,+(d; +1)}
and 0.Q = Q \ Q2.
Assumption 4.1. For r = +1,...,4(d; + 1) and a € A on QY we have
ldh'mér b(’j| S K7 ma’ 5hr7£r fa’ S K7 ma‘ 5h'r7£r Ca| S K7 (41)
|6h, 0. aff| < K+/a + Kh. (4.2)

The following estimate plays a crucial role in the proof of Theorem 2.4.
It generalizes Theorem 5.2 from [15].

Theorem 4.1. Let Assumptions 3.1, 3.3 and 4.1 hold. Let u be a function
on Mr(g) such that it satisfies (3.4) with Q" in place of Q. Then there is
a constant N* > 0, depending only on di and K such that for any constant
co > 0 satisfying

A+l —e ) > N*+1, (4.3)
we have

2N* co(T+T)
|0 rul </ 2e (1+mexful + _ max = max|d eul) onQ.
(4.4)

In addition to the above conditions assume that g is a function on Hp such
that | 6,1, 9| < K on Q¥ for every v = £1,...,+(d1 +1). Let w be a
function on Mr(e) that satisfies (3.6) with Q' in place of Q. Then the
above statement holds also for w in place of u.
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Proof. We follow the proof of Theorem 5.2 from [15] with some changes. Let

et t<T,
U?" - 5hr7l7‘ /U7 v = gu? g(t) = { €COT/ t — T } ’

where T" denotes the smallest multiple of 7 that is not less than T. Let
(to, o) € @ be the point where

V=> (v)
is maximized. By definition, for any (¢,x) € Q¢ we know that
(t,z+ hotlr) € Q.

Clearly, either
ve(t,z) <0 or —wp(t,x) =v_p(t,z+ hly) <O.

Consequently,
o (t, )| < V2(to, x0).
Hence
My :=sup |v;| < sup |v,| + Vl/z(tovxo)v (4.5)
Q,r 0:Q,r
[0 el < €T sup 6y, ¢, ul + V2 (to,20) on Q. (4.6)
(> 7T

So we need only estimate V on Q. If (to, z¢) belongs to 0-Q, then the conclu-
sion of the theorem is clearly true. Thus, we may assume that (¢, zo) € QU.
For any gy > 0 there exists oy € A such that at (¢g, z¢),

mee ((gu +al® Apg, u+ 020 0pp, v — cM0u+ fo‘o) +e0 >0,
and so for some ¢ € [0, g¢]
meo (5? u~+ay’ Ap g, w4 b0 00, v — cOu+ fao) +e=0. (4.7)
Furthermore (thanks to the fact that (tg, z0) € Q)
Th, ¢, [mao ((f u+ay’ Ap g, w4020 0p e, v — cOu + fao)] <0, (4.8)

where Ty, (¢, z) := ¢(t, x+hl) for any number h, vector [ € R? and function
¢ defined at (¢,z) and (¢, + hl). Here and below (o, xo) is fixed and for
simplicity of notation it is omitted in the arguments of the functions. We
subtract (4.7) from (4.8) and divide by h, to obtain that for each r

m® 8y, 0 (6F w4 af® Ap g, u+ b2 Sp g, u+ f* — 0u) — = <o
By the discrete Leibnitz rule
mee (57(5717%) + 571 [azéo Ah,fk vy + Iy + Loy + IST‘] + 5h,«,lr fa())

—1 ag 00 ) (49)
—& 7 Op, 0, (M0c00) — S 0,
where
L = (On,t, ;") Dhey v,
L, = hr(éhr,fr ago) Ahlk Ury

I3, = bgo Oney, Ur + (5hr7€r b(’jo) Th, .0, Onp, v.
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Notice that
0 > Ang > (07)* =20 Apgovy + > [Oney v )+ Onge_y v)]

r

T
> =207 Ang vr+ > Ona vy + Y (O g,v7),
T IS8

which gives
0 <wv, Apg vr (4.10)
and
I:= Zago(éh,gk v )? < vy ap” Ap g, .
r

Multiplying (4.9) by &v,” and summing up in r we get

meo (5”7’_67(5_1%«) + %a?ovr_ Ahﬁk Uy + %I + v, [Ilr + I, ( )
4.11
+13, + & 0n, 0, fao]) — v, Op, 0, (M cMv) — f”;h% <0.

Since —v, v, = Y, (v;)%, M by, o, fO° > —K and m®| 8y, 4, ¢ < K, we
have

m*v, & p, 0, [ = v, O, 0, (M0 CV)

=m™v,. & 0p, ¢, fO —m* v, (6p, 1, ¢*°) Th, 0, v — M0 ™0,

> =T K> v =m0, [ 6, 0, ¢ Th, g, 0] +m™0c™ Y (0)?
T

'
> —%T" 2K (dy 4+ 1) My — 2(dy + 1)K M1 My + m®0c™V,
where
My := max |v].
0 2 |v]
Since V attains its maximum at (tg, zg) € Qg we have

0 > ) One () =207 na, vy + Y hi(Bnp, v))?

> 20, Opp, v, > =20, Opp, Ur
Next recall that b3 > 0 and | dp, 5, bff| < K. Therefore
—v, b0 Opp, vp <0,
and
oy Ise > =07 | 8py 0, U320 Thy oty Ony, v > —4Kdy (di + 1) MY
By the discrete Leibnitz rule
vy 67 (6 ) = &up [N (bo+7) 87 vr v, 87 €]
= e Ty 6w, —VEST e > —vesl et
= vV,

where

v=u(c,) =L(1—e7).
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Using the above estimates we get
m® (v 4 )V + Im*aiv. Ay g, vp + 5m*1
+u, m®[l, + Io,] — Evy & < 2(dy + 1)K My (™" + My + 2dym® My).
Hence
me (v 4 )V < 2(dy + 1) KMy (e + My + 2dym® M)
+m®uv; [y + m*v; [ Iop| — $m™aovy Ap g, vr — 3mT + Ly £
Define

J = UT_‘((Shhgr ak Ah A, U‘ 4 E a 5h 1, Uy ,
I 1 _oo,,— _
Jo = J3 — 50, v, Apg, v — Z E ay®(One, vy )%
T

J3 = hrv;’((shmgr ago) Ah,ek UT‘.
Then we can rewrite the above inequality as
me (v 4+ )V < 2(dy + 1) KMy (T + My + 2dym® M) (4.12)
+m(Jy + J2) + fvr_hir

So we need to estimate Jq, Jo. We turn our attention to Ji. Using condition
(4.2), noticing that h| Ap ¢, v| < 2M; and

| Ah,fk U| < Z | 5h,£k Ur_| + Z | 5hk,€_k Ur_|a
T T

we have
Uy [(Oh, i, a°) Dng vl < NiMy|(y/ag® 4+ h) Apg, vl
< NiMiy/al®| Ap g, v| + No M7
< 2N1M11/a2“0 Z ’ 5h,€k ’UT_‘ + N2M12
T
<

NaMF + 3 0 Ong, v ),
T
where N1, No and N3 are constants depending only on d; and K. So
Jy < NsME. (4.13)
Next we estimate J3. Since h, < Kh for all r, by condition (4.2)

J3 < K2hv;\/ag(’] Ah/k Ur| + K2h220ﬂ Ah,fk UT|.
k

Hence using h%| Ay, vp| < 4M; and |a| = 2a~ + a, we get
J3 < 2K2hvr_1 [ay (Ap e, vr)” + K2hvr_ ap® Ap g, vr + SK2d, M?.

Notice that the summations in r above can be restricted to {r : v, < 0}.
For these r we have

h(Apg, vr)” < bl Apg, vy | < | 0ne, v |+ [ Ony ey v |-
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Hence

J3 < 4K2v;\/ag°|5hk7gkv;| + KQU;}‘L ago Ah,ﬁk Uy + 8K2d1M12

< NM12 + %Zago(éh,ﬁk UT_)Q + sz;h azo A}%gk Uy,
r

Jo < NMP — 4 (a® — 2K%hy [ ap) v, Apg, vr.

By (4.10)
Jo < NM?P =3 Ry,
kel
where
Ry = (a° — 2K?hy/af®)v; Ay, v, K= {k Laf® — 2K%hy/af < O} :

Notice that for k € I we have a;° < 4K 4h? and hence
(Rl < AK*R2J0; Ay 0] < NME
with a constant N depending only on K and d;. Thus Jo < N M12 and hence
by (4.12) and (4.13) we get
m (v + )V < NM, (eCOT’ + My + mO‘OM1> +éuy £,

where N denotes constants depending only on K and d;. By (4.5) we have
My < p—+ V1/2, where
= sup |v,| < el i, =] sup Sty Ul

-Q,r 0:Q,r

Set - ) B )
My = |ulog > e T My, V =e 2TV
Then, using Young’s inequality, we obtain

m (v + )V < N(f+ VY?) (1 + Mo+ i + m“ﬂf/l/2> +eeolly 2
< N* (1 + My® + i + mO‘OV> + gf/ +e Ty 2. (4.14)

Assume that for ¢,
A4v(c) > 14+ N™.
Then (4.14) yields

Mmoo (14 ¢ — \)V < N* (1 + Mo+ ﬂQ) + gf/ +e T 2

Hence using condition (3.8) and then letting & — 0 we obtain

) _

V<IN (1400 + 2),

p
that obviously yields estimate (4.4). Finally we use Remark to rewrite equa-
tion for w into equation (3.4) with Q" in place of @, and notice that for
v=(a,r) € A
|, 0, f7 = m (L4 7) " on, 0, f* + 7x0h,0,9] < 2K

for r = £1,...,4(dy + 1). Hence the statement on w follows from that on
U. U
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Let us consider now (3.4)-(3.5) with Mp(e) in place of Q.

Corollary 4.2. Assume that Assumptions 3.1 through 3.3 and 4.1 with
M (e) in place of Q2 hold. Let g be a bounded function on Re. Let u be the
solution to (3.4)-(3.5) with Q = Mr(e). Then there is a constant N* > 0,
depending only on di and K such that for any constant c, > 0 satisfying
(4.3) we have

|0c, 1iu| < NoeCO(T+T) (N1 + sup |g| + max sup léhhg,«gD on Mr(e), (4.15)
Rd r Rd

where Ny and Ny are constants. The constant Ny depends only on K, d
and p and the constant N1 depends on K, di, p and A, provided A > 0, and
if A\=0 then it depends on K, di, p and T.

Proof. Let B, denote the open ball of radius r centered at the origin in R4,
Using Theorem 4.1 with @, := Mr(e) N ([0,T] x B,,) in place of @ for any
integer n > 1 we have

|0e, 1iu| < Neco(T+T)(1 + max lul + maxgngx |0n,.0,ul), on Qn,
n r (4 n

where N is a constant depending only on d; and K. In addition to the
assumptions assume that for all & € A the functions f* and ¢ vanish outside
of a fixed ball of radius R centered at the origin in R%. Set 97 = {(T,z) €
0:Qn}. Then by Lemma 3.6

lim sup (| 0,0, ul + \55¢1UD =0.

Hence on Mr(e)

|0e 1iu| < Nec"T/(l + sup |u| + maxsup |5hr,€r9|)~ (4.16)
./\/_lT(E) " Rd

Let us now remove the additional assumption on f* and g. Let n € C§° (RY)
be a nonnegative function such that < 1, |[Dn| < 1 on the whole R? and
n(x) =1 for |x| < 1. For each integer n > 1 define

falte) =n(n~ ) f*(t2),  gale) =n(n"'2)g(x), >0, zeR™
Then clearly

n—o0

lim (supm®|f* — f| + |9 — ga|) =0 on Hr,
o
Ll < 1f 0 Aone e frl < 1eelsup [ £ + [6n, 0. f],
Hr
lgn| < lgl,  |0n,0,9n] < \€r|SU})|g| + |0n,.0.9]- (4.17)
R

Let u, be the solution to (3.4)-(3.5) with Q = My(g) and with f& and g,
in place of f* and g, respectively. Then from (4.16) and (4.17) for all n € N,

10 1tn| < Ne T+ (1 + sup |uy| + K sup|g| + maxsup [0, ¢, g|).
Mo (e) Rd T Rd

Hence estimating sup 4, [un| by using Corollary 3.11 and then letting
n — oo by using Lemma 3.12 we get estimate (4.15). O
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Assumption 4.2. For alla € A, t > 0 and z,y € R?
b (8, ) — b (¢, )| < Klo —yl, m®[c*(t,z) —c*(t,y)| < K|z —yl,
me[f(t,x) — [ (ty)| < K|z —yl,
[Va(t,z) = Va(t,y)| < K|z —y|. (4.18)

Theorem 4.3. Let Assumptions 3.1 through 5.3 and Assumption 4.2 hold.
Assume that g is a Borel function on Hp such that

suplg| < K, |g(t,x) —g(ty)| < K|z —y| forallt €[0,T], 2,y € R,
Hr

Then there is a constant N* > 0 such that for any constant c, > 0 satisfying

(4.3) for the solution u of (3.1)-(3.2) and the solution w of (3.19)-(3.20) we

have
[ult, 2) — ult,y)] + lw(t, 2) — w(t,g)] < Ne® Tz gyl (4.19)

forallt € [0,T], z,y € R?, where N is a constant, that depends only on K,
di, pand X, if X\ > 0. If \ =0 then N depends on K, di, p and T.

Proof. To prove (4.18) let (t,) and (t,y) be fixed elements of Hy. We may
assume that ¢ < T. Moreover, by making a suitable shift in the argument
of the functions, we may assume that (t,z) € Mp. If |z —y| > K, then
estimate (4.19) holds by virtue of Corollary 3.11. Assume that |z —y| < K.
Set £ = (y —x)/|x — yl|, li(g,41) = &£ and € = |v — y|/n, where n is the
smallest positive integer such that |x — y|/n < Kh. Then
n—1
u(t, z) —u(t,y)] < e |6 eult,x + jeb)|
j=0
<ne sup |0ceul = |v—y| sup |0 ul.
Mo (e) M (e)
Hence we can finish the proof by using Corollary 4.2 if we show that Assump-
tion 4.1 with Mr(e) in place of Q2 holds. It is easy to see that condition
(4.1) is satisfied with K2 in place of K. To verify condition (4.2) notice that
for any r = £1,--- & (d1 + 1), £, and (t,2) € Mqp(¢)

16h, 0,05 (8, 2)| = hy ' 2(|ag (£ 2)[ V2 = |ag (£, 2 + hely)[/?)
_ 2
+ht (Jaf(t, 2+ hele) Y2 — Jaf(t, 2 + hoty) V)
< K?|ag(t, 2)|'/? + b K* < K'|ag (£, 2)|"/? + K'h
with K’ := 14 K*. The proof is complete. O

Now we investigate the dependence of the solution to (3.4)-(3.5) on the
data. Therefore together with af}, b}, ¢, f* we consider also functions ag,

Bg, ¢, fo defined on Ho for each a € A.

Assumption 4.3. Assumptions 3.1 through 3.3 and Assumption 4.1 with
M7 (0) = My andr = +1,...,4+d; inplace of Q2 and 7 = +1,...,+(d;+1),
respectively, hold for af, by, ¢* and f* and also for aj, Bg, ¢* and fo‘ in
place of af, by, ¢ and f, respectively, with the same function m® and
constant A > 0.
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If Assumption 4.3 holds and g and § are bounded functions on R?, then
by Theorem 3.4 we have, in particular the existence of a unique bounded
solution of (3.1)-(3.2) with af, b, ¢*, f* and g and also with ag, bg, ¢
fo‘ and g in place of af, b}, ¢, f¢ and g, respectively. We denote these
solutions by u and 4, respectively.

Lemma 4.4. Let Assumption 4.3 hold. Let g and § be bounded functions
on R?. Let e € (0, Kh] be a constant and assume that for all a € A

b = Bt +m®|f* = fo +m®[e* — & < Ke,

o : (4.20)
lay — ay| < Key/ay N af + Keh,

on Mrp. Then there is a constant N* depending on K and dy such that for
any constant ¢, > 0 satisfying (4.3) we have

lu—a| < eNye®©T+7) (N1 + sup(lg| + || + max |6h.,.9]
Rd

+ max 10n,6,9] + g — 1))

on M, where Ng and Ny are constants. The constant Ny depends on K,
d1 and p. The constant N1 depends on K, dy, p and A\, provided A > 0, and
it depends on K, di, p and T when A = 0.

Proof. We follow the idea of [14] to obtain this lemma from the gradient
estimate (4.15). We consider R? as a subspace R? x {0} of RY x R, and
the vectors ¢, are identified with (£,0) € R for k = +1,--- 4 dy. Let
(t,z) = (t, 2/, 241 € [0,7] x R? x R. Let £ = (0,...,0,1) € R¥1. Set
gi(dﬁrl) = :l:g, 5thgT = 5h7£k7 forr=k=41... y :l:dl, 5hr,fr =9 for

= :l:(dl + 1), and

Mr(e) = Mgy x {0,4e,42¢,...}, Mzg(e) := Mz(e) N ([0,T) x R? x R).
Let

el (dy+1)

« / : d+1
ap(t,a’, 2 = { Z%g: zlg ﬁ idJrl 2 8:
and define I;g,ék, f g and u similarly. Then u satisﬁes (3.4)-(3.5) with
Mr(e), ag, by, ¢ @ fo and § in place of Q, ag, b, ¢, f* and g, respectively.
To apply Corollary 4.2 to u we need to check Assumpt1on 4.1 with Mrp(e),
ak,bg, ¢* and fa in place of @, af, b7, c® and f?, respectively. Clearly this
assumption with » = +1,..., +d; holds by virtue of Assumption 4.3. Since
Oe,—0 = =T _40c 4, We need only show that it holds also for r = (d + 1). To
this end notice that
if x4t =0,

~ 0
deet(t,z) = { e ((t, &) —P(t,a')) if a9t =0
with af, b, ¢* and f¢ in place of 1. Moreover, due to (4.20)

e Ha(t,2) —ap(t,2')| < Ky\/a(t,2’,0) + Kh.

Thus |d. ¢ l~)| <K, m®d.p¢] < K, m® 0cy f! < K on Mrp(g), and
|0cpap| < Ky/a¥ + Kh on Mrgp(e).
Hence we get the lemma by using Corollary 4.2. O
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Theorem 4.5. Let Assumptions 3.1 through 3.8 and Assumption 4.1 hold
for af, by c* and f and also for af, I;?, ¢ and fa in place of af, by c*
and f*, respectively. Let g and § be bounded functions on Hr such that for
allt €[0,T), z,y € R?

lg(t, )| + gt 2)| < K, |g(t,x) —g(t,y)| + 19(t,z) — (¢, y)| < K|z —y|.
Set

c= sup (Jof = af|+ [bf — bl +mOe” — & +m|f7 = f + g — 3l
M, Ak

where off = \/af, 65 = \/af. Assume that u and @ satisfy (3.4)-(3.5),
w and W satisfy (3.6)-(3.7) with My in place of Q, and o,b,c, f,g and
G, 13, ¢, f,g, in place of 0,b,¢, f, g, respectively. Then there is a constant N*
depending on K, di and p such that for any constant c, > 0 satisfying (4.3)
we have

lu—a| < Ne®THe  |Jw—w] < Ne®THe  on My, (4.21)

where N is a constant depending on K, di, p and X\, provided A > 0. If
A =0 then N depends on K, di, p and T

Proof. Consider first the case € € (0, h]. Then
ot — ol <& lof—op < eh,
and using the identity
la? — b?| = (a + b)|a —b| = 2(a A b)|a — b| + |a — b]%,

valid for any nonnegative numbers a and b, we get

la — af| = 2(|of| A 6E)|ow — 68| + oy — 6% < 2ey/af A ag + ch.
Hence by Lemma 4.4, |u — @] < eNe®T+7) on Mp. Now consider the case

£ > h. For 0 € [0,1], let u’ be the solution of

supm® (o, u? + aza Ap g, u? + bia Ohey, uw? — Pl + feo‘) =0on Mp
o

g% =’ on {(T,2) e M7},
where
(o 0, 7, 17 9%) = (L= 0) (0 b, . £, 9) + 0(67, B, ¢, £*,9)
and a?* = (1/2)|092|?. For any 64,0 € [0, 1],
0017 = 2% 27 — b e — e
+m[ [ — 2 4 g™ — g (< |61 — O3],

Hence if 01,05 satisfy |6 — O2|e < h, then, thanks to the first part of the
proof, with u”* and u%2 playing the roles of u and 1, respectively,

[uft — uf2| < N|O) — Oy]eec T+,

Set 0; :=1i/m for i = 0,1,...,m for an integer m > 1 such that ¢/m < h.
Then
m—1 m—1
i —ul < Dl —uf < NY iy — Olee”” = Neeo ),
i=0 i=0
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that proves (4.21) for u and 4. Hence by using Remark 3.1 to rewrite
equation (3.6) we get (4.21) also for w and . O
5. SOME PROPERTIES OF THE REWARD FUNCTIONS

Let A be a separable metric space. Let ¢ = o®(t,x) and 8 = B*(t,x)
be some Borel functions of (a,t,z) € A x [0,00) x R? with values in R¥*¢
and R?, respectively. Let o = (ai)e>0 be a progressively measurable process
with values in A, such that for every s € [0,T) and z € R? there is a solution
xy = {a"®" 1t €]0,T — s} of equation (2.3).

Let f = f*(t,x), ¢ = c*(t,x) > X and g = ¢(t,z) be Borel functions of
(o, t,r) € A x [0,00) x R? and of (t,2) € [0,00) x R?, respectively, where
A > 0 is some constant. Set

T—s
v¥(s,x) = E/O Fo (s + t,x?787$)67§0t dt + Eg(T, x%’f’f)e*w—s,
w (s, x) = E/ fe(s+t,x"" e Pt dt + Eg(s + 1, 22%%)e %7, (5.1)
0

t
p = @?’x = / ctu (8 + u, xs,s,m) du
0
fors € [0,T], x € R?, for the process o = (i) and for a fixed stopping times
7 with values in [0,7 — s].

Lemma 5.1. Assume that there exists a constant K such that |g| < K on
Hp and

[f ()] < K(14 (¢ z)) (5.2)
foralla € A, t>0 and x € R, Then for u := v™, w™™ we have

lu| < K(2+ N) on Hr,
where N = (1 —exp(=AT))/X if A\ >0, and N =T if A= 0.

Proof. Notice that
T—s
/ (s+ta)e Prdt=1—e T < 1.
0
Hence
T—s
lu(s, )] SKE/ (I+c*(s+t,zy))e Ptdt+ K < K(2+ N).
0

O

Assumption 5.1. There exist a Borel function m : A — (0, 1] and constants
p >0, K >0 and L such that for all a € A, t € [0,T] and z,y € R?

m*(1+c*(t,z) = A) > p, |m®ft,2) <K, (5.3)
m|f*(t,x) — fA(t,y)| < K|z —y| (5.4)

c*(t,x) — c*(t,y)| < Kz —yl, (5.5)

l9(t,x) — g(t,y)| < K|z —yl, (5.6)

(x — ) (BY(t, ) — B(t,y)) + §lo*(t,2) — o®(t,y) < Llz —y[>.  (5.7)
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Remark 5.2. Notice that condition (5.3) implies condition (5.2) of Lemma
5.1, with K/p in place of K in (5.2). Clearly, if % and o® are Lipschitz
continuous in x € RY, with Lipschitz constant L/2, independent of o € A
and t € [0, 7T, then the monotonicity condition (5.7) is satisfied.

Lemma 5.3. Let Assumption 5.1 hold. Assume
lg| <K on Hr. (5.8)

T we have

Then for u = v, w™
lu(s,z) —u(s,y)| < N|lz—y| foralls € [0,T] and x,y € RY,

where N is a constant depending only on K, p and T. If A > |L| + 2, then
N depends only on K and p.

Proof. Clearly, |u(s,z) — u(s,y)| < Y p_, I with

&, 5,T a5,y

T—s
I = / Fo (s & £, 2050 |e~5"" — &= dt,
0

T—s
I = E/ |t (s + £, z057) — [ (s 4 t, 205 |e=?0 dt,
0

L= sup E{lg(s+7,a0%")|e " — e,
T€T(T—s)

Ii= sup E{|g(s+7,255%) — g(s + 7,a25)|e=#7 "}
TGT(T—s)

By (5.5) and (5.3)

1S, T 0S8, Y

T—s
Il S E/ ’fat (S + t7 $?757x)‘|(p§4787$ _ (p?757y‘67 mln(sot Pt )dt
0

T—s
ot b
< KZIE/ te=ADE_L_gqup 425 — z25Y|e Jo maw du gy
0 r<t

mot T

< Ny sup e~ Notg sup |z %" — xS
t<T-—s r<t
for any constant Ny > 0, where N1 = K?(e(A — 1 — Ng))"1p~! when X\ >
1+ Np, and Ny depends on p, K Ny and T when X € [0,1 + Ng|. By (5.4)
and (5.3)

T—s
B KE [ o) e
0

T—s

_rt_L

S KE <Sup 67N0t|x?757$ _ x?757y|/ e*(}\*l*NO)tﬁe f() mou dudt)
t<T 0

< NoE sup 67N0t|:cta’s’x — x?’s’y|,
t<T-—s
for every constant Ny > 0, where Ny = K/p when A > 1+ Ny, and Ny
depends on K, p, Ng and 7" when A < 1+ Ny. Due to conditions (5.8),
(5.5), ¢* > X and (5.6) we have

—p > —p®Y —At ! ,s,x a,s
Is<K sup Ele¥ —e ¥ |<KE sup e |ZOST — g S|
T7€X(T—s) t<T-—s 0
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T—-s
< K/ Ee " |a®" — x0*Y|dr < N3 sup Ee Nof|z(s® — gV
0

t<T—s

for every constant Ny > 0, where N3 depends only on K if A > Ny + 1 and
N3 depends on K, Ng and T if A\ < Ny + 1. Similarly,

I; < KE sup e Mz0®" — 2] < NyE sup e Nob|g0%® — g5V
t<T—s t<T-—s

for any Ny > 0, where Ny = K exp((No — A)T'). Consequently,

a’s?y

ot

lu(s,z) —u(s,y)] < NE sup e (5.9)

t<T—s

for every Ny > 0. The constant N depends only on K and p, if A > Ny + 2,
and it depends on K, p, Ng and T if A < 2+ Ny. Using It6’s formula and
condition (5.7), we have

e — P < o -y M,
almost surely for all ¢t € [0,7" — s]|, where M is a local martingale. Thus
E6_2L7’$$’57x _ xg,s7y’2 < ’.’B o y’2

for all stopping times 7 < T — s, that yields

— a,8,T a,s
Lt|xt, y 7-/1/}’ Y

E sup e <3|z -yl

t<T-—s
by virtue of Lemma 3.2 from [5]. Combining this with estimate (5.9) we
finish the proof of the lemma. O

Assume that A = UJ2 A, for an increasing sequence of Borel sets A,
of A such that Assumptions 2.1 and 2.2 hold with A,,. Then the reward
functions v® and w®7 are well-defined on Hy for every a € 2 = U, 2y,
where 2, denotes the set of progressively measurable processes o = (a¢)¢>0
taking values in A,,. Thus we can define the optimal reward functions

v(s,x) =supv®(s,z), w(s,x)=sup sup w7 (s,x)
ac acAre3(T—s)

for every (s,z) € [0,T] x R = Hy. Recall the notation Hy := [0,T) x RY,
L = 03,05, DiDj + B D + c°,

and let C12(Hr) denote the set of functions ¢ = (¢, ) whose first deriva-
tive in ¢ and second order derivatives in x are continuous functions on Hr.
The following lemma formulates an important property of smooth superso-
lutions and subsolutions to Bellman equations.

Lemma 5.4. Let Assumptions 2.1 and 2.2 hold. Assume that o, B are
continuous in o € A. Assume, moreover, that f and c are continuous in
(o, ) and are continuous in x, uniformly in o € A, for each t € [0,T]. Let
S € (0,T) and ) € CY2(Hg) such that for some constants K and ¢ > 0

[(t, )| < K(1+ |z|?) for all (t,x) € Hg. (5.10)

Let QQ be a domain contained in Hg. Denote its boundary by 0Q. Then the
following statements hold:
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(i) Let
LY+ LW+ f*<0 onQ, foralla € A (5.11)
Then
v <Y +suplv—YlL onQ. (5.12)
0Q

In addition to (5.11) let g < 1 on Q. Then (5.12) holds also for w
i place of v.

(ii) Let
%¢ + L%+ f*>0 onQ, for some a € A. (5.13)
Then
v > —suplv —]- and w > —suplw —P]_ on Q. (5.14)
aQ oQ

Proof. This lemma follows from Lemma 6.1.2 and Theorem 6.1.5 from [10].
For the convenience of the reader we give a more detailed proof here. Set
Up = SUPuey, v for integers n > 1. Then by Theorem 3.1.5 in [10], the
polinomial growth condition (5.10) holds for v, in place of v, with some
constants K and ¢ depending on n, and v, is continuous on Hyp. Set

T =inf{t > 0: (s+t,2:) ¢ Q}, Tg =inf{t > 0: |z;] > R} A 7g

for R > 0. By Bellman’s principle (Theorem 2.3.6 from [10]), for (s,z) € Q,
integer n > 1, stopping time 7 = Tg, for any € > 0 there is a strategy
(o) € Ay, such that

Un(s,2) < e+ I (s,z), (5.15)

I¥(s,2) = ES . (/ [ (s+t,ze)e Prdt + vp(s + 7, :L’T)e_%> , (5.16)
0

where, as before, to ease notation we use z; in place of zy"**. Using condition
(5.11) and applying Itd’s formula to ¢(s + ¢, z)e™%* we have

IY(LO‘)(S7 r) < —Eg, / e ¥t [% + Lat] V(s +t,2p)dt + ES on(s + 7,27 )e” 7"
0

= (s, ) + ES {(vn(s + 7,27) —Y(s + 7, 27))e 7 }.
Letting here R — oo we get
IT(LQ)(S, x) < (s, x) + ES {(vn(s + 70, Try) — U (s + 10, xTQ))e_‘pTQ 1.
Thus from (5.15) we have

Un(s,) <€+ 1(s, @) +supfvn — Y], < e+ (s, x) +sup v -], .
aQ 0Q
Letting here n — oo and € — 0 we get (5.12). Hence (5.12) is valid also for
w in place of v, since w = sup, ¢y v” by virtue of Theorem 2.1, Assumptions

2.1-2.2 remain valid with A4,, and A in place of A,, and A, and due to (5.11)
and ¢ > g on @,
Gt L+ f=Gu+ LY+ fr(g—¢) <0 onQ

for every v = (a,7) € A. To prove (ii) let o € A such that (5.13) holds.
Then o € A, for some n > 1, the constant strategy a; = a belongs to 2,
and by Bellman’s principle

Un(sv .’L‘) > I’r(za) (57 ZE)
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with this strategy «, where I,(f‘) is defined by (5.16). Hence by an obvious
modification of the proof of part (i) we get the first inequality in (5.14),
and that yields the second inequality by virtue of Theorem 2.1, since clearly
%1/1+L71/1+f7ZOOHQforfy:aeAC/_l. O

Next we want to study the regularity of v and w in ¢t € [0,7]. The
following simple example shows that Assumption 5.1 does not ensure the
continuity of v at t =T, even if ¢ and b are as regular as we wish.

Example 5.5. Let A = [0,00), f*(t,z) = a, g(x) = 0, c*(t,z) = « for
a € A. Then Assumption 5.1 holds with m® = (1 4+ a)~! and 0% = 0,
b* =0, and for t € [0,T], x € R?

T—t s T—t
v(t,z) = supE/ age” Jo oudugg sup E (1 — e o O‘“d“> = 14,
ac 0 acd

which is not continuous at 7.

6. HOLDER CONTINUITY IN TIME

Let 0 = o%(t,z), B = B*(t,x), f = fYt,z) and ¢ = ¢*(t,x) be Borel
functions of (a,t,z) € A x Ry x RY, taking values in R? R R and Ry,
respectively, such that ¢ > A for a constant A > 0. Let g be a Borel function
on Ry x R? with values in R.

We make the following assumption.

Assumption 6.1. There is a constant K such that for ¢ = ¢%, 8%, f¢, c%, ¢
for all « € A we have

[(t,z) =t y)| < Klz—yl, |[¢tz)] <K
for all t € [0, 7] and z,y € RY.

Obviously Assumption 6.1 implies Assumptions 2.1 and 2.2, the reward
functions v®, w*7, v and w are well-defined by (2.8), (2.9) and (2.7). More-
over, Assumption 5.1 holds with m® = p =1 and L = 2K. Thus by Lemma
5.3 there is a constant C such that for u := v, w

lu(t, ) —u(t,y)| < Clz —y| forallt e [0,T] and z,y € R% (6.1)

If A > K +2, then C depends only on K, otherwise it depends on K and T
Using results from [10] and [15] one can prove the following lemma on the
Hoélder continuity of v and w in ¢.

Lemma 6.1. Let Assumption 6.1 hold. Assume that o, B are continuous
in a € A. Assume, moreover, that f and ¢ are continuous in («,x) and are
continuous in x, uniformly in o € A, for each t € [0,T]. Then for xg € R?
and 0 <ty < so < T such that |sg — to| < 1, we have

|v(to, z0) — v(s0,z0)| < N(v1 4 1)|so — to|'/?, (6.2)
|w(to, To) — w(s0, z0)| < N(va +1)|so — to" + plso — to| /2, (6.3)
where N is a constant depending only on K, and
[v(s0,20) = (50,y)] — [w(so,m0) —w(s0,y)|

vy = sup o= , Ug: sup - ,
0~y lzo—yl
y€R\{zo} y€RN\{zo}
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— lg(t,y)—g(s0,y)| 4
i g o 60

Proof. We may assume v < 00, 19 < 00, i < 0o and 0 < tg < sg. Moreover,
by shifting the origin we may assume ty = 0 and hence sy < 1. To prove
(6.2) define for a constant v > 0 the function

U(t, ) = wil€(t) ]z — xo|* + k(s — 1)) + ka(s0 — 1)

1y~ +u(s0,20),  for (t,2) € Hy, (6:5)

where £(t) = exp(sp—t) and k1 > 0, k2 > 0 are some constants to be chosen
later. By simple calculations for any o € A

LE(t, x) = v17€(t) 205,05 (¢, x) + 267 (¢, ) (zi — z0;)]
—c(t, ) (t,x) < Nyyvr (1 + |x — x|) + No,

for (t,r) € Hs,, where N3 and Ny are constants depending only on K.
Hence, choosing xo > K + Na, we have

Dt ) + L (t,x) + f*(t, )

< vy [N(1+ |z — 2o]) — |2 = zo|* — 1], (6.6)
where the right-hand side is negative for all x if k; is sufficiently large,
depending only on N;. Notice that for all z € R?

P(s0,7) = 1(v|z — o> +771) +v(s0,20) > v1]e —zo| +v(s0, 0) > v(s0,2).

Thus applying part (i) of Lemma 5.4 with S := sp and @ := Hg, we obtain
v(t,20) < vi[yk1(so — t) + 7] + k2(so — t) + v(s0, 70)

for all t € [0, sg] and constants v > 0. For t = 0 we choose v = (r150) " /2

to get

1/2

v(0,z0) < 2v1K) /

1/2
So + K2So + U(‘SOa 1'0),

that yields
v(0,20) — v(sp,x0) < N(v1 + 1)8(1)/2 (6.7)

with N = max(2/a}/ 2, k2). To get the corresponding estimate for w, instead
of (6.5) define ¢ by

b(t,x) = ylé(t)|x — wol* + ki(so — )] + ra(so — 1)
vyt psy’® + w(so, o). (6.8)
Then just like before we see that for sufficiently large constants k1 and ks,

depending only on K, the left-hand side of (6.6) remains negative for all
(t,z) € Hy,, and that

Wt x) > (s0,7) > w(so,x) + psg/ > > glso,x) + psg/” > g(t, )
for all t € [0, s9] and 2 € R%. Hence by part (i) of Lemma 5.4
w(0,20) < valyriso + 7] + raso + psy!” + w(so, zo)
for any v > 0, that yields
w(0,20) < N(vo + 1)5(1)/2 + w(so, zo).
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Now we prove this inequality with w(0,z) and w(sg,z) interchanged, to-
gether with inequality (6.7) with v(0,x) and v(sg,x) interchanged. To this
end set

Y(t,z) = —w[E(t) |z — zol® + K1(so — t)] — wa(so — t) — Cy ' + u(so, zo).

with v := v and w, and v := v; and v, respectively. Notice that for large
k2, depending only on K, we have

Gt x) + Lo (t,x) + f(t ) > —vy[Ni(1+ | = @o]) — |2 — zof* — 1],

with a constant N7 depending on K, where the right-hand side is positive
for all x if Ky is sufficiently large, depending only on Ny. Furthermore,

W(s0,2) = —v(ylz — zo* +97") + ulso, z0)

< —v|z — xo| + u(so, o) < ulsg, ).

Hence by virtue of part (ii) of Lemma 5.4 we get

u(t,xg) > —v[yki(so — t) + ’y_l] — Ka(sg —t) + u(sg, xo)

for all t € [0,s0] and constant v > 0. Choosing here ¢t = tp = 0 and

v = (k1s9) "2 we get

u(0,xg) > —2umi/2 - 525(1)/2 + u(so, x0) > —N(v + 1)5(1]/2 + u(so, x0)

with N = max(2n}/2, K2), that completes the proof of the lemma. O

Theorem 6.2. Let Assumption 6.1 hold. Assume that o%, B¢, f% are
continuous in o € A and that

lg(s,z) — g(t,z)| < K|t — s|*?  for all t,s € [0,T] and z € R%
Then there is a constant N such that for u := v, w we have
lu(s, z) — u(t,z)| < N|t — s|*/?  for all t,s € [0,T] and x € R?

The constant N depends on K and T. Moreover, there is a constant g,
depending on K, such that if X > Ay, then N depends only on K.

Proof. We get this theorem immediately from the previous lemma by taking
into account Lemmas 5.1 and 5.3. (]

Now we formulate the corresponding results for the solutions v = v,
and w = w;, of the finite difference schemes (3.1)-(3.2) and (3.19)-(3.20),
respectively, when m® = 1 for all @ € A. The following lemma is proved in
[15] for u = v .

Lemma 6.3. Let 7,h < K. Let Assumption 3.1 hold and assume that for
Y= ay, b, ¢, f* and g for every k = £1,--- £dy and o € A we have
|Y| < K on Hr. Let (to,z0) € Hr and so € [to, T such that so —to < 1 and
(so — to)/T is an integer. Then (6.2) and (6.3) hold with v, and w,p in
place of v and w, respectively, where the constants v1, vo and u are defined by

(6.4) with vy}, and wyp, in place of v and w, respectively, and the constant
N depends on K and d;.
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Proof. We may assume that sy > 0 and also, by shifting the origin, that
to = 0, xg = 0 and hence that sy € (0,1) is an integer multiple of 7. Now we
can prove the required estimates in the same way as Lemma 6.1 is proved.
We need only use Corollary 3.10 with 7" := sp and ) := M, in place of
Lemma 5.4. U

Theorem 6.4. Let 7, h < K. Let Assumption 3.1 hold and assume that for
= /ag, by, ¢, f* and g, for every k = £1,--- £dy and o € A we have

|w(t7$) - ¢(3,y)\ < K(|l’ - y| + ‘S - t‘l/Q)a W(t:x” < K
for all s,t € [0,T] and x,y € R%. Then for u := Vrh, Wrp we have

lu(t,z) — u(s,z)| < N (]t—s\1/2~|—71/2) (6.9)

for all z € R* and s,t € [0, T), where N is a constant depending only on K,
di and T. There is a constant A\g > 0, depending only on K and dy, such
that if X > Ao then N depends only on K and d;.

Proof. For u = v, estimate (6.9) is proved in [15] (see Lemma 6.2 there).
We get (6.9) for u = w;p similarly, noticing that Assumptions 3.2 and 3.3
are obviously satisfied with m® = 1 and p = 1, and by using Lemma 6.3,
Theorems 4.3, 4.5 and Corollary 3.11. U

7. SHAKING AND SMOOTHING

The method of shaking is introduced in [13]. Following [15] we adapt it to
optimal stopping of controlled diffusion processes and to the corresponding
finite difference schemes.

For € € R we set

A=A x [0 x {z eRY: |z| <e}, A= A° x[0,00),
and identify o € A with (a,0,0) € A® and («,n,&) € A® with («,n,&,0) €
A®. Thus A C A° C A,

First we shake optimal stopping and control problems. Let o = o“(¢, z),
B =Bt x), f = f*¢t x) and ¢ = ¢*(t,z) be Borel functions of (a,t,z) €
A x R x RY, taking values in R?*% R? R and R, respectively, such that
¢ > A for a constant A > 0. Let g be a Borel function on R x R< with values
in R.

We make the following assumption.

Assumption 7.1. There is a constant K such that for ¢ = o%, 8¢, f%, g,
c® — ), for all « € A we have

6t 2) — (s, y)| < K(lw =yl +1s —t]?), [o(t,2) <K
for all 5,¢ € R and z,y € R
For v = (a,m, &, 1) € A® we set
ol(t,x) =c(t+na+¢§), B(ta)=p%"(1t+nz+9),
ct,z)=c*(t+nz+8)+r,
[t x) = f*(t+nx+E) +rg°(t, ), (7.1)
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for all (t,7) € R x R, where

g°(t,x) == sup  sup |g(t+n,z+). (7.2)
nel-e2,0] €eR% j¢|<e

Let A° be the set of A®-valued progressively measurable processes (7)¢>0.
Set A° = U;’f’:lgli, where 215 is the set of progressively measurable processes
(74)¢>0 with values in A5 = A° x [0, n].

Shaking the optimal reward w given by (2.7) means that we consider
w = w(s,x) defined by

w(s,x) = sup sup w7 (s, x),
YEA® T€T(T—s)

where

.
w7 (s,z) = K], [/ (s +t,xp)e Prdt + g°(s + 7,2, )e ¥7
0

t
pr = Sotv,s,x = / cr (S +r, az;f’s’x) dr.
0
Notice that if Assumption 7.1 holds, then by virtue of Theorem 2.1

w® = sup v = lim wy,
’YEQ_[E n—o0

where

T—s
v (s,x) =E], [/ (s +t,z)e ?tdt + g° (T, xp_s)e” $72
0

&€

n = sup v’. (7.3)
yeA;,

w

Lemma 7.1. Let Assumption 7.1 hold. Then there is a constant N such
that

|w® —w| < Ne on Hr. (7.4)

In addition to Assumption 7.1 assume that c®, 8¢ and f¢ are continuous
in o € A. Then there is a constant N such that

| (t,2) — w* (s, 9)| < Nz —y| + |t — 5|"/?) (7.5)

for s,t € [0,T], x,y € R?. The constant N in the above estimates depends
only on K and T'. Moreover, there is a constant Ay, depending only on K
such that N is independent of T if A > Ag.

Proof. Applying Lemma 5.3 and Theorem 6.2 we immediately get estimate
(7.5). By using the inequality

by

|a1€7 — a2€7b2’ < |a1 — (12] + ]al —l—CLgHbl — bg’,

for aj,as € R and by, by € Ry, for fixed (s,2) € Hp, a € A, 7 € T(T — 5)
and v = (a,n,§) € A° we have

|lw? (s, ) —w*" (s,2)| < No(I1 + I2),
where

T—s
I = E/ e M1+ £)(|e] + [ — 205)) d
0
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T
< e/ e Mt 4+1)dt 4+ 3E sup e~ AV z) st — g7
0 t<T—s

-
I = Ee (|| + |25 — z2%%]) + Ee_’\T/ (le| + |5 — 22%|) dt
0

<Oe] 428 sup eV o)
t<T—s

and Ny is a constant depending only on K. By It6’s formula we get

t
_ 2 _ 2
e 2K +1)t|xz,57$ _x?c,s,a:|2 < No/ e 2K+ D)r 2 g my < ngz my,
0

where m is a local martingale and N; is a constant depending only on K.
Hence
2
Ee—2(K —i—l)p‘xz,s,x . xzz,s,:z:|2 < N1€2

for stopping times p, that by virtue of Lemma 3.2 from [5] yields
Mg — 1) < 3/ Nilel,

Consequently, (7.4) holds with a constant N depending only on K and T,
and if A\ > K2 + 2 then N is independent of T. O

E sup e~ (K1

t<T—s

Now we shake the finite difference problem (3.19)-(3.20) when m® =1 for
all @« € A. We keep the notation of Section 3 and Assumption 3.1 in force.
Moreover we make the following assumption.

Assumption 7.2. For ¢ := /af, by, f* g,c® — X\, for « € A and k =
+1,...,+d; we have

[t )| < K, [t ) = d(s,9)| < K(Jo—y|+]s —t]"?)
for all s, € R and z,y € R%

Shaking the problem

max([sup 02 u 4+ L§u + f*, g —u] =0 on Hr, (7.6)
acA
w(T,z) = g(T,z) for x € RY (7.7)
means that we consider the problem
max[sup 62 u+ Lju+ f7,9°—u] =0 (7.8)
yEA®
uw(T,z) = ¢°(T,z) for z € RY, (7.9)

where ¢° is defined as in (7.2) and for v = (a, &,n,7) € A®
LZ = aZAh,Ek + bgéh,gk -,
¢” and f7 are defined as in (7.1), and
al(t,x) = af(t+n,x+&), bl(t,x)=bi(t+nz+¢), teRzeRY

for k= =+1,...,+xd;.
By virtue of Theorem 3.4, if Assumptions 3.1 and 7.2 hold then (7.6)-(7.7)
and (7.8)-(7.9) have a unique bounded solution w.j and w: ,, respectively.



33 SECTION 7

Lemma 7.2. Let Assumptions 3.1 and 7.2 hold. Then
WS, —wrnl < Nole|  on H, (7.10)

with a constant Ny depending only on K, di and T. Assume, additionally,
7,h < K. Then

WS p(s,2) = wlp(t,y)] < Nillz =yl + s = ¢]'% + V/7) (7.11)

for all s,t € [0,T] and x,y € R?, where Ny is a constant depending only on
K, dy and T. There is a constant Ao depending only on K and d; such that
if X\ > Ao then Ng and Ny are independent of T'.

Proof. We get estimate (7.10) by an obvious application of Theorem 4.5.
Estimate (7.11) follows immediately from Theorems 4.3 and 6.4. O

Let p € C°(R*!) be a fixed nonnegative function with support in
(=1,0) x By and unit integral, where B; denotes the open ball of radius
1 centered at the origin of R%. For € > 0 set

wOta) = [ w st =)/ o~ )/ dsdy

for t € [0,T] and = € RY, where w®(s,y) := w*(T,y) for s > T and y € R%.
Define similarly wi(fl) from w? ;.

Lemma 7.3. Let Assumption 7.1 hold. Then there is a constant Ny de-
pending only on K and T such that

lw*®) —w| < Noe  on Hr, (7.12)
& (t, ) — w (s, y)| < No(|lz —y| + [t — s['/?) (7.13)

for all s,t € [0,T] and x,y € R%. For integers n > 1
|DPw®)| + | D2 )| < Nye=2"+ o Hy, (7.14)

where N1 is a constant depending only onn, K, d andT. There is a constant
Ao such that if X > Ao then Ny and N1 are independent of T'. Moreover,

max[Dyw®® + sup(Lw®® + ), g —w*®] <0 on Hy. (7.15)
acA

Proof. Estimates (7.12)-(7.14) follow immediately from Lemma 7.1. To
(

prove (7.14) we use (7.3) and define wr, %) from we as w*®) is defined from

w®. Notice that for n — oo
Dywi® — w® | DPwEE 5 DBy

for multi-indices 3, by Lebesgue’s theorem on dominated convergence. By
Theorem 2.1 in [13] for each integer n > 1 we have

Dyws® + LOwi® + f* +r(gf —wi®) <0 on Hy

for all @« € A and r € [0,1]. Letting here n — oo and using that g < ¢°, we
get

Dyw®™® + L%FE) ¢ 4 (g —w®D) <0 on Hy, fora € A, r >0,
that is equivalent to (7.14). O
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Lemma 7.4. Let Assumptions 3.1 and 7.2 hold. Then, provided T > 2¢2,

max|[6L w T(h) + sup(Lthh + fY),9—w (5)] on Hp_g.2.  (7.16)

Assume, additionally, 7,h < K. Then
wS) —wenl < No(le| +v/7)  on Hr, (7.17)

s (¢, ) — w) (s,9)| < Nolle —yl + [s — ]2 + v/7), (7.18)

fort,s € [0, T] and x,y € R?, where Ny is a constant depending only on K,
di and T. Moreover, for n > 1 there is a constant N1 depending only on n,
K, dy, d and T, such that

Dy wily) | + DY) < Nie™ (el + v7) - on Hr. (7.19)

There is a constant Ao depending on K and dy such that if X > Ao then Ny
and N1 are independent of T .

Proof. Estimates (7.17)-(7.19) follow immediately from Lemma 7.2. To
prove (7.16) notice that from (7.8) we have for o € A

(67 + L)w @ (t — %5, 2 — ey) + f(t,x) <0,

g(t,z) —wE(t —e?s,2 —ey) <0
for (t,z) € Hp_oe2, s € [~1,0], |y| < 1. Multiplying these inequalities by
p(s,y) and then integrating them against ds dy we get (7.16). O

Proof of Theorem 2./:
Let € = (7 4+ h?)Y/%. Due to Theorems 6.2 and 6.4 it suffices to consider

the case T' > 22 and to prove (2.21) on Hg with S = T — 2¢2. Notice that
due to 7 < 1 we have 7 < €2. Hence for u := wa(a),wi(}? we have 57:_Fu =d0;u
on Hg, and by Taylor’s formula and using (7.14) and (7.19)

167w — Dyu| + sup | L% — Lul
acA

< No(rsup | D?u| + h? sup | D2u| + hsup |D?ul) < Nie
Hs Hs Hs
on Hg. Notice also that

sup (wrp — W),

Hp\Hg
< sup (\wﬂh—g|+\g—w[+]w—w€(€)]) < Nae, (7.20)
Hr\Hgs
sup (w —wl)
{S}xR4
< sup (Jw—gl+ g —wrp| + lwrp — w]) < Noe (7.21)
{S} xRd ’
Thus by (7.15) for « € A

57w 4 L8w® 4+ f* <0 and g— @) <0 on Hg (7.22)

wrp < w*®)  on Hy\ Hg, (7.23)



35 REFERENCES

for @) := w®) + N1(S — t)e + Noe. If X > 0 then (7.22) and (7.23) hold
also for w*(®) := ) + (N;A~! 4+ Ny)e. Similarly, by (7.16) for a € A

) <0 on Hg (7.24)

Dtu_)i(;) + Lawifi) + /<0 and g—w
w < wjf,f) on {S} x R? (7.25)

for u‘;i(,i) = wi(}i) + N1(S — t)e + Nae and also for wi(,j) = wi(,i) + (N A4
Ni)e when A > 0. By Corollary 3.10 from (7.22),—(7.23) we get wyp <
@), and by Lemma 5.4 from (7.24)-(7.25) we have w < wif,‘? on Hg.
Consequently, there is a constant N such that

wrp <w+ Ne, w<wyp,+ Ne on Hg,

that obviously yields (2.21) on Hg. Inspecting the constants Ny, N1 and Ny
we see that N depends only on K, d, dy and T', and that there is a constant
Ao, depending only on K and d; such that if A > Ag then IV is independent
of T.
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