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FIRST DERIVATIVES ESTIMATES FOR

FINITE-DIFFERENCE SCHEMES

ISTVÁN GYÖNGY AND NICOLAI KRYLOV

Abstract. We give sufficient conditions under which solutions of
discretized in space second-order parabolic and elliptic equations,
perhaps degenerate, admit estimates of the first derivatives in the
space variables independent of the mesh size.

1. Introduction

This is the first article out of a series of two devoted to estimating
space derivatives of solutions of discretized in space second-order par-
abolic and elliptic equations. We allow equations to degenerate and to
become just first-order equations. In the present article we only deal
with the first-order derivatives. In the second part of this project we
will prove higher-order derivatives estimates and apply them to show-
ing a method of accelerating finite-difference approximations to any
given rate for equations in the whole space.

Numerical approximations for linear and quasilinear partial differ-
ential equations is a rather old and well developed area. We refer the
reader to [2] and the references therein, following which one can track
down original papers by D. Aronson, L. Bers, R. Courant-K. Friedrichs-
H. Lewy, J. Douglas, F. John, O. Ladyzhenskaya, P. Lax, H. Levy, L.
Liusternik, I. Petrovskii, and many many others to which we only add
[8] and two more papers [4] and [9] where discrete methods are applied
to approximate stochastic partial differential equations.

A major difference of this article from all above mentioned ones is
that we focus on investigating the smoothness of approximating solu-
tions rather than on convergence only. For each point x ∈ R

d we move
the original grid in such a way that x becomes a grid point. This allows
us to define the approximate solution in all of R

d rather than only on
the grid and we investigate how smooth the approximating solution
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2 I. GYÖNGY AND N. KRYLOV

is with respect to x. We estimate true derivatives rather than their
difference approximations.

Estimating the sup norms of the first-order derivatives for solutions
of finite-difference schemes for linear and fully nonlinear second-order
degenerate equations plays a major role in estimating the rate of con-
vergence of approximating solutions to the true solution in the sup
norm. The most general results for fully nonlinear equations concern-
ing the rates can be found in [3] and in the references therein. A re-
cent development in the issue of estimating the Lipschitz constant and
second-order differences for approximating solutions for fully nonlinear
equations without applications to estimating the rate of convergence
is presented in [6]. Before, the Lipschitz constants and higher order
derivatives estimates were obtained in [2] for time-space discretization
of linear degenerate parabolic equations and in [1] for fully nonlinear
equations. They are also applied to estimating the rate of conver-
gence. In a sense the present article is close to [2]. However, here we
only deal with the first-order derivatives estimates and for equations
discretized only in the space variable. We introduce a new type of suf-
ficient conditions for obtaining the estimates (see Assumption 2.3 and
the discussion in Section 5). These conditions are much weaker and
more detailed than the corresponding ones in [2]. Our method is also
somewhat different. Instead of considering just the sum of squares of
the difference increments along the mesh we add to it the square of the
full gradient with a small constant factor. This allows us to estimate
the gradient.

In this connection it is worth noting that such an estimate for finite-
differences approximations of the first-order directional derivatives in
x is claimed in Theorem 4.1 of [2] under some conditions, which are
always satisfied if the equation is uniformly nondegenerate even if c
(see (2.2)) is small. However, in this case, actually, the result of The-
orem 4.1 of [2] is only proved for the derivatives along the mesh. This
is rather harmless if the vectors on the mesh span the whole space,
but excludes the cases when the mesh lies in a subspace, which hap-
pens, for instance, if we are dealing with, say uniformly nondegenerate
equations whose coefficients depend on a parameter and we want to
estimate the the finite-differences of their solutions with respect to the
parameter by considering it as just another space variable. In that case
no second-order derivatives with respect to the parameter enters the
limit equation, the assumption that it is uniformly nondegenerate with
respect to the original space variables does not help, and we need to
have c be large in order to rely on Theorem 4.1 of [2]. Our results are
free from this flaw, see Remarks 5.3 and 6.5.
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To understand faster the method and the results of the article, we ad-
vise the reader concentrate only on the parabolic case and assume that
the limit equation is uniformly nondegenerate. Then apart from the
Lipschitz continuity nothing else (see Remarks 2.1 and 2.3) is required
for Theorem 2.1 to hold.

For the general equations our conditions (see Remarks 6.2 and 6.6)
capture the main features of the corresponding conditions known from
the theory of PDE. Namely, roughly speaking, we need the first-order
derivatives in any direction along the mesh of the coefficients to be
dominated either by the diffusion coefficients along the same direction
or by c or else by the drift term if it is sufficiently “monotone”. It is
worth noting that along the way we discover the necessity of the dif-
fusion coefficients to have a special form and the usefulness of adding
a diffusion term with a coefficient proportional to the mesh step into
approximating equation. This reminds the method of artificial diffu-
sion, although, as far as we understand, the artificial diffusion is usually
added to the original differential equation.

Of course, in the same way as in [2], the results of the present article
lead to the rate of convergence of order h1/2 of approximating solutions
to the true solution. However, for brevity we do not say more about
this issue only adding that in general our finite-difference equations
need not be related in any way to a partial differential equation.

Our main results are collected in Section 2, which also contains the
proofs of all of them but Theorem 2.1, which is proved in Section
3. In Section 2 we also state, in a special case, without proof one of
the main results of the continuation of the present paper. Section 4
contains a discussion of our assumptions concerning the structure of the
finite-difference equations under consideration. The point is that our
equations do not contain mixed second-order differences and in Section
4 we explain that this is “almost” the most interesting case. The final
Sections 5 and 6 are devoted to a rather long and detailed discussion
of the somewhat formally stated Assumption 2.3 and showing that it
is natural in many cases alluded to above.

2. Formulation of the main results

We take some numbers h, T ∈ (0,∞) and in a cylindrical domain
consider the integral equation

u(t, x) = g(x) +

∫ t

0

(

Lu(s, x) + f(s, x)
)

ds (2.1)

for u, where g(x) and f(s, x) are given real-valued Borel functions of
x = (x1, ..., xd) ∈ R

d and (s, x) ∈ HT := [0, T ] × R
d, respectively, and
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L is a linear operator given by

Lϕ(t, x) = Lhϕ(t, x) = L0ϕ(t, x) − c(t, x)ϕ(x),

L0ϕ(t, x) = L0
hϕ(t, x) =

1

h

∑

λ∈Λ1

qλ(t, x)δλϕ(x) +
∑

λ∈Λ1

pλ(t, x)δλϕ(x),

(2.2)
for functions ϕ on R

d. Here Λ1 is a finite subset of R
d such that 0 6∈ Λ1,

pλ(t, x), qλ(t, x) are real-valued functions of (t, x) ∈ HT given for each
λ ∈ Λ1, and

δλϕ(x) = δh,λϕ(x) =
1

h
(ϕ(x+ hλ) − ϕ(x)), λ ∈ Λ1.

Let m ≥ 0 be an integer and letK1 ∈ [1,∞) be a constant. Introduce

χλ = χh,λ := qλ + hpλ.

We make the following assumptions.

Assumption 2.1. The functions p, q, c, f , and g and their derivatives
in x up to order m are bounded on HT and continuous in x.

Assumption 2.2. For all (t, x) ∈ HT and λ ∈ Λ1,

χλ(t, x) ≥ 0.

There exists a constant c0 > 0 such that c ≥ c0.

Remark 2.1. The above assumption: c ≥ c0 > 0, is almost irrelevant
if we only consider (2.1) on a finite time interval. Indeed, if c is just
bounded, say |c| ≤ C = const, by introducing a new function v(t, x) =
u(t, x)e−2Ct we will have an equation for v similar to (2.1) with L0v −
(c + 2C)v and fe−2Ct in place of Lu and f , respectively. Now for the
new c we have c+ 2C ≥ C.

Remark 2.2. Introduce the following symmetry condition:

(S) We have Λ1 = −Λ1 and qλ = q−λ on Λ1.

Obviously under condition (S) we have

h−1
∑

λ∈Λ1

qλ(t, x)δλϕ(x) = (1/2)
∑

λ∈Λ1

qλ(t, x)∆λϕ(x),

where
∆λϕ(x) = h−2(ϕ(x+ hλ) − 2ϕ(x) + ϕ(x− hλ)).

Take a function τλ defined on Λ1 taking values in [0, 1], and for λ ∈ Λ1

introduce the operators

Tλϕ(x) = Th,λϕ(x) = ϕ(x+ hλ), δ̄λ = τλh
−1(Tλ − 1).
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It is worth noticing that in most applications we take τλ ≡ 1 on Λ1.
However, there are cases (see Remark 5.3) in which it is useful to have
some flexibility in changing τλ.

For uniformity of notation we also introduce Λ2 as the set of fixed
distinct vectors ℓ1, ..., ℓd none of which is in Λ1 and define

δ̄ℓi = δ̄h,ℓi = τ0Di := τ0∂/∂xi, Tℓi = 1, Λ = Λ1 ∪ Λ2,

where τ0 ∈ [0, 1] is a fixed constant. Observe that we allow τ to be zero
in order to cover some results from [2].

For µ ∈ Λ we set

Qϕ = h−1
∑

λ∈Λ1

qλδλϕ, Qµϕ = h−1
∑

λ∈Λ1

(δ̄µqλ)δλϕ,

Pϕ =
∑

λ∈Λ1

pλδλϕ, Pµϕ =
∑

λ∈Λ1

(δ̄µpλ)δλϕ,

L0
µ = Qµ + Pµ.

Below B(Rd) is the set of bounded Borel functions on R
d and K

is the set of bounded operators K = K(t) mapping B(Rd) into itself
preserving the cone of nonnegative functions and satisfying K1 ≤ 1.
We will often make use of the simple fact that for any K1,K2 ∈ K and
nonnegative functions α, β on R

d,

αK1 + βK2 = (α + β)K3

with

K3 := α
α+β

K1 + β
α+β

K2 ∈ K,
(

0
0

:= 0
)

.

Assumption 2.3. We have m ≥ 1 and there exist a constant δ ∈ (0, 1]
and an operator K = Kh ∈ K, such that

2
∑

λ∈Λ

(δ̄λϕ)L0
λTλϕ ≤

∑

λ∈Λ

Q(δ̄λϕ) +K1Q(ϕ) + 2(1 − δ)cK
(

∑

λ∈Λ

|δ̄λϕ|2
)

(2.3)
on HT for all smooth functions ϕ, where

Q(ϕ) =
∑

µ∈Λ1

χµ|δµϕ|2.

It is worth noting that Assumption 2.3 is automatically satisfied if
qλ and pλ are independent of x. There are a few more cases when it is
satisfied as well. We discuss some of them here and in Section 5 only
mentioning right away three situations.
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Remark 2.3. Let Assumptions 2.1 and 2.2 hold with m ≥ 1. Assume
that Λ1 = −Λ1, Dq−λ = Dqλ and qλ ≥ κ for all λ ∈ Λ1, where κ > 0
is some constant. Then Assumption 2.3 is satisfied as well with δ as
close to 1 as we wish, with τλ ≡ 1 on Λ1, appropriate τ0 > 0, K1, unit
K, and all small h.

We will prove this remark at the end of this section. In Remark 6.4
we show that if we have m ≥ 2 and the symmetry condition (S) is
satisfied, then in the above remark the condition κ > 0 can be replaced
with κ = 0, provided that c0 is large enough (this time we need not
assume that h is small). In Remark 6.4 we also show that the condition
m ≥ 2 can be replaced with m = 1 provided that

√
qλ are Lipschitz

continuous in x with a constant independent of t. In that case again
Assumption 2.3 is satisfied for δ = 1/10 and appropriate K1, τ0 > 0,
provided that c0 is large enough.

As we have seen in Remark 2.1, the condition that c0 be large is,
actually, harmless as long as we are concerned with equations on a
finite time interval.

Fix a domain Q ⊂ R
d and introduce

Qo = {x ∈ Q : x+ λh ∈ Q ∀λ ∈ Λ1}, δQ = Q \Qo,

QT = [0, T ] ×Q, Q0
T = [0, T ] ×Q0, δxQT = [0, T ] × δQ,

δ′QT = ({0} ×Q) ∪ δxQT .

Our first main result is formulated as follows, where by Du we mean
the gradient of u with respect to x. Observe that the main case that
Q = R

d is not excluded and in this case assumption (ii) of Theorem
2.1 below can be checked on the basis of Theorem 2.3. A typical and
the most reasonable application of Theorem 2.1 when Q is a proper
domain is the case that τ0 = 0.

Theorem 2.1. (i) Let Assumptions 2.1 through 2.3 be satisfied and let
u be a bounded function on HT satisfying (2.1) in QT .

(ii) Assume that u and Du are bounded and continuous in QT .
Then in QT we have

|u| + τ0|Du|+ U ≤ N(F1 + sup
δ′QT

(|u| + τ0|Du| + U)), (2.4)

where
U =

(

∑

λ∈Λ1

|δ̄λu|2
)1/2

, F1 = sup
HT

(|f | + |Df |),

and N depends only on δ, c0, K1, supHT
|Dc|, and

|Λ1|2 :=
∑

λ∈Λ1

|τλλ|2.
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Remark 2.4. We will see from the proof that, if τ0 = 0, then Theorem
2.1 holds without the assumption that Du exists let alone continuous.

In case Q = R
d assumption (ii) of the following result is often satis-

fied due to Theorem 2.3.
It is worth noting that if Q = R

d, then δQ = ∅ and for any function
ϕ we set

sup
∅

ϕ := 0.

Theorem 2.2. (i) Let Assumptions 2.1 through 2.3 be satisfied. Sup-
pose that qλ, pλ, c, and f are independent of t.

(ii) Assume that in R
d there exists a bounded function u = u(x)

which is bounded and continuous in Q along with Du and such that

Lu + f = 0 in Q.

Then in Q we have

|u| + τ0|Du|+ U ≤ N(F1 + sup
δQ

(|u| + τ0|Du|+ U),

where U is the same as in Theorem 2.1,

F1 = sup
Rd

(|f | + |Df |),

and N depends only on δ, c0, K1, sup
Rd |Dc|, and |Λ1|.

Proof. Take ν = c0/2, so that c− ν ≥ c0/2, and observe that in QT

the function v(t, x) := u(x)eνt satisfies

∂

∂t
v = L0v − (c− ν)v + eνtf. (2.5)

By Theorem 2.1 for x ∈ Q and obvious meaning of V we have

eνT (|u(x)| + τ0|Du(x)| + U(x)) = |v(T, x)| + τ0|Dv(T, x)| + V (T, x)

≤ NeνT [F1 + sup
δQ

(|u| + τ0|Du| + U)] +N sup
Q

(|v| + τ0|Dv| + V )(0, y).

By multiplying the extreme terms by e−νT and letting T → ∞, we get
the result. The theorem is proved.

Remark 2.5. It is worth noticing that in the above theorems it suffices
that (2.3) be satisfied only in Qo

T .

Theorem 2.3. (i) Let Assumption 2.1 be satisfied. Then there exists
a unique bounded solution u of (2.1) in HT . Moreover, all derivatives
in x of u of order ≤ m are bounded and continuous in HT .
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(ii) Let Assumptions 2.1 through 2.3 be satisfied. Suppose that qλ,
pλ, c, and f are independent of t. Then there exists a unique bounded
solution u = u(x) of the equation

Lu+ f = 0 in R
d. (2.6)

Moreover, u and Du are bounded and continuous in R
d.

Proof. (i) Let Cm be the space of functions on R
d which are bounded

and continuous along with all derivatives up to order m. We endow
Cm with an appropriate sup norm and in so obtained Banach space,
denoted again by Cm, consider the equation

u(t) = g +

∫ t

0

(A(s)u(s) + f(s)) ds,

where f(s) = f(s, ·) and A(s) are operators in Cm given by

A(s)ϕ(x) = h−1
∑

λ∈Λ1

χλ(s, x)δλϕ(x) − c(s, x)ϕ(x).

Owing to Assumption 2.1

‖A(s)ϕ‖Cm ≤ N‖ϕ‖Cm

with N independent of s and ϕ. Hence, our result is a direct conse-
quence of the general theorem about ordinary differential equations in
Banach spaces (for proving uniqueness we take m = 0).

(ii) By assertion (i) for any T there exists a unique bounded and
continuous in HT solution v(t, x) of the problem

∂

∂t
v(t, x) = (L+ ν)v(t, x) t > 0, v(0, x) = f(x),

where ν = c0/2. In addition, Dv is bounded and continuous in HT for
each T . By Theorem 2.1, v and Dv are bounded and continuous in
H∞. Define

u(x) =

∫ ∞

0

e−νtv(t, x) dt.

Then the rules of differentiating under the integral sign and the dom-
inated convergence theorem show that u and Du are bounded and
continuous. Furthermore, integrating by parts, we see that

Lu(x) =

∫ ∞

0

e−νtLv(t, x) dt =

∫ ∞

0

e−νt
[ ∂

∂t
v(t, x)−νv(t, x)

]

dt = −f(x),

so that u satisfies (2.6).
To prove uniqueness of bounded solutions of (2.6) we use Lemma

3.1 which is proved in Section 3. If w is the difference of two bounded
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solutions of (2.6), then v(t, x) := w(x)ec0t satisfies (2.5) with ν = c0
and f = 0. Since c− ν ≥ 0, by Lemma 3.1

v(t, x) ≤ sup
Rd

v+(0, y) = sup
Rd

w+, w(x) ≤ e−c0t sup
Rd

w+

and by letting t→ ∞ we obtain w ≤ 0. The same inequality holds for
−w, so that w = 0, which proves uniqueness and finishes the proof of
the theorem.

Remark 2.6. Let Assumption 2.1 hold. Then it is easy to see that for
the bounded solution u of (2.1) in HT for each fixed h1 > 0

sup
(t,x)∈HT

|u(t, x)| ≤ N sup
(t,x)∈HT

|f(t, x)|,

holds for all h > h1, where N is a constant independent of h.

Remark 2.7. A simple inspection of their proof shows that the above
theorems remain valid if K

(
∑

λ∈Λ |δ̄λϕ|2
)

in Assumption 2.3 is replaced
by

sup
x

∑

λ∈Λ

|δ̄λϕ|2.

We do not know how much can be gained by such weakening of As-
sumption 2.3. On the other hand, in a subsequent article we will see
an advantage of using operators K ∈ K.

Now we state without proof one of the main results of the forth-
coming paper [5]. As we know from Remark 2.3 and Theorem 2.3 (ii),
under the conditions of Theorem 2.4 (see below), for each h > 0, there
exists a unique bounded solution uh of

Lhu+ f = 0 in R
d.

For a fixed integer k ≥ 0 set

vh =
k

∑

j=0

bju2−jh,

where
(b0, b1, ..., bk) := (1, 0, 0, ..., 0)V −1

and V −1 is the inverse of the Vandermonde matrix with entries

V ij := 2−(i−1)(j−1), i, j = 1, ..., k + 1.

Consider also the equation

Lv + f = 0 in R
d (2.7)

with
L := aijDiDj + biDi − c, (2.8)



10 I. GYÖNGY AND N. KRYLOV

aij(x) := (1/2)
∑

λ∈Λ1

qλ(x)λiλj , bi :=
∑

λ∈Λ1

pλ(x)λi.

One of our main theorems from [5] in a special case reads as follows.

Theorem 2.4. Let m ≥ 3(k+1) for some integer k ≥ 0. Let Assump-
tions 2.1, 2.2, and the symmetry assumption (S) be satisfied. Also
assume that qλ(x) ≥ κ for all λ ∈ Λ1, x ∈ R

d for some constant κ > 0.
Then there is a unique bounded solution v to (2.7) and

|vh(x) − v(x)| ≤ Nhk

for all x ∈ R
d, h ∈ (0, h0], and every h0 > 0, where N is a constant

depending only on h0, k, m, κ, c0, |Λ1|, and on the sup norms of the
derivatives of qλ, pλ, c, and f up to order m.

We obtain this result in [5] by showing that the derivatives of vh in
h up to order k+ 1 are bounded functions of h ∈ (0, h0], which we will
prove via our estimates on the derivatives of vh in x. The reader may
wonder why we do not choose the straightforward way of estimating
the derivatives of vh in h via an ‘explicit’ formula for v. To test this
approach we suggest the reader try to estimate dvh/dh directly for

vh(x) = h2

2+h2 f(x) +

∞
∑

n=1

h2( 2
2+h2 )

n+1Ef(x+

n
∑

i=1

hεi),

where εi are independent random variables taking 1 and −1 with prob-
ability 1/2, without noticing that vh is the bounded solution of

1
h2 (u(x+ h) − 2u(x) + u(x− h)) − u(x) + f(x) = 0, x ∈ R.

We finish the section by proving the assertion in Remark 2.3. Clearly,

2
∑

λ∈Λ

(δ̄λϕ)L0
λTλϕ = I1 + I2,

with
I1 := 2

∑

λ∈Λ1

(δ̄λϕ)L0
λTλϕ, I2 := 2

∑

λ∈Λ2

(δ̄λϕ)L0
λϕ.

We take τλ ≡ 1 on Λ1 and notice that due to the symmetry of Λ1 and
the symmetry of Dqλ in λ

I1 = 2
∑

λ∈Λ1

(δλϕ)L0
λϕ+ 2h

∑

λ∈Λ1

(δλϕ)L0
λδλϕ

=
∑

λ,µ∈Λ1

(δλϕ)(δλqµ)∆µϕ+ 2
∑

λ,µ∈Λ1

(δλϕ)(δλpµ)δµϕ

+2
∑

λ,µ∈Λ1

(δλϕ)(δλχµ)δµδλϕ =: I
(1)
1 + I

(2)
1 + I

(3)
1 ,



FIRST DERIVATIVES ESTIMATES 11

I2 = I
(1)
2 + I

(2)
2 ,

where in the notation ξ = Dϕ/|Dϕ|, ψ(ξ) = ξiDiψ,

I
(1)
2 = τ 2

0

d
∑

j=1

∑

µ∈Λ1

(Djϕ)(Djqµ)∆µϕ = τ 2
0 |Dϕ|

∑

µ∈Λ1

qµ(ξ)∆µϕ,

I
(2)
2 = 2τ 2

0

d
∑

j=1

∑

µ∈Λ1

(Djϕ)(Djpµ)δµϕ = 2τ 2
0 |Dϕ|

∑

µ∈Λ1

pµ(ξ)δµϕ

By Young’s inequality, taking into account that χλ ≥ κ/2 > 0 for
sufficiently small h, and that c ≥ c0 > 0, we have

I
(j)
1 ≤ (1/3)

∑

λ∈Λ1

Q(δλϕ) +NQ(ϕ) for j = 1, 3, I
(2)
1 ≤ NQ(ϕ),

I
(1)
2 ≤ (1/3)

∑

µ∈Λ1

Q(δµϕ) + τ 2
0Nc

−1
0 c

∑

λ∈Λ2

|δλϕ|2,

I
(2)
2 ≤ τ 2

0Nc
−1
0 c

∑

λ∈Λ

|δλϕ|2,

where N is a constant depending only on κ, the number of elements
in Λ1 and on the supremum norm of the gradients of pλ and qλ in x.
Summing up these inequalities and taking τ0 > 0 sufficiently small we
get (2.3) with K1 = 2N , unit operator K, and with δ as close to 1 as
we wish.

3. Proof of Theorem 2.1

If Q = R
d, Theorem 2.3 (i) shows that equation (2.1) has a unique

bounded continuous solution u for which the partial derivatives in x ∈
R

d up to order m are bounded continuous functions of (t, x). However,
the bounds, which can be extracted from the proof of Theorem 2.3
for these derivatives depend on the parameters h and T . Our aim is
to show the existence of bounds, independent of h and T if m = 1
and in addition to Assumption 2.1, Assumptions 2.2 and 2.3 also hold.
We will obtain such estimates by making use of the following version
of the maximum principle. It is probably worth drawing the reader’s
attention to the fact that the assumption that c has certain sign is not
used in Lemma 3.1.

Lemma 3.1. Let Assumption 2.1 with m = 0 be satisfied and let χλ ≥ 0
for all λ ∈ Λ1. Let v be a bounded function on QT , such that v(·, x) is
measurable for any x ∈ Q and the partial derivative Dtv := ∂v(t, x)/∂t
exists in Qo

T . Let F (t) ≥ 0 be an integrable function on [0, T ], and let



12 I. GYÖNGY AND N. KRYLOV

C(t, x) ≥ 0 be a bounded function. Assume that for all (t, x) ∈ Qo
T we

have
Dtv ≤ Lv + Cv̄+ + F, (3.1)

where v̄(t) = sup{v(t, x) : x ∈ Q}.
Then in [0, T ] we have

v̄(t) ≤ G(t)eνt +

∫ t

0

F (s)eν(t−s) ds, (3.2)

where
ν := sup

Qo
T

(C − c), G(t) = sup
(s,y)∈δ′Qt

e−νsv+(s, y),

δ′Qt = ({0} ×Q) ∪ δxQt.

Proof. First assume that C = c = F = G = 0. In that case introduce
ṽ(t, x) = v(t, x)eNt, where

N = Nh = sup
QT

h−1
∑

λ∈Λ1

χλ.

Observe that v(t, x) = ṽ(t, x)e−Nt,

e−Nt(Dtṽ(t, x) −Nṽ(t, x)) ≤ e−NtLṽ(t, x),

Dtṽ(t, x) ≤ (L+N)ṽ(t, x)

in Q0
T , and in QT

ṽ(t, x) ≤ Jṽ(t, x) := IQ0

T

∫ t

0

(L+N)(IQT
ṽ)(s, x) ds.

Obviously, due to the choice of N and the assumption that χλ ≥ 0, if
u1 ≥ u2 on QT , then Ju1 ≥ Ju2 on QT . It follows that, ṽ ≤ Jkṽ for
any k.

Observe that for any bounded function f

sup
Q

|Jf(t, ·)| ≤ N ′

∫ t

0

sup
Q

|f(s, ·)| ds,

where N ′ is independent of f and t. It follows easily that for any
bounded function f we have Jkf → 0 uniformly on QT . Hence ṽ ≤ 0
and v ≤ 0 in QT .

Now we consider another particular case in which G = c = 0 and
C = const ≥ 0. Then observe that the function

w(t, x) =

∫ t

0

(Cv̄+ + F )(s) ds

satisfies
Dtw = Lw + Cv̄+ + F.
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Therefore v̂ := v − w satisfies Dtv̂ ≤ Lv̂. In addition v̂ ≤ 0 on δ′QT .
By the above, on QT we have v̂ ≤ 0, that is

v(t, x) ≤
∫ t

0

(Cv̄+ + F )(s) ds v̄+(t) ≤
∫ t

0

(Cv̄+ + F )(s) ds,

and (3.2) follows by Gronwall’s inequality and the fact that ν = C.
Now we allow c 6= 0 and variable C but still assume that G = 0. In

that case take a large constant M so that M > c and M + ν > 0 and
for v̂(t, x) = v(t, x)eMt write

e−Mt(Dtv̂(t, x) −Mv̂(t, x)) ≤ e−MtLv̂(t, x) + C(t, x)v̄+(t) + F (t).

Dropping obvious values of arguments and introducing

¯̂v(t) = sup
x∈Q

v̂(t, x) (= v̄eMt),

we find

Dtv̂ ≤ L0v̂ + (M − c)v̂ + C ¯̂v+ + eMtF ≤ L0v̂ + (M − c)¯̂v+

+C ¯̂v+ + eMtF ≤ L0v̂ + (M + ν)¯̂v+ + eMtF.

It follows by the above that

v̄(t)eMt ≤
∫ t

0

eMsF (s)e(M+ν)(t−s) ds,

which is equivalent to (3.2). By the way, notice that so far we have not
used the fact that C ≥ 0.

Now comes the general case in which we set

w(t, x) = v(t, x)e−νt − β, β = sup
(s,y)∈δ′QT

v+(s, y)e−νs.

Simple manipulations show that (3.1) becomes

Dtw ≤ L0w − c(w + β) − ν(w + β) + Ce−νtv̄+ + Fe−νt,

where

e−νtv̄+ ≤ w̄+ + β, w̄+(t) := sup
Q
w+(t, x)

and, owing to the assumption that C ≥ 0, the definition of ν, and the
fact that β ≥ 0,

Ce−νtv̄+ ≤ Cw̄+ + Cβ ≤ Cw̄+ + (c+ ν)β.

It follows that

Dtw ≤ L0w − (c+ ν)w + Cw̄+ + Fe−νt,
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Since w ≤ 0 on δ′QT and sup(C − (c+ ν)) = 0, by the above cases we
have for t ≤ T that

w̄(t) ≤
∫ t

0

F (s)e−νs ds,

v̄(t) ≤ eνt sup
(s,y)∈δ′QT

v+(s, x)e−νs + eνt

∫ t

0

F (s)e−νs ds. (3.3)

We can put here t = T and then, by using certain freedom in choosing
the end of the time interval, we can, actually, set T = t in (3.3). Then
we arrive at (3.2) for all t ≤ T . The lemma is proved.

Corollary 3.2. Under the conditions of Lemma 3.1 if ν < 0, then

v̄(t) ≤ sup
(s,y)∈δ′Qt

v+(s, y) + |ν|−1 sup
[0,t]

F.

Proof of Theorem 2.1. Introduce

V0 = u2, V1 =
∑

λ∈Λ

|δ̄λu|2, V̄k(t) = sup
x∈Q

Vk(t, x),

recall that F1 is introduced in the statement of Theorem 2.1 and set

G = sup
δ′QT

(|u| + τ0|Du| + U).

By Corollary 3.2 applied to u or −u from the assumption that c ≥ c0
we obtain that

V0 = |u|2 ≤ (G+ c−1
0 F1)

2.

Now we use the formula

δλ(ψϕ) = (δλψ)Tλϕ+ ψδλϕ = (δλψ)ϕ+ ψδλϕ+ h(δλψ)δλϕ, λ ∈ Λ1,

to get
L0(ϕ2) = 2ϕL0ϕ+ Q(ϕ).

In particular,

L0V1 = 2
∑

λ∈Λ

(δ̄λu)L
0δ̄λu+

∑

λ∈Λ

Q(δ̄λu).

We observe that
L0δ̄λu = δ̄λL

0u− L0
λTλu

if λ ∈ Λ, and in Qo
T

δ̄λL
0u = Dtδ̄λu+ cδ̄λu+ (δ̄λc)Tλu− δ̄λf.

Then in Qo
T we find

L0V1 −DtV1 − 2cV1 =
∑

λ∈Λ

Q(δ̄λu)
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+2
∑

λ∈Λ

(δ̄λu)((δ̄λc)Tλu− δ̄λf) − 2
∑

λ∈Λ

(δ̄λu)L
0
λTλu .

We use Assumption 2.3 to conclude

L0V1 −DtV1 − 2cV1 ≥ −K1Q(u) − 2(1 − δ)cV̄1 + I, (3.4)

where
I := 2

∑

λ∈Λ

(δ̄λu)((δ̄λc)Tλu− δ̄λf).

Notice that by Young’s inequality

2
∑

λ∈Λ

|(δ̄λu)((δ̄λc)Tλu| ≤ δ2V̄1 + V̄0

∑

λ∈Λ

(δ̄λc)
2,

where, for each λ ∈ Λ1,

δλc(t, x) = h−1

∫ h

0

λiDic(t, x+ λθ) dθ,

|δ̄λc(t, x)|2 ≤ |τλλ|2h−1

∫ h

0

|Dc(t, x+ λθ)|2 dθ ≤ |τλλ|2 sup
HT

|Dc|2,

so that
∑

λ∈Λ

(δ̄λc)
2 ≤ sup

HT

|Dc|2(1 + |Λ1|2),

2
∑

λ∈Λ

|(δ̄λu)((δ̄λc)Tλu| ≤ δ2V̄1 +NV̄0 ≤ δ2V̄1 +N(F 2
1 +G2).

Similarly,

2
∑

λ∈Λ

|(δ̄λu)δ̄λf | ≤ δ2V̄1 +NF 2
1 .

Hence (3.4) yields

L0V1−DtV1−2cV1 ≥ −2(δ2 +c−δc)V̄1−K1Q(u)−N(F 2
1 +G2). (3.5)

Next,

L0(u2) − 2cu2 −Dt(u
2) = 2u(L0u− cu−Dtu) + Q(u)

= −2uf + Q(u) ≥ −N(F 2
1 +G2) + Q(u).

This, (3.5), and the fact that δ2 + c− δc ≥ 0 show that for

W := V1 +K1u
2, W̄ = sup

Q
W (·, x),

we have

L0
hW − 2cW −DtW ≥ −2(δ2 + c− δc)W̄ −N(F 2

1 +G2).

Now we want to use Corollary 3.2. Set

ν := sup
Qo

T

[2(δ2 + c− δc) − 2c] = 2δ sup
Qo

T

(δ − c) ≤ 2δ(δ − c0).
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If
ν ≤ −δc0 (3.6)

then by Corollary 3.2 we get W ≤ N(F 2
1 +G2), which obviously implies

(2.4). Finally, observe that, if Assumption 2.3 is satisfied with a δ =
δ0 > 0, then it is also satisfied with any δ ∈ (0, δ0] and the same K1,K.
Hence by modifying δ if necessary, so that δ ≤ c0/2, we satisfy (3.6)
thus proving the theorem.

The following remark will be used in a subsequent paper when we
will be estimating higher order derivatives of u.

Remark 3.1. Suppose that, instead of Assumption 2.3, Assumption 5.1
(see Section 5) is satisfied. Then a simple inspection of the above proof
shows that in place of (3.5) we would have

L0V1 −DtV1 − 2cV1 ≥ −2(δ2 + c− δc)V̄1

+δ
∑

λ∈Λ

Q(δ̄λu) −K1Q(u) −N(F 2
1 +G2).

4. Some issues related to the convergence Lh → L
There is a natural question about the relation of the finite-difference

operators L = Lh with partial-differential operators. We certainly want
to apply the results of the present article to investigating approximate
solutions of elliptic and parabolic second-order equations. Then, given
an elliptic operator

L = aijDiDj + biDi

with variable coefficients, a natural question arises as to whether it is
possible to construct operators Lh such that they converge to L and
our assumptions are satisfied.

This question has little to do with the dependence of aij and bi on t
and we assume that

aij = aij(x), bi = bi(x),

and a and b are bounded and continuous along with their first-order
derivatives.

It is not hard to see that under the symmetry assumption (S) the
operators Lh approximate L with

aij(x) = (1/2)
∑

λ∈Λ1

qλ(x)λiλj, (4.1)

bi =
∑

λ∈Λ1

pλ(x)λi,

in the sense that Lhϕ→ Lϕ as h ↓ 0 for all smooth ϕ.
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A few basic examples describing conditions on qλ, which guarantee
that our assumptions are satisfied, are given in Remarks 2.3, 6.4, and
6.11. However, how this can be transformed into some conditions in
terms of aij is not clear right away.

By the way, it is shown in [1] that if L admits finite-difference ap-
proximations constructed by contracting a fixed mesh and the approxi-
mating operators satisfy the maximum principle, then they always have
the form (2.2) with Λ1 = −Λ1 and qλ = q−λ. This form is nonunique
and the issue of choosing appropriate qλ and pλ arises.

It is proved in [7] that, if the matrix a is uniformly nondegenerate,
then there always exist Λ1 and qλ possessing property (S), such that
(4.1) holds, qλ are as smooth as a is, and qλ ≥ κ > 0, where κ is a
constant.

It is also proved in [7] that if all values of the matrix a lie in a closed
convex polyhedron in the set of nonnegative matrices and a(x) has
two bounded derivatives, then again there exist Λ1 and qλ possessing
property (S), such that (4.1) holds, and

√
qλ are Lipschitz continuous.

In these two cases the issue of satisfying our assumptions reduces to
representing b(x) appropriately.

There is a way to do so, used quite often in probabilistic literature,
by adding, if necessary, the set Γ = {±e1, ...,±ed} to Λ1, where {ei} is
the standard basis in R

d, defining

p±ei = (bi)±,

(t± = (1/2)(|t| ± t)), and defining pλ = 0 on the remaining part of
Γ ∪ Λ1. There is a certain inconvenience in this approximation, which
we discuss in the following example along with a way to avoid it by
using different pλ’s.

Example 4.1. For d = 1 consider the operator

Lu = bDu,

where b = b(x) is a smooth function bounded along with its derivatives.
If b changes sign, then, since in our setting χλ = hpλ is required to

be ≥ 0, we have to take Λ1 consisting of at least two points {λ1, λ3}.
The most natural choice is Λ1 = {±1} and

Lhϕ(x) = Phϕ(x) = b+(x)δh,1ϕ(x) + b−(x)δh,−1ϕ(x).

Observe that on smooth ϕ we have Lhϕ→ bDϕ as h ↓ 0.
Notice that if b changes sign, p±1 = b± are Lipschitz continuous

but need not be continuously differentiable unless we impose a severe
restriction on the behavior of b near the points where it vanishes. Ac-
tually, in this article the assumption that qλ and pλ are smooth can be
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replaced with the assumption that they are Lipschitz continuous and
then require (2.3) be satisfied for each t almost everywhere with re-
spect to x rather than for all x. However, in such case it is unrealistic
to assume in Theorem 2.1 that u is continuously differentiable in x.
Generally, u will be only Lipschitz continuous in x and estimate (2.4)
will hold almost everywhere rather that everywhere in QT . More seri-
ous trouble occurs when we want to estimate higher order derivatives,
which we will be concerned with in a subsequent article. Then we need
pλ to have higher order derivatives and this excludes many interesting
cases.

On the other hand, the reader may like to check that with the above
p condition (2.3) is satisfied (a.e.) with any δ ∈ (0, 1) as long as b is a
decreasing function, which agrees well with the limit case of differential
equations.

One can construct a different approximation of bDϕ for which pλ are
as smooth as b. Indeed, take a constant θ such that |b|+ 1 ≤ θ and set

p1 = b+ θ, p−1 = θ.

Then p±1 ≥ 1, again p1δh,1ϕ + p−1δh,−1ϕ → bDϕ on smooth ϕ, and
p±1 are as smooth as b. This method is somewhat close to adding
an artificial diffusion. However, we add it only to the finite-difference
approximation and not to the operator bD.

Now consider the operator

Lu = (1/2)aD2 + bDu,

where we suppose that a(x) ≥ 0 and r :=
√
a and b are one time

differentiable with derivatives uniformly continuous on R. Again take
Λ1 = {±1} an construct pλ as in Remark 6.6 and define qλ = a and
rλ = r =

√
a.

It is shown in Remark 6.7 that for h sufficiently small, Assumption
2.3 holds (perhaps with different δ and K1), if

14(r′)2 + b′ ≤ (1 − δ)c+K1a.

This condition describes what we need from L in the one-dimensional
case and it looks quite satisfactory. On the other hand, it is yet stronger
than the common assumption

|r′|2 + b′ ≤ (1 − δ)c+K1a,

which along with other standard assumptions guarantee that solutions
of Dtu = Lu − cu + f admit estimates of the first derivatives in x
independent of the time interval.
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5. Discussion of Assumption 2.3

In a subsequent paper about higher order derivatives estimates we
will impose the following assumption, which trivially implies Assump-
tion 2.3:

Assumption 5.1. We have m ≥ 1 and there exist a constant δ ∈ (0, 1]
and an operator K = Kh ∈ K, such that

2m
∑

λ∈Λ

(δ̄λϕ)L0
λTλϕ ≤ (1 − δ)

∑

λ∈Λ

Q(δ̄λϕ)

+K1Q(ϕ) + 2(1 − δ)cK
(

∑

λ∈Λ

|δ̄λϕ|2
)

(5.1)

on HT for all smooth functions ϕ.

In this section we are going to discuss Assumptions 2.3 and 5.1. Here
we suppose that only Assumptions 2.1 and 2.2 are satisfied.

Remark 5.1. Condition (5.1) involves a mixture of finite differences and
derivatives. It is reasonable to split it into two parts, the combination
of which turns out to imply (5.1): For all smooth ϕ we have on HT

that

2m
∑

λ∈Λ1

(δ̄λϕ)L0
λTλϕ ≤ (1 − δ)

∑

λ∈Λ1

Q(δ̄λϕ)

+K1Q(ϕ) + 2(1 − δ)cK
(

∑

λ∈Λ1

|δ̄λϕ|2
)

, (5.2)

that is (5.1) holds with τ0 = 0 and

2m

d
∑

i=1

(Diϕ)L0
iϕ ≤ K1

∑

λ∈Λ1

Q(δ̄λϕ)

+ (1/2)δc|Dϕ|2 +K1K(
∑

λ∈Λ1

|δ̄λϕ|2), (5.3)

where and below by K we denote generic operators (perhaps, depending
on h) of class K and

L0
iϕ =

∑

λ∈Λ1

(h−1Diqλ +Dipλ)δλϕ.

To show that (5.2) combined with (5.3) imply (5.1) if we choose small
τ0 > 0 appropriately, observe that in terms of δ̄ℓi

= τ0Di equation (5.3)
means that

2m
∑

λ∈Λ2

(δ̄λϕ)L0
λϕ ≤ K1τ

2
0

∑

λ∈Λ1

Q(δ̄λϕ)
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+ (1/2)δc
∑

λ∈Λ2

|δ̄λϕ|2 +K1τ
2
0K

(

∑

λ∈Λ1

|δ̄λϕ|2
)

. (5.4)

By choosing τ0 so that K1τ
2
0 ≤ δ/2 and K1τ

2
0 ≤ (1/2)δc0, slightly re-

defining K to absorb the second term on the right in (5.4), and summing
up (5.4) and (5.2) we come to an inequality which is even somewhat
stronger than (5.1) if δ there is replaced with δ/2, which is irrelevant.

Remark 5.2. Assume that the symmetry condition (S) holds, qλ ≥ 0,
pλ ≥ 0, and rλ :=

√
qλ are Lipschitz continuous in x with a constant

independent of t. Then it turns out that condition (5.3) is satisfied
with any δ ∈ (0, 1), τλ ≡ 1, and appropriate K1 and unit K.

To show this observe that, for any unit ξ, |qλ(ξ)| ≤ Nrλ with N
being the doubled Lipschitz constant of rλ. In particular, by Hölder’s
inequality

(

∑

µ∈Λ1

qµ(ξ)∆µϕ
)2 ≤ N

(

∑

µ∈Λ1

√
qµ|∆µϕ|

)2 ≤ N
∑

µ∈Λ1

Q(δµϕ), (5.5)

which allows us to make obvious changes in the estimates of I
(j)
2 in

the end of Section 2, one of the changes being that now we can allow
Q(δ̄λϕ) to enter the estimates with as large constant as we wish.

In the following remark we discuss an estimate which was crucial
in the nonlinear setting for establishing a rate of convergence of dif-
ference approximations to the true solutions of Bellman’s equations in
cylindrical domains (see [3]). We will see how using different τλ can
help.

Remark 5.3. Consider the situation when the coefficients qλ, pλ and c,
the free term f , and the terminal data g also depend on a parameter
y ∈ R:

qλ = qλ(t, z), pλ = pλ(t, z), c = c(t, z), f = f(t, z), g = g(z),

where z = (x, y) ∈ R
d+1. Assume that these functions and their first

derivatives in z are bounded on H ′
T = [0, T ] × R

d+1 and continuous
in z. Assume that c ≥ c0 for all values of the arguments. Suppose
that (5.2) holds on HT for m = 1, τλ ≡ 1, any smooth ϕ(x), and any
value of the parameter y with K perhaps depending on y (as well as h
and t). Assume also that the symmetry condition (S) holds, qλ ≥ 0,
pλ ≥ 0, and rλ =

√
qλ are Lipschitz continuous in z with a constant

independent of t.
Finally, suppose that inH ′

T we are given a bounded function u(t, x) =
u(t, x, y) which satisfies (2.1) in QT for each value of y. Of course, now
in (2.1) we write z in place of x.
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Take an ε > 0 and set

T y
ε u(t, x, y) = u(t, x, y + ε), δy

ε = ε−1(T y
ε − 1).

We claim that in [0, T ] ×Q× R it holds that

|δy
εu| ≤ N

(

sup
HT ×R

(|f |+ |Dzf |)+ sup
(δ′QT )×R

(|u|+ |δy
εu|+

∑

λ∈Λ1

|δλu|)
)

, (5.6)

if ε ∈ (0, τh], where N and τ ∈ (0, 1] depend only on δ, c0, K1, the
number of elements in Λ1, |Λ1|, and the Lipschitz constants of c, rλ,
and pλ with respect to z = (x, y).

To prove the claim observe that, although equation (2.1) can be
considered in QT as an equation with parameter y, we will treat it as
an equation in Q′

T = QT ×R. Then we denote by λ0 the positive vector
on the y-axis having the length ε/h, take a τ > 0 to be specified later
and introduce

Λ′
1 = Λ1 ∪ {λ0}, qλ0

= pλ0
= 0, τλ0

= τh/ε, τλ = 1, λ ∈ Λ1.

We now check that Assumption 2.3 is satisfied for the new objects
with m = 1, τ0 = 0 and Λ′

1 in place of Λ. Owing to the assumption
that (5.2) holds, we immediately see that the left-hand side of (2.3) for
the new objects is less than

(1 − δ)
∑

λ∈Λ1

Q(δλϕ) +K1Q(ϕ) + 2(1 − δ)cK
(

∑

λ∈Λ1

|δλϕ|2
)

+ I,

where I = I1 + I2,

I1 = (δ̄λ0
ϕ)

∑

µ∈Λ1

(δ̄λ0
qµ)∆µTλ0

ϕ, I2 = 2(δ̄λ0
ϕ)

∑

µ∈Λ1

(δ̄λ0
pµ)δµTλ0

ϕ.

Since for smooth ψ,

δ̄λ0
ψ = τδy

εψ, |δ̄λ0
ψ| ≤ τ sup |∂ψ/∂y|,

we have that
|I2| ≤ NτK

(

∑

µ∈Λ′

1

|δ̄µϕ|2
)

.

Upon observing the following general properties of finite-differences:

hδλδµ = (Tµ − 1)δλ, ∆µTλ = −δµδ−µ + δλδµ + δλδ−µ (5.7)

and combining them with the estimate

τ−1|δ̄λ0
qµ| = |δy

εqµ| = |2rµδ
y
εrµ + ε(δy

εrµ)
2| ≤ N(

√
qµ + h),

and (5.5), one easily shows that

|I1| ≤ Nτ
(

∑

λ∈Λ′

1

Q(δλϕ) + K
(

∑

µ∈Λ′

1

|δ̄µϕ|2
))

.
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Since ε ≤ τh, we have that |δλϕ| ≤ |δ̄λϕ| on Λ′
1 and the above estimates

show how to choose τ ∈ (0, 1] in order for Assumption 2.3 to be satisfied
indeed.

By applying Theorem 2.1 (and Remark 2.4) we finish proving our
claim. The only point which is perhaps worth noting is that by The-
orem 2.1 the constant N from (5.6) also depends on |Λ′

1|. However,
|Λ′

1|2 = |Λ1|2 + τ 2.

6. Discussion of Assumptions 2.3 and 5.1 in case that

τλ = 1, λ ∈ Λ1

Here we suppose that only Assumptions 2.1 and 2.2 are satisfied.
Everywhere below we set τλ = 1 for all λ ∈ Λ1.

Remark 6.1. Suppose that the symmetry assumption (S) is satisfied.
Then the operators Lh can be regarded as finite-difference approxi-
mations of L (see (2.8)) in the sense that for any smooth ϕ we have
Lhϕ→ Lϕ as h ↓ 0. If we are only interested in this property, then we
can always assume that pλ ≥ K1.

Indeed, if we do not have this inequality, then we take a sufficiently
large constant K2 (independent of h), redefine pλ as pλ +K2. This will
not violate the convergence Lhϕ→ Lϕ since

2
∑

λ∈Λ1

δλϕ =
∑

λ∈Λ1

[δλ + δ−λ]ϕ→ 0

if ϕ is smooth.

The following lemma is often used below and in the continuation of
the present paper.

Lemma 6.1. Let αλµ be a nonnegative function on R
d for each µ ∈ Λ1

and λ from a finite set of indices Λ′. Assume that
∑

µ∈Λ1

sup
λ∈Λ′

αλµ ≤ C

for some function C on R
d. Then there is a K ∈ K such that

h2
∑

µ∈Λ1,λ∈Λ′

αλµ(δµfλ)
2 ≤ 4CK(

∑

λ∈Λ′

f 2
λ). (6.1)

on R
d for any bounded Borel function f = fλ given on R

d.

Proof. Using

h2(δµfλ)
2 = ((Tµ − 1)fλ)

2 ≤ 2(Tµfλ)
2 + 2f 2

λ = 2(Tµ + 1)f 2
λ ,
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we can estimate from above the left-hand side of (6.1) by

2
∑

µ∈Λ1

Cµ(Tµ + 1)
∑

λ∈Λ′

f 2
λ ,

where Cµ := supλ∈Λ′ αλµ. Hence we get (6.1) with K ∈ K defined by

K(f) = 1
2C

∑

µ∈Λ1

Cµ(Tµ + 1)f.

The lemma is proved.

Remark 6.2. One can give sufficient conditions for (5.2) to hold without
involving test functions ϕ, which makes them more “explicit” and in
combination with Remark 5.2 covers many situations when Assumption
5.1 is relatively easy to check. One set of these “explicit” conditions is
given in this remark. Here we also show why the operators of class K

are useful and how the presence of hpλ in χλ entering the operator Q
on the right of (5.2) may help.

Suppose that Λ1 = −Λ1 and qλ = q−λ ≥ 0 and set rλ =
√
qλ. Take

a δ ∈ (0, 1/4) and assume that on HT there are functions rλµ, pλµ ≥ 0,
λ, µ ∈ Λ1 such that

h2(δλrµ)
2 ≤ δ(χµ + χλ) + h2r2

λµ,
∑

µ∈Λ1

sup
λ∈Λ1

r2
λµ ≤ 2δc, (6.2)

h2|δλpµ| ≤ δ2(χµ + χλ) + δh2pλµ,
∑

µ∈Λ1

sup
λ∈Λ1

pλµ ≤ δc, (6.3)

By virtue of Remark 6.1 if Lh are used for approximating L, we can
change these operators and have (6.2) and (6.3) satisfied with rλµ =
pλµ = 0 for sufficiently small h, provided that the Lipschitz constants
in x of rλ and pλ are bounded with respect to t.

For a function ξλ given on Λ1 let us write

|ξ|2 =
∑

λ∈Λ1

|ξλ|2.

Then it turns out that condition (5.2) is satisfied if on HT for all func-
tions ξλ we have

10m2(1 − 4δ)−1J1 + 2m2(1 − 4δ)−1J2

+2δm2
∑

λ,µ∈Λ1

ξ2
λ|δλpµ| + 2m

∑

λ,µ∈Λ1

ξλξµ(δλpµ + (δλrµ)
2)

≤ (2 − 8δ)c|ξ|2 +K1

∑

λ∈Λ1

ξ2
λχλ + δh−2

∑

λ∈Λ1

χλ|ξλ + ξ−λ|2, (6.4)
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where
J1 =

∑

µ,λ∈Λ1

ξ2
λ(δλrµ)2, J2 =

∑

µ∈Λ1

(

∑

λ∈Λ1

ξλδλrµ

)2
.

To prove this, use formulas (5.7). Also drop the summation sign
having repeated indices in Λ1 to see that

2(δλϕ)QλTλϕ = (δλϕ)(δλqµ)(δλδµ + δλδ−µ + ∆µ)ϕ

= 2ξλ(δλqµ)δλδµϕ− ξλ(δλqµ)δµδ−µϕ = I11 + I12 + I21 + I22,

where ξλ = δλϕ and

I11 = 4ξλ(δλrµ)rµδλδµϕ, I12 = 2hξλ(δλrµ)
2δλδµϕ,

I21 = −2ξλ(δλrµ)rµδ−µδµϕ, I22 = hξλ(δλrµ)
2∆µϕ = 2ξλ(δλrµ)

2ξµ.

Before starting to estimate Iij, we note that as h ↓ 0 the terms I11, I22,
and I12 disappear if ϕ is twice continuously differentiable due to the
symmetry of Λ1. In that case there is no need to estimate them. For
fixed h they are present and estimating them is only possible under
stronger assumptions than in the case of partial differential equations.

Now notice that by Young’s inequality

mI11 ≤ (1/2)(1 − 4δ)I + 8m2(1 − 4δ)−1J1,

where
I =

∑

λ∈Λ1

Q(δλϕ) =
∑

λ,µ∈Λ1

χµ|δµδλϕ|2.

Similarly,

mI21 ≤ (1/2)(1 − 4δ)I + 2m2(1 − 4δ)−1J2.

Next, owing to (6.2)

mI12 = 2m
(

ξλδλrµ

)(

h(δλrµ)δλδµϕ
)

≤ 2m2J1 + (1/2)h2
∑

λ,µ∈Λ1

(δλrµ)
2(δλδµϕ)2

≤ 2m2J1 + δI + (1/2)h2
∑

λ,µ∈Λ1

r2
λµ(δλδµϕ)2,

where the last term by virtue of Lemma 6.1 is estimated by

4δcK(
∑

λ∈Λ1

(δλϕ)2).

By collecting the above estimates we obtain

2m(δλϕ)QλTλϕ ≤ (1 − 3δ)I + 10m2(1 − 4δ)−1J1

+ 2m2(1 − 4δ)−1J2 + 2m(δλrµ)2ξλξµ + 4δcK(
∑

λ∈Λ1

(δλϕ)2). (6.5)
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Next,
2(δλϕ)PλTλϕ = 2ξλ(δλpµ)ξµ + 2hξλ(δλpµ)δλδµϕ,

where the last term is majorated by

2δm
∑

λ,µ∈Λ1

ξ2
λ|δλpµ| + (1/2)m−1δ−1h2

∑

λ,µ∈Λ1

|δλpµ|(δλδµϕ)2.

We use assumption (6.3) and proceed as while estimating I12. Then we
see that

2m(δλϕ)PλTλϕ ≤ 2mξλ(δλpµ)ξµ

+ 2δm2
∑

λ,µ∈Λ1

ξ2
λ|δλpµ| + δI + 2δcK(

∑

λ∈Λ1

(δλϕ)2). (6.6)

Finally, upon combining (6.6) with (6.5) we obtain

2m(δλϕ)L0
λTλϕ ≤ (1 − 2δ)I + 10m2(1 − 4δ)−1J1 + 2m2(1 − 4δ)−1J2

+2δm2
∑

λ,µ∈Λ1

ξ2
λ|δλpµ| + 6δcK(

∑

λ∈Λ1

(δλϕ)2)

+ 2mξλ((δλrµ)2 + (δλpµ))ξµ. (6.7)

We use the fact that h−1(δλ + δ−λ) = −δλδ−λ, use assumption (6.4),
and take into account that for any K′ ∈ K

(2 − 8δ)c
∑

λ∈Λ1

|δλϕ|2 + 6δcK′(
∑

λ∈Λ1

|δλϕ|2) = (2 − 2δ)cK(
∑

λ∈Λ1

|δλϕ|2)

with an appropriate K ∈ K. Then we estimate the right-hand side of
(6.7) by

(1 − δ)I +K1Q(ϕ) + (2 − 2δ)cK
(

∑

λ∈Λ1

(δλϕ)2
)

,

and we see that (5.2) is satisfied indeed.

Remark 6.3. It is easy to see that if (6.2) and (6.3) hold and we assume
that inequality (6.4) is satisfied with an additional term Ψ(t, x, ξ) on
its left-hand side for some function Ψ of t, x and ξ = (ξλ)λ∈Λ1

, then
inequality (5.2) holds with the additional term Ψ(t, x, (δλϕ)λ∈Λ1

) on its
left-hand side.

Remark 6.4. Assume (S), assume that qλ ≥ 0, pλ ≥ 0 and let m ≥ 2.
Then it turns out that Assumption 2.3 is satisfied for δ = 1/10 and
appropriate τ0 > 0 or τ0 = 0 if c0 is sufficiently large (independently of
h).

Indeed, it is well known that the Lipschitz constant of the square
root of a nonnegative twice continuously differentiable function w(x) is
controlled by the supremums of its second order derivatives. Therefore,
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Remark 6.2 (where we take rλµ = δλrµ and pλµ = 10|δλpµ|) immediately
implies that condition (5.2) is satisfied if c0 is large enough.

That condition (5.3) is satisfied follows from Remark 5.2 and again
from the fact that for twice continuously differentiable w on R

d we have

|Dw|2 ≤ 2w sup
x∈Rd,|ξ|=1

|w(ξ)(ξ)(x)|.

At this point we do not even need large c0. Referring to Remark 5.1
we obtain what we have claimed.

Actually, above in this remark we used that m ≥ 2 only to guarantee
that rλ are Lipschitz continuous in x with a constant N ′ independent
of t. If we just assumed this last property, then our argument about
(5.2) would become even shorter. In addition, what was said about
(5.3) is still valid.

Remark 6.5. Under the symmetry assumption (S) and the assumption
that qλ ≥ 0 and pλ ≥ 0 one can give a rougher condition without using
ξλ and implying (6.4) with m = 1 and sufficiently small δ. Then (5.2)
will be satisfied as long as conditions (6.2) and (6.3) are.

By the way, recall that, for all small h, one can always satisfy condi-
tions (6.2) and (6.3) on the account of modifying if necessary pλ if the
Lipschitz constants of rλ in x are bounded in t (see Remark 6.2).

By the inequality
∑

λ,µ∈Λ1

ηληµαλµ ≤
∑

λ∈Λ1

η2
λ

∑

µ∈Λ1

|αλµ + αµλ|

we have
∑

λ,µ∈Λ1

ξλξµδλpµ ≤
∑

λ∈Λ1

ξ2
λ

∑

µ∈Λ1

|δλpµ + δµpλ|,

J2 =
∑

λ,ν,∈Λ1

ξλξν
∑

µ∈Λ1

(δλrµ)(δνrµ) ≤ 2
∑

λ∈Λ1

ξ2
λ

∑

ν∈Λ1

|
∑

µ∈Λ1

(δλrµ)δνrµ|.

A simple argument based on the above estimates and continuity
shows that (6.4) holds with m = 1 and a small δ > 0 if for any λ ∈ Λ1

10
∑

µ∈Λ1

(δλrµ)
2 + 4

∑

ν∈Λ1

|
∑

µ∈Λ1

(δλrµ)δνrµ|

+ 2
∑

µ∈Λ1

|δλpµ + δµpλ + (δλrµ)2 + (δµrλ)
2| ≤ c+K1qλ. (6.8)

Condition (6.8) basically means that if for a λ ∈ Λ1 at some point in
HT the value qλ is small, then either δλrµ, δµrλ, δµpλ, and δλpµ should
be small or c be large at this point. As the point varies, the dominating
terms may change roles.
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Remark 6.6. There are cases when it is preferable to keep the last term
on the left in (6.4) as is.

To see a reason for that, let m = d = 1, take a constant θ ≥ 1 and
define Λ1 = {±1},

qλ ≡ 0, p1(t, x) = (1/2)b(x) + θ, p−1 = −(1/2)b(x) + θ,

where b(x) is a decreasing function with bounded derivative such that
|b| ≤ 1. Observe that for any θ we have L0

hϕ → bϕ′ as h ↓ 0 if ϕ is
smooth.

Now notice that condition (6.2) is trivially satisfied since rλ ≡ 0.
Condition (6.3) is satisfied with any δ > 0 and pλµ = 0 if h ≤ 1 and
θ ≥ 100 sup |b′| + 1 since

χλ = hpλ ≥ h(θ − |b|) ≥ h(θ − 1)

The left-hand side of (6.4) is one half of

4δ
∑

i=±1

ξ2
i |δib| + (ξ1 − ξ−1)

2[δ1b− δ−1b] + (ξ2
1 − ξ2

−1)(δ1b+ δ−1b).

Here the middle term is nonpositive since b is decreasing. Also the last
term is majorated by

N |ξ−1 + ξ1| |ξ1 − ξ−1| ≤ Nh(ξ2
1 + ξ2

−1) +Nh−1(ξ−1 + ξ1)
2.

Furthermore, concerning the right-hand side of (6.4) observe that
∑

λ

ξ2
λχλ ≥ h(θ−1)

∑

λ

ξ2
λ, h−2

∑

λ

χλ(ξλ+ξ−λ)
2 ≥ h−1(θ−1)(ξ1+ξ−1)

2.

It follows easily that, no matter how small c0 is, for sufficiently small
δ and large θ condition (6.4) and, by Remark 6.2, condition (5.2) are
satisfied. This along with the almost obvious fact that (5.3) holds
shows that Assumption 2.3 is satisfied as well.

To finish the remark notice that if we tried to check condition (6.8)
we would fail to do that for small h no matter how large θ is unless c
is large enough.

Remark 6.7. We continue the analysis of the one-dimensional situation
started in Remark 6.6. So, we assume that d = m = 1 and we have in
mind approximating an operator Lϕ(x) = (1/2)a(x)ϕ′′(x) + b(x)ϕ′(x).
As in Remark 6.6 we assume that |b| ≤ 1 and, in addition, assume that
a ≥ 0 and r :=

√
a and b are one time differentiable with derivatives

uniformly continuous on R.
As in Remark 6.6 take Λ1 = {±1} and define p±1 for an appropriate

θ. Then also set rµ = r. Now observe that both parts of (6.4) are
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order-two homogeneous functions of ξλ. Therefore, it suffices to check
(6.4) assuming that

∑

λ∈Λ1

ξ2
λ = 1. (6.9)

Then, due to the assumption that r′ and b′ are uniformly continuous
on R, it is not hard to see that

J1 ∼ 2(r′)2, J2 ∼ 2(r′)2(ξ1 − ξ−1)
2,

∑

λ,µ∈Λ1

ξλξµ(δλrµ)2 ∼ (r′)2(ξ1 + ξ−1)
2,

where by α ∼ β we mean that for small h the difference |α − β| can
be absorbed into c ≥ c0 > 0 with as small coefficient as we wish.
Therefore, upon recalling the estimates from Remark 6.6, we see that
condition (6.4) is satisfied for all small h if

20(1 − 4δ)−1(r′)2 + 4(1 − 4δ)−12(r′)2(ξ1 − ξ−1)
2 + 2(r′)2(ξ1 + ξ−1)

2

+2δ|b′|+(ξ1−ξ−1)
2b′ ≤ (2−9δ)c+K1a+δh−1(θ−1)(ξ1+ξ−1)

2. (6.10)

On the account of (assumption (6.9) and) the presence of h−1(θ −
1)(ξ1 + ξ−1)

2 on the right of (6.10), it suffices to check (6.10) for small
h assuming that the inequality |ξ1 + ξ−1| ≤ h1/2 holds. It follows that
(6.10) holds for small h if it holds with (2− 10δ)c in place of (2− 9δ)c
but only for ξλ satisfying ξ1 = −ξ−1. In that case (ξ1− ξ−1)

2 = 4ξ2
1 = 2

and (6.10) holds if

28(1 − 4δ)−1(r′)2 + 2δ|b′| + 2b′ ≤ (2 − 10δ)c+K1a.

Since we would be satisfied if (6.4) held with at least one δ > 0, we see
that, under the assumption of the present remark, (6.4) (perhaps with
different δ and K1) is indeed satisfied for small h if

14(r′)2 + b′ ≤ (1 − δ)c+K1a.

Remark 6.8. There are multi-dimensional analogs of the situation in
Remark 6.6. For instance, let U(x) be a concave function with bounded
derivatives and assume that

pµ = (DU, µ) + θ,

where θ ≥ maxµ∈Λ1
|µ| sup |DU |, so that pµ ≥ 0. Then for small h we

have
∑

λ,µ∈Λ1

ξλξµδλpµ ∼
∑

λ,µ∈Λ1

ξλξµ(D
2Uµ, λ) = (D2Uη, η) ≤ 0,

where η =
∑

ξλλ.
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Remark 6.9. Recall that δλ = δh,λ and assume that (5.3) holds for all
small h > 0 with K perhaps depending on h. Then it turns out that
for all t ∈ [0,∞]

∑

λ∈Λ1

λqλ(t, x) is independent of x. (6.11)

To show this observe that, since the values of the first derivatives of
ϕ at a fixed point have nothing to do with the increments of ϕ, (5.3)
is equivalent to saying that

d
∑

i=1

(L0
iϕ)2 ≤ N(

∑

λ,ν∈Λ1

χλ|δλδνϕ|2 + K(
∑

λ∈Λ1

|δλϕ|2)),

where the constant N can be easily computed given sup c and K1. It
follows that

d
∑

i=1

(L0
iϕ)2 ≤ N(

∑

λ,ν∈Λ1

χλ|δλδνϕ|2 + sup
Rd

∑

λ∈Λ1

|δλϕ|2). (6.12)

Now multiply (6.12) by h2 and let h ↓ 0. Then we obtain

d
∑

i=1

[

(Djϕ(x))
∑

µ∈Λ

Diqµ(t, x)µj
]2 ≤ N sup

Rd

|ϕ|.

which leads to the conclusion that for smooth ϕ, i = 1, ..., d, and all
λ ∈ Λ

(Djϕ(x))
∑

µ∈Λ

Diqµ(t, x)µj = 0.

This is equivalent to saying that (6.11) holds.

Remark 6.10. Additionally to Assumptions 2.1 and 2.2 suppose that

λ+ ν 6∈ Λ1 ∀λ, ν ∈ Λ1. (6.13)

It turns out that in this case (5.3) is satisfied for all small h only if for
any λ ∈ Λ1

(i) either −λ ∈ Λ1 and qλ(t, x) = q−λ(t, x)+rλ(t) for a function rλ(t)
independent of x,

(ii) or −λ 6∈ Λ1 and qλ is independent of x.
In particular,

Qνϕ = (1/2)
∑

λ∈Λ1∩(−Λ1)

(δνqλ)∆λϕ (
∑

∅

... := 0). (6.14)

We may concentrate on proving our claim assuming that qλ is inde-
pendent of t. As we have pointed out in Remark 6.9 condition (5.3)
implies (6.12). We write the latter at x = 0, substitute ϕ(x/h) in place



30 I. GYÖNGY AND N. KRYLOV

of ϕ and let h ↓ 0. Then by just comparing the powers of h in different
terms we obtain that for a constant N and any i = 1, ..., d and ϕ we
have

∑

λ∈Λ1

(Diqλ(0))ϕ(λ) ≤ N
(

∑

λ,ν∈Λ1

|δ1,λδ1,νϕ(0)|2
)1/2

.

We see that the linear function (of ϕ) on the left provides a supporting
plane at the origin for the convex function on the right. Consequently,
there are some constants qλ,ν such that for all ϕ

∑

λ∈Λ1

(Diqλ(0))ϕ(λ) =
∑

λ,ν∈Λ1

qλ,νδ1,λδ1,νϕ(0)

=
∑

λ,ν∈Λ1

qλ,ν [ϕ(λ+ ν) + ϕ(0) − ϕ(λ) − ϕ(ν)]. (6.15)

Without losing generality we may assume that

qλ,ν = qν,λ

and split the sum on the right in (6.15) into two parts: the first part
with the summation over λ, ν such that λ+ ν = 0 and the second part
for λ+ν 6= 0. According to assumption (6.13) the terms ϕ(λ+ν) in the
second part do not appear elsewhere in (6.15). It follows that qλ,ν = 0
if λ+ ν 6= 0, so that

∑

λ∈Λ1

(Diqλ(0))ϕ(λ) =
∑

λ∈Λ1

qλ,−λ[2ϕ(0) − ϕ(λ) − ϕ(−λ)].

Here the expression on the right is symmetric with respect to the trans-
formation ϕ(x) → ϕ(−x). Thus,

∑

λ∈Λ1

(Diqλ(0))ϕ(λ) =
∑

λ∈Λ1

(Diqλ(0))ϕ(−λ).

We obtained this relation at the origin. Similarly, for any x
∑

λ∈Λ1

(Diqλ(x))ϕ(λ) =
∑

λ∈Λ1

(Diqλ(x))ϕ(−λ). (6.16)

Fix a λ0 ∈ Λ1 an take a ϕ which is 1 as λ = λ0 and zero otherwise.
Then (6.16) shows that

(i) either −λ0 ∈ Λ1 and then Dqλ0
(x) = Dq−λ0

(x),
(ii) or −λ0 6∈ Λ1 and then Dqλ0

(x) = 0.
This proves our claim.

In Remark 6.10 we saw that (6.13) along with (5.3) lead to the
symmetry of the operator Qν expressed by (6.14). However, if µ+ λ ∈
Λ1 for some µ, λ ∈ Λ1, the symmetry of Qν may not occur.
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Example 6.1. Let d = 1 and Λ1 = {−3,−1, 1, 2}. Take a smooth
function f(x) such that 1 ≤ f ≤ 2 and set

q−3 = 1 q−1 = q2 = 3 − f, q1 = f.

Then
∑

λ∈Λ1

qλλ = −3 − (3 − f) + f + 2(3 − f) = 0.

Furthermore,

h−1
∑

λ∈Λ1

q′λδλϕ = h−2f ′(−T−1 + 1 + T1 − T2)ϕ = f ′Rϕ,

where
R := h−2(T2 − 1)(T−1 − 1) = δ2δ−1.

It follows that (5.3) is satisfied. Also observe that for µ ∈ Λ1 we have

Qµϕ = h−1
∑

λ∈Λ1

(δµqλ)δλϕ = (δµf)Rϕ,

and

QµTµϕ = Qµ(Tµ − 1)ϕ+Qµϕ =
∑

λ∈Λ1

(δµqλ)δλδµϕ+Qµϕ.

This and the fact that qλ ≥ 1 easily imply that condition (5.2) is also
satisfied with appropriate constants and operator K in case there are
terms also with pλ in L and either pλ ≥ 0 or h is sufficiently small so
that χλ ≥ 1/2.

Remark 6.11. Note that the argument in the above example shows that
(always under Assumptions 2.1 and 2.2) an operator

Lh = h−1
∑

λ∈Λ1

qλδλ − c

satisfies Assumption 2.3 if qλ ≥ κ > 0 for a constant κ > 0 and the
equality

h−1
∑

λ∈Λ1

(Diqλ)δλ =
∑

λ,µ∈Λ1

qiλµδλδµ, i = 1, 2, . . . , d (6.17)

holds with some bounded coefficients qiλµ. Therefore it would be useful
to find simple conditions, i.e., which can be easily verified, for the
characterization of Λ1 and qλ satisfying (6.17). In this direction we
have the following condition and conjecture about a criterion for (6.17)
to hold.

We call a function ϕ on Λ1 ∪ {0} linear if ϕ(ν) = ϕ(λ) + ϕ(µ)
whenever ν, λ, µ ∈ Λ1 ∪ {0} and ν = µ+ λ.
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Conjecture. Equation (6.17) holds with some qiλµ if and only if
∑

λ∈Λ1

(Dqλ)ϕ(λ) = 0

holds for any ϕ that is linear on Λ1.
Notice that (6.17) and the condition of the conjecture are satisfied,

for example, when property (S) holds, or if Λ1 is the union of disjoint
triplets {λ, µ, λ+µ} such that −Dqλ+µ = Dqλ = Dqµ for each of them.

Remark 6.12. Condition (5.1) is “fool proof” in two ways related to
changes of variables. For simplicity we only concentrate on the case
that τ0 = 0 and τλ = 1 for λ ∈ Λ1. First, one can try changing
the time variable by introducing the new function v(t, x) = u(κ−1t, x),
where κ > 0 is a constant. This amounts to dividing the coefficients of
(2.1) and f by κ and accordingly changing time t→ κ−1t. However, as
is easy to see this will not affect condition (5.1) and, for that matter,
the value of F1 in Theorem 2.1 either.

The second way is to try to relax condition (5.1) by changing the
space variable. Introduce

h̄ = κh, S : ψ → Sψ(t, x) = ψ(t, κ−1x),

q̄λ = κ2Sqλ, p̄λ = κSpλ,

L̄0
h̄ = h̄−1

∑

λ∈Λ1

q̄λδh̄,λ +
∑

λ∈Λ1

p̄λδh̄,λ,

L̄0
h̄,µ = h̄−1

∑

λ∈Λ1

(δh̄,µq̄λ)δh̄,λ +
∑

λ∈Λ1

(δh̄,µp̄λ)δh̄,λ.

One easily checks that

δh̄,λ = κ−1Sδh,λS
−1, λ ∈ Λ, L̄0

h̄ = SLhS
−1. (6.18)

Owing to (6.18), if u satisfies 00 (2.1), then ū = Su satisfies

∂ū

∂t
= L̄0

h̄ū− c̄ū+ f̄ ,

where c̄ = Sc, f̄ = Sf . Furthermore, L̄0
h̄,µ

= κ−1SLh,µS
−1 and if (5.1)

is satisfied, then for ψ = S−1ϕ

2
∑

λ∈Λ1

(δh̄,λϕ)L̄0
h̄,λTh̄,λϕ = 2κ−2S

∑

λ∈Λ1

(δh,λψ)L0
h,λTh,λψ

≤ (1 − δ)κ−2S
∑

ν∈Λ,λ∈Λ1

(qλ + hpλ)|δh,λδh,νψ|2

+K1κ
−2S

∑

λ∈Λ1

(qλ + hpλ)|δh,λψ|2 + 2(1 − δ)κ−2S
[

cKh

(

∑

λ∈Λ

|δh,λψ|2
)]
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= (1 − δ)
∑

ν∈Λ,λ∈Λ1

(q̄λ + h̄p̄λ)|δh̄,λδh̄,νϕ|2

+K1κ
−2

∑

λ∈Λ1

(q̄λ + h̄p̄λ)|δh̄,λϕ|2 + 2(1 − δ)c̄SKhS
−1

(

∑

λ∈Λ

|δh̄,λϕ|2
)

,

where SKhS
−1 ∈ K. We see that this change of coordinates did not

produce any effect on (5.1) apart from changing K1 and Kh, which is
irrelevant.
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