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SUMMARY

Pluripotency is generated naturally during mamma-
lian development through formation of the epiblast,
founder tissue of the embryo proper. Pluripotency
can be recreated by somatic cell reprogramming.
Here we present evidence that the homeodomain
protein Nanog mediates acquisition of both embry-
onic and induced pluripotency. Production of plurip-
otent hybrids by cell fusion is promoted by and
dependent on Nanog. In transcription factor-induced
molecular reprogramming, Nanog is initially dispens-
able but becomes essential for dedifferentiated
intermediates to transit to ground state pluripotency.
In the embryo, Nanog specifically demarcates the
nascent epiblast, coincident with the domain of X
chromosome reprogramming. Without Nanog, pluri-
potency does not develop, and the inner cell mass
is trapped in a pre-pluripotent, indeterminate state
that is ultimately nonviable. These findings suggest
that Nanog choreographs synthesis of the naive
epiblast ground state in the embryo and that this
function is recapitulated in the culmination of somatic
cell reprogramming.

INTRODUCTION

Pluripotency is the capacity of a single cell to generate in a flex-

ible manner all cell lineages of the developing and adult

organism. This is an essential, albeit transient, attribute of cells

in embryos that undergo regulative development. After fertiliza-

tion, mammalian zygotes follow a program of cleavage divisions

and elaborate two extraembryonic lineages, trophoblast and

hypoblast (Selwood and Johnson, 2006). This preparatory phase

of development culminates in creation of the embryo founder

tissue, a population of unrestricted pluripotent cells known as

the epiblast (Gardner and Beddington, 1988; Nichols and Smith,

2009). The epiblast proliferates to provide the substrate for axis

formation, germlayer specification, and gastrulation. Naive early

epiblast cells can be immortalized in culture in the form of embry-

onic stem (ES) cells (Brook and Gardner, 1997; Evans and Kauf-

man, 1981; Martin, 1981). Pluripotent cells can also be created

outside the embryo by reprogramming somatic cells, either by

fusion with pre-existing pluripotent cells (Miller and Ruddle,

1976; Tada et al., 1997, 2001; Takagi et al., 1983) or, more

compellingly, by transfection with regulatory transcription

factors (Takahashi and Yamanaka, 2006). Information is accu-

mulating on the molecular composition and inferred regulatory

circuitry of the pluripotent state (Chen et al., 2008; Jaenisch

and Young, 2008; Kim et al., 2008a). Understanding of how

pluripotent cells are generated remains rudimentary, however.

Nanog is a highly divergent homeodomain-containing protein

commonly accorded a central position in the transcriptional

network of pluripotency (Boyer et al., 2005; Cole et al., 2008;

Loh et al., 2006; Wang et al., 2006). It is essential for early embry-

onic development (Mitsui et al., 2003). Nanog is expressed in

pluripotent embryo cells, derivative ES cells, and the developing

germline of mammals and birds (Chambers et al., 2003; Lavial

et al., 2007; Mitsui et al., 2003; Yamaguchi et al., 2005). Forced

expression of Nanog is sufficient to drive cytokine-independent

self-renewal of undifferentiated ES cells (Chambers et al., 2003).

Surprisingly, however, Nanog is not one of the canonical

quartet of transcription factors employed to reprogram mouse

fibroblasts (Maherali et al., 2007; Okita et al., 2007; Takahashi

et al., 2007; Takahashi and Yamanaka, 2006; Wernig et al.,

2007). Moreover, addition of Nanog to this quartet has not

been reported to increase efficiencies. However, Nanog is ex-

pressed weakly or not at all in incompletely reprogrammed cells

that fail to activate properly the endogenous pluripotent tran-

scriptional circuitry (Silva et al., 2008; Sridharan et al., 2009;

Takahashi and Yamanaka, 2006). Selection or screening for acti-

vation of endogenous Nanog expression facilitates isolation of

fully reprogrammed induced pluripotent stem (iPS) cells that

can contribute to adult chimeras and give germline transmission

(Okita et al., 2007). Furthermore, in human cells Nanog does

facilitate molecular reprogramming (Yu et al., 2007). It has also
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been shown that Nanog promotes the transfer of pluripotency

after ES cell fusion (Silva et al., 2006).

Nanog null embryos do not develop beyond implantation (Mit-

sui et al., 2003). An inner cell mass (ICM) is evident in mutant

blastocysts and the collapse of post-implantation development

has been assumed to reflect a requirement for Nanog to maintain

and expand the pluripotent epiblast (Mitsui et al., 2003).

However, conditional gene deletion in ES cells revealed that

Nanog is not essential for propagation of pluripotency ex vivo

(Chambers et al., 2007). Nanog null ES cells are more prone to

differentiate but can be maintained indefinitely. Moreover, they

contribute extensively to somatic chimeras, presenting a major

discrepancy with the embryo deletion analysis.

In this study, by clarifying the role of Nanog in generation

versus maintenance of pluripotency, we seek to resolve para-

doxes arising from previous findings. We compare experimental

induction of pluripotency from somatic cells with natural devel-

opment of pluripotency in the blastocyst.

RESULTS

Nanog Dosage Is Critical for Cell Fusion-Induced
Reprogramming
Transgenic expression of Nanog promotes formation of pluripo-

tent hybrids after fusion of ES cells with somatic cells (Silva et al.,

2006). We investigated whether upregulation of endogenous

Nanog may have a similar effect. Exposure of ES cells to 3 mM

MEK inhibitor (PD184352 or PD0325901) (Ying et al., 2008) in

the presence of serum and leukemia inhibitory factor (LIF) results

in increased expression of Nanog without altering levels of Oct4

(Figures 1A and 1B). Rex1, a sensitive indicator of undifferenti-

ated ES cell status (Toyooka et al., 2008), is also unchanged sug-

gesting that the increase in Nanog is not secondary to reduced

differentiation. Nanog has been shown to fluctuate in ES cells

cultured in serum and LIF (Chambers et al., 2007). MEK inhibition

increases the fraction of Nanog-positive cells to over 90% and

also increases the mean and maximum levels of expression

(Figure 1C and Figure S1 available online). We treated ES cells

with 3 mM MEK inhibitor for 3 days prior to polyethylene glycol

(PEG) mediated fusion with brain-derived neural stem (NS) cells.

The NS cells constitutively express tauGFP and puromycin resis-

tance whereas the ES cells express the dsRed2 and hygromycin

resistance, enabling detection and selection of hybrids (Silva

et al., 2006). Fused cells were purified by flow cytometry 24 hr

after PEG treatment, quantitated (Figure 1D), and plated in

complete ES cell medium. MEK inhibitor was maintained for

72 hr after sorting, then withdrawn. Puromycin plus hygromycin

selection was then applied. Macroscopic colonies of typical ES

cell morphology emerged after 5–6 days under selection. All of

these expressed GFP and dsRed2 (Figure 1E). Plates were fixed

on day 12 and stained for alkaline phosphatase, a marker of ES

cells (Figure 1D). MEK inhibitor-treated cultures yielded a greater

than 40-fold increase in undifferentiated hybrid colonies, normal-

ized to the number of fused cells plated to eliminate variation due

to differences in fusion efficiency (Figure 1F). This dramatic effect

of MEK inhibition is likely to be mediated at least in part via upre-

gulation of Nanog since endogenous Nanog is normally limiting

for transfer of the pluripotent state (Silva et al., 2006).

We then exploited the availability of Nanog null (D) ES cells

(Chambers et al., 2007) to evaluate whether Nanog may be

necessary to produce pluripotent hybrids. As controls we em-

ployed both parental ES cells and NanogD cells with restored

Nanog expression from a constitutive transgene (D+Ng) (Fig-

ure 1G). Fusion of parental ES cells with Oct4-GiP NS cells

generated around 70 colonies per plate (Figures 1H and 1I).

D+Ng ES cells yielded increased numbers of hybrid colonies,

>400 per plate, consistent with the enhancing effect of overex-

pression of Nanog (Silva et al., 2006). In contrast, fusions using

NanogD ES cells yielded only 2–3 hybrid colonies in identical

conditions (Figures 1H and 1I). This 25-fold reduction in hybrid

yield indicates that Nanog expression is a critical determinant

for the efficiency of reprogramming. Furthermore the occasional

hybrid colonies recovered from NanogDES3NS cell fusions

expressed Nanog from the NS cell genome (Figure S2). Activa-

tion of Nanog after fusion could compensate for absence from

the ES cell partner. We therefore fused NanogD ES cells with

NanogD NS cells (Figure S3). We introduced into the NanogD

NS cells a dual puromycin resistance and dsRed expression

construct. After fusion, 4 3 106 cells were plated per 10 cm

dish and placed under selection the following day. A few hybrid

colonies, approximately 10 per plate, were evident after 2 weeks,

identified by combined red and green fluorescence. These cells

did not have typical compact ES cell colony morphology,

however (Figure 1J). To clarify their status we transferred them

to the selective ground state culture combination of MEK inhib-

itor and GSK3 inhibitor (2i) plus LIF (Ying et al., 2008). NS cells

cannot survive in 2i and puromycin was maintained to eliminate

any persisting unfused ES cells. All cells died or differentiated

within days. In contrast hybrids generated between null ES cells

and null NS cells expressing a Nanog transgene expanded

readily without differentiation. Nanog is not required by estab-

lished pluripotent cells in 2i/LIF because Nanog null ES cell lines

can readily be propagated (Figure S4). We conclude that if

Nanog is absent from both fusion partners, hybrid cells do not

attain pluripotency.

Nanog Is Necessary for Molecular Reprogramming
to Progress beyond Dedifferentiation to Pluripotency
The hybrid results led us to hypothesize that Nanog may be

dispensable in the initial stages of reprogramming the somatic

cell genome but essential for instating pluripotency. We there-

fore examined requirements for Nanog during molecular reprog-

ramming (Takahashi and Yamanaka, 2006). NS cells undergo

rapid reprogramming after transfection with Oct4, Klf4, and

c-Myc, without requirement for exogenous Sox2 (Kim et al.,

2008b; Silva et al., 2008). As a control population we introduced

a constitutive Nanog transgene (Ng) into NanogD NS cells (Fig-

ure 2A). Oct4, Klf4, and c-myc were transduced into NanogD

and D+Ng NS cells. After 3 days, cells were transferred into

medium containing serum and LIF. Two days later the plates

were near-confluent with compact proliferating cells that had

lost the bipolar morphology of NS cells and morphologically

resembled undifferentiated ES cells (Figure 2B) (Silva et al.,

2008). These cells downregulated the NS cell marker Olig2 and

acquired the intercellular adhesion molecule Ecadherin (Fig-

ure S5B). They expressed ES cell markers SSEA-1 and alkaline
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phosphatase (Figures S5A and S5C). However, endogenous

core pluripotency factors were not robustly expressed (Fig-

ure 2F). There were no discernible differences between trans-

duced NanogD and D+Ng cells. These observations suggest

that Nanog is not required to produce a dedifferentiated partially

reprogrammed state.

Incompletely reprogrammed cells may be promoted to pluri-

potency by exposure to 2i/LIF (Silva et al., 2008). This allowed

us to test whether partially reprogrammed NanogD cells could

transit to pluripotency. NanogD cells transduced with the three

factors were passaged once on feeders in the presence of serum

and LIF, then switched to 2i/LIF. All cells died within 7 days

(Figure 2C). No colonies formed from multiple wells plated

(Figures 2C and 2D). In marked contrast D+Ng cells treated in

the same way generated around 100 colonies per plate of 6 3

104 cells, corresponding to a conversion frequency of 0.16% ±

0.02% (Figures 2C and 2D). These colonies were expanded in

2i/LIF and stable lines generated (Figure 2E). Resistance to

G418 and hygromycin indicated activation of the endogenous

targeted Nanog alleles. They expressed Fgf4 and Rex1 unlike

the partially reprogrammed cells (Figure 2F).

We deleted the floxed Nanog transgene after conversion in 2i/

LIF (Figure S6A) by Cre recombination (Chambers et al., 2007).

The deletion is conveniently monitored by gain of dsRed expres-

sion. DsRed-positive iPS cells continued to proliferate with

undifferentiated morphology and retention of mRNA markers of

pluripotency (Figure S6B). To confirm ground state identity and

developmental potential, we examined ability to colonize the

mouse embryo after morula aggregation. Chimeric fetuses

analyzed at mid-gestation exhibited widespread contribution of

GFP-positive cells (Figure S6D). Therefore, in line with results

in ES cells (Chambers et al., 2007), Nanog is no longer necessary

in iPS cells once pluripotency has been attained by reprogram-

ming. We conclude that Nanog is specifically required for

partially reprogrammed pre-iPS cells to reach ground state plu-

ripotency.

Nanog Enables pre-iPS Cells to Acquire Ground State
Pluripotency
We then investigated whether partially reprogrammed NanogD

cells that appear incapable of progression to the ground state

are indeed pre-iPS cells. To do this we restored Nanog expres-

sion using PiggyBac transposition (Wang et al., 2008) to intro-

duce a floxed Nanog transgene into the partially reprogrammed

cells. Stable transfectants were obtained after hygromycin

selection. Cells were then transferred into 2i/LIF as above. In

contrast to nontransfected and empty vector transfected cells

that died, PB-Nanog transfectants produced over 1400 colonies

per well (Figure 2G). This corresponds to a conversion efficiency

of more than 0.4%. These cells are G418 resistant, indicating

activation of the endogenous targeted Nanog locus. qRT-PCR

analysis revealed silencing of retroviral expression and upregula-

tion of ground state pluripotency markers Rex1 and Klf2 to levels

comparable to those found in ES cells (Figure 2H). After tamox-

ifen-induced Cre excision of the Nanog transgene these cells

gave liveborn coat color chimeras (Figure 2I).

We then investigated the timing of gene activation in pre-iPS

cells after the switch to 2i/LIF. We exploited a clonal line of

pre-iPS cells derived from mouse embryo fibroblasts. These

cells do not express Nanog or Rex1 (Figure S7), and when main-

tained in the presence of serum they do not spontaneously

acquire pluripotency even under selection for Oct4 promoter

activation. However, they convert to germline-competent pluri-

potency at high efficiency after transfer to 2i/LIF. Conversion

takes place over a period of 10 days (Silva et al., 2008). Strikingly,

we found that Nanog mRNA is only significantly upregulated

from day 7. This timing is coincident with the upregulation of

endogenous pluripotency markers and of an Oct4-GFP trans-

gene reporter (Figures 2J and S7). These data indicate that

Nanog is not the immediate target of 2i in pre-iPS cells. Consis-

tent with this interpretation, transgenic expression of Nanog in

pre-iPS cells is not sufficient to enable efficient escape from

the pre-iPS cell state without exposure to 2i/LIF. Together, these

data indicate that Nanog acts at the final stage of the molecular

reprogramming process to instate pluripotency.

Transient Nanog Mediates Reprogramming of EpiSCs
EpiSCs are a cell type in which many components of pluripotent

circuitry are naturally present. They are derived from the epithe-

lialized epiblast of post-implantation embryos (Brons et al., 2007;

Tesar et al., 2007) or by differentiation of ES cells (Guo et al.,

2009). EpiSCs are distinct from ES cells in gene expression,

Figure 1. Nanog Is Critical for Transfer of Pluripotency by Cell Fusion

(A) Western blot analysis for Nanog, Oct4, phospho(p)-Erk, and a-tubulin in ES cells treated with MEK inhibitor (Meki) PD184352 (3 mM).

(B) Quantitative gene expression analysis for Nanog and Rex1 in Meki-treated ES cells. Error bars indicate ±1 standard deviation (SD).

(C) Immunostaining for Oct4 and Nanog in control and Meki-treated ES cells. Identical settings were used for image acquisition.

(D) Flow cytometric purification and analysis of primary fusion products between DsRed ES cells and GFP NS cells; alkaline phosphatase-stained plates after

sorting and 9 days selection in hygromycin plus puromycin.

(E) Phase contrast and fluorescence images of typical hybrid colony. Hybrids exhibit dual dsRed and GFP fluorescence from ES and NS cell genomes, respec-

tively.

(F) Quantitation of three independent fusions. Scores are normalized for purity determined by flow cytometry analysis. MEK inhibitor was PD184352 in the first two

experiments and PD0325901 in the third.

(G) Western blot analysis for Nanog, Oct4, and Sox2 in Nanog�/� and Nanog�/� ES cells transfected with a Nanog transgene (Ng).

(H) Plates containing hybrid colonies stained for alkaline phosphatase from fusions (x) of ES cells (WT, D, and DNg) with NS cells. Cells were grown under puro-

mycin selection for reactivation of the Oct4 reporter transgene.

(I) Mean number of hybrid colonies per plate from two replicate experiments.

(J) Images of culture generated from cell fusion between GFP-expressing DES cells and GFP/dsRed-expressing DNS cells. Upper panels show a hybrid colony

(dashed line) after 2 weeks under puromycin and hygromycin selection. Approximately 10 of these colonies were observed per plate. Lower panels show parallel

culture switched to 2i/LIF plus puromycin for 4 days to select specifically for pluripotent hybrids (bottom panels).
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growth factor dependency, inactivation of the X chromosome (in

XX cells), and inability to contribute to blastocyst chimeras. This

is a transcriptionally and epigenetically differentiated cell state

compared with naive epiblast or ES cells (Nichols and Smith,

2009) that does not revert, even in 2i/LIF. However, EpiSCs

can be reprogrammed to ground state pluripotency by stable

transfection with Klf4 and culture in 2i/LIF. This occurs with an

efficiency of 0.1%–1%, similar to somatic cell reprogramming

(Guo et al., 2009). EpiSCs express Nanog but at lower levels

than ES cells. We therefore tested whether elevated expression

of Nanog may mediate conversion to the ground state. We used

EpiSCs derived from an E5.5 female embryo carrying the Oct4-

GiP reporter. Nanog stable transfectants were generated by lip-

ofection with a Piggybac vector containing independent

promoters directing expression of Nanog and of dsRed reporter

linked to the hygromycin resistance gene (PBNanogdsRed).

Transfectants were expanded in EpiSC culture conditions of

Fgf2 and activin under hygromycin selection. Under these condi-

tions there is no upregulation of ground state markers. Upon

transfer to 2i/LIF, which eliminates parental EpiSCs or control

transfectants (Guo et al., 2009), multiple undifferentiated colo-

nies form that express Oct4-GFP (Figure 3A). Colonies were ob-

tained at an average of 200–2000 per well of 2 3 104 cells, or

1%–10%. These cells could be stably propagated and exhibited

upregulation of ES cell markers (Figure 3D). This frequency of

conversion is 10-fold higher than for Klf4 transfectant in side-

by-side experiments. Klf4-mediated conversion is dependent

on treatment with 2i, which may act in part by inducing Nanog.

We asked whether Nanog can mediate reprogramming of

EpiSCs without 2i. Nanog-transfected EpiSCs transferred from

Fgf2/activin culture to medium supplemented with LIF+BMP4

produced numerous undifferentiated Oct-GFP-positive colonies

(Figures 3B and 3C) that could be stably expanded and showed

the transcriptional marker profile of ground state pluripotency,

including upregulation of Klf4 (Figure 3D). No iPS cell colonies

were obtained from parallel cultures of Klf4 transfectants

without 2i.

The Nanog-generated Epi-iPS cell colonies invariably ex-

pressed dsRed (Figure 3C) indicating integration of the trans-

gene. Transient transfection of the PB-Nanog construct without

PBase did not yield any Epi-iPS cells. We then tested transient

cotransfection of Nanog with Klf4. Transfected cells were trans-

ferred into 2i/LIF after 48 hr. Epi-iPS cell colonies emerged over

the following 7 days at a frequency of 2–6 colonies per well of 2 3

104 starting EpiSCs. Several of these colonies were picked and

expanded. They showed uniform expression of Oct4-GFP but

no dsRed (Figure 3E). Integration of PB vectors was undetect-

able by genomic PCR (Figure 3F). qRT-PCR analysis confirmed

transcriptional resetting with upregulation of ES cell markers

Nr0b1, Klf4, and Klf2 and downregulation of EpiSC markers

Fgf5, Brachyury, and Lefty (Figure 3G). Immunostaining for the

silencing mark me3H3K27 revealed that the nuclear focus corre-

sponding to the inactive X chromosome was erased in the Epi-

iPS cells (Figure 3H). The definitive test of ground state pluripo-

tency is ability to colonize the developing embryo and contribute

substantially to term chimeras. Two clones of Nanog/Klf4 Epi-

iPS cells were tested by morula aggregation and both colonized

the egg cylinder at high frequency (Figure S8), a property never

exhibited by EpiSCs (Guo et al., 2009). After blastocyst injection

of one of these clones, healthy adult mice were obtained with

extensive coat color chimerism (Figure 3I).

These findings confirm that in the presence of other key pluri-

potency factors, Nanog can orchestrate transition to the ground

state, mediating both transcriptional and epigenetic reprogram-

ming. Intriguingly, as previously noted for ES cell self-renewal

(Chambers and Smith, 2004) and hybrid reprogramming (Silva

et al., 2006), endogenous expression of Nanog is limiting, indi-

cating dosage sensitivity in Nanog action.

Nanog Protein Localizes Specifically
to Nascent Epiblast
The preceding evidence that Nanog is crucial for instating pluri-

potency during somatic cell reprogramming prompted re-exam-

ination of its role in embryogenesis. Nanog is essential for devel-

opment after implantation (Mitsui et al., 2003). This could be

because it serves to maintain the epiblast or because it is

required to make a pluripotent epiblast. Nanog is present from

the late morula throughout formation and expansion of the ICM

(Chambers et al., 2003; Dietrich and Hiiragi, 2007). The epiblast

emerges through partition of the ICM in the mature mouse blas-

tocyst between embryonic day (E) 3.5 and E4.5 (Gardner, 1983).

Nanog mRNA is downregulated shortly thereafter (Chambers

et al., 2003). We analyzed distribution of Nanog protein at these

stages (Figures 4 and S9).

We compared localization of Nanog with Oct4, generally

considered a pluripotency marker but also transiently expressed

Figure 2. Nanog Is Necessary for Full Reprogramming to Induced Pluripotency

(A) Immunostaining for Nanog in D+Ng NS cells.

(B) Morphology of D and D+Ng NS cells 5 days after transduction with c-Myc, Oct4, and Klf4.

(C) NanogD and D+Ng partially reprogrammed cells 7 days after switching to 2i medium.

(D) Number of iPS cell colonies per 6 3 104 plated pre-iPS cells. Counts were performed 10 days after 2i medium switch. Selection in G418 for Nanog promoter

activity was applied 4 days prior to counts. Error bars indicate ±1 SD.

(E) Passaged D+Ng iPS cells cultured in 2i.

(F) Quantitative gene expression analysis for Nanog, Fgf4, Rex1, and Olig2 in D and D+Ng NS cells, D and D+Ng pre-iPS cells, and D+Ng iPS cells. Error bars

indicate ±1 SD.

(G) Response of D, D empty vector (EV), and D Nanog vector (NV) pre-iPS cells to culture in 2i/LIF for 9 days. For each line 4 3 105 cells were plated on feeders in

duplicate wells. Approximately 1400 DNV iPS colonies were obtained per well, corresponding to an efficiency of 0.4%.

(H) Quantitative gene expression analysis for Nanog, endogenous Klf2, and Rex1 and for retroviral (retro) Oct4, Klf4, and c-Myc in DNV iPS cells and D and DEV

pre-iPS cells. Error bars indicate ±1 SD.

(I) Coat color chimera obtained by blastocyst injection of Nanog vector D iPS cells after Cre excision of the Nanog transgene.

(J) Time course of Nanog and Rex1 mRNA expression (left panel) and emergence of Oct4-GFP-positive cells (right panel) following transfer of MEF-derived pre-iPS

cells to 2i/LIF. Flow cytometry scatter plots are provided in Figure S7. Error bars indicate the range of fold change relative to the sample with highest expression.
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during hypoblast formation (Palmieri et al., 1994). We contrasted

Nanog distribution with Gata6 and Gata4, specification factors

for the hypoblast (Chazaud et al., 2006). At E3.5 Nanog was

largely confined to the ICM (Figures 4C and S9) and present in

most, though not all, of these cells, as previously described

(Chazaud et al., 2006; Dietrich and Hiiragi, 2007). Oct4 was

strongly expressed throughout the ICM and also detectable in

some trophoblast cells. By E4.5 Nanog immunostaining was

confined to a subset of ICM cells overlaid on one surface by

trophoblast and on the other by hypoblast (Figure 4A). Oct4

was expressed more broadly and was present in almost all

ICM cells (Figure 4). Gata4 and Gata6 were restricted to ICM

cells lining or close to the blastocoel, corresponding to the loca-

tion of the hypoblast (Figures 4A and 4C). Many of those cells

coexpressed Oct4. In contrast, we did not observe at E4.5 any

instance of a cell that coexpressed Nanog with either Gata4 or

Gata6.

Mouse embryo development can be arrested and synchro-

nized at the mature blastocyst stage if implantation is prevented

by ongoing lactation or by experimental deprivation of estrogen

(Nichols et al., 2001). This condition of diapause is a favored

stage for the derivation of ES cells (Evans and Kaufman, 1981).

Oct4 is expressed in all ICM cells in diapause. In contrast Nanog

is present only in the interior ICM cells and is absent from the

hypoblast layer (Figure 4B). These findings establish that Nanog

uniquely marks the epiblast in the mature blastocyst and is mutu-

ally exclusive with expression of the Gata factors, whereas Oct4

is ubiquitous throughout the ICM.

Expression of Nanog Defines the Domain
of X Chromosome Reactivation
In female mouse embryos the paternal X chromosome is

silenced during early cleavage (Okamoto et al., 2004). The inac-

tive X (Xi) is then reactivated in the ICM (Mak et al., 2004; Oka-

moto et al., 2004). Reactivation is critical to allow for random X

inactivation in the embryo proper and may be considered an

essential attribute of ground state pluripotency in females.

Indeed a distinctive feature of female ES cells is that both X chro-

mosomes are active (Martin, 1981; Rastan and Robertson,

1985). Furthermore, ES cells have the capacity to reactivate

a silenced somatic X chromosome during cell fusion-induced re-

programming (Silva et al., 2006; Tada et al., 2001; Takagi et al.,

1983). We therefore analyzed the relationship between Nanog

expression and reactivation of Xi in the ICM. We used immunos-

taining for Eed, a component of the PRC2 polycomb group

complex, to detect epigenetic marking indicative of Xi (Silva

et al., 2003). We compared the presence or absence of an Eed

nuclear body with Nanog expression. All ICM cells of XX E3.5

blastocysts exhibited a prominent Eed focus (Figures 4C and

4D), confirming that Xi is maintained in the early blastocyst

(Mak et al., 2004). Therefore coexpression of Nanog, Oct4, and

Sox2, at least at the levels present at E3.5, is not sufficient for

X chromosome reactivation. At E4.5, however, around half of

the Oct4-positive ICM cells in XX blastocysts had lost the Eed

nuclear body that was readily detectable in neighboring tropho-

blast cells (Figures 4C and 4E). Absence of the Eed focus corre-

lated precisely with the presence of Nanog (Figures 4C and 4E

and Movie S1). ICM cells retaining Xi did not have Nanog but ex-

pressed Gata4 (Figures 4C and 4E), indicative of hypoblast

differentiation (Chazaud et al., 2006). Similarly in diapause blas-

tocysts an Eed nuclear body was evident in all cells of the hypo-

blast and trophoblast but absent from Nanog-positive epiblast

cells (Figure 5F). From all embryos examined, every cell without

an Eed nuclear body also expressed Nanog. These observations

indicate that X chromosome silencing is erased in only a subset

of the ICM.

We conclude that Nanog expression at E4.5 defines the

embryo founder compartment and is coincident with the domain

of X chromosome reactivation. Nanog-negative ICM cells still

express Oct4 but are Gata6/Gata4 positive. These hypoblast

cells do not erase X chromosome silencing. Thus paternal X

chromosome inactivation in the yolk sac endoderm does not

entail a second cycle of imprinted inactivation but is inherited

from early cleavage as occurs in the trophoblast.

Nanog Null ICMs Fail to Reactivate Xi and Do Not
Generate Pluripotent Cells
We then analyzed ICM status in Nanog�/� blastocysts (Mitsui

et al., 2003). At E3.5 Nanog protein was undetectable in one

quarter of intercross blastocysts, but these were not distinguish-

able in morphology, size, or ICM cell number (Figures 5A and S9).

In contrast, an overt phenotype was evident in embryos har-

vested at E4.5. Of 57 E4.5 intercross blastocysts, 12 lacked

detectable Nanog protein. The Nanog-negative specimens

contained substantially fewer ICM cells, and these showed

reduced intensity of Oct4 staining (Figures 5A and 5B). Strong

Figure 3. Stable Transfection of EpiSCs with Nanog Enables Conversion to iPS Cells

(A) Representative image of EpiSCs stably transfected with PB-Nanog-dsRed then transferred for 4 days to 2i/LIF. Arrowheads indicate groups of cells express-

ing Oct-GFP and the PB-Nanog-dsRed transgene.

(B) PB-Nanog-dsRed EpiSC transfectants cultured for 7 days in LIF+Bmp4, under puromycin selection from day 4.

(C) Immunostaining for me3H3K27 and fluorescence imaging of EpiSCs, PB-Nanog-dsRed (PBNanog) EpiSCs, and PBNanog transfectants after 1 passage in

2i+LIF or LIF+Bmp4.

(D) Quantitative gene expression analysis in EpiSCs (Epi), PBNanog EpiSCs in Fgf2+Activin (F+A), and passage 1 PB-Nanog transfectants in 2i+LIF (2i+L) or

LIF+Bmp4 (L+B), compared with ES cell sample. Error bars indicate ±1 SD.

(E) Expanded clone of Epi-iPS cells generated by transient transfection of EpiSCs with PB-Nanog-dsRed plus PB-Klf4-dsRed.

(F) Genomic PCR analysis for Piggybac LTR in Epi-iPS cells generated by transient transfection. K4C3 is an iPS cell line generated by stable transfection of

PB-Klf4 and provides a positive control.

(G) Quantitative mRNA expression analysis of Epi-iPS cells produced by transient transfection. Error bars indicate the range of fold change relative to the sample

with highest expression.

(H) Immunostaining for me3H3K27 shows nuclear foci corresponding to Xi in EpiSCs and absence in derivative Epi-iPS cells generated by transient transfection.

(I) Coat color chimeras obtained from Epi-iPS cells generated by transient transfection of EpiSCs with PB-Nanog-dsRed plus PB-Klf4-dsRed.
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Figure 4. Nanog Expression Demarcates the Epiblast and Is Coincident with the Domain of Xi Reactivation

(A) Immunostaining for Oct4, Nanog, and Gata6 in E4.5 embryos.

(B) Immunostaining for Oct4 and Nanog in diapause embryos.

(C) Single optical sections through E3.5 and E4.5 embryos immunostained for Oct4, Nanog, Eed, and Gata4. White arrows point to cells in E4.5 embryos stained

with Oct4 and displaying Eed foci (inactive X chromosome).

(D) Eed status in Nanog-positive ICM cells of blastocysts with Eed foci in trophoblast nuclei. Nanog-positive cells were scored as XiXa when an Eed nuclear body

was present and XaXa when this was absent. Counts show average number (Nr) of cells per embryo with the indicated phenotype.

(E) Confocal sections through ICM region of an E4.5 blastocyst immunostained for Eed, Oct4, Nanog, and Gata4. Oct4 staining marks the ICM (white dashed line),

whereas Eed staining alone represents trophectoderm nuclei (between yellow and white dashed line). Only Nanog-stained nuclei lack the Eed nuclear body.
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Gata4 staining was lacking, though faint immunoreactivity was

apparent in a few cells (Figures 5B and 5C). In five Nanog-nega-

tive blastocysts with Eed foci in trophoblast nuclei, the nuclear

body was also prominent in all intact ICM nuclei (Figure 5D).

Persistence of Xi in Oct4-positive ICM cells in mutant embryos

at E4.5 is consistent with a putative direct role for Nanog in X

chromosome reactivation (Navarro et al., 2008). It also points

to a failure of null ICM cells to develop into epiblast.

To clarify the cellular basis of the phenotype of Nanog-defi-

cient blastocysts, we examined diapause blastocysts. Diapause

effectively extends the preimplantation period and allows the

possibility for retarded cells to catch up in development. Eight

of thirty-one intercross diapause blastocysts lacked Nanog-

positive cells. None of these contained an overt ICM compart-

ment. Four were completely Oct4 negative, while the others

contained a few Oct4-stained cells dispersed around the tro-

phectoderm layer (Figure 5E). In Nanog-negative diapause

embryos that showed Eed foci, this was present in every nucleus

including those staining for Oct4 (Figure 5E), indicating that X

reactivation had not occurred. These observations indicate

that the reduced size of the ICM at E4.5 and the absence of

hypoblast are not due to retarded growth or differentation but

are a result of developmental failure. We surmised that Nanog

may be required to achieve a pluripotent ground state in the

early embryo.

To test further whether pluripotent cells could be produced in

the absence of Nanog we examined responsiveness to 2i.

Culture of early embryos in 2i maximizes expansion of the

epiblast (Nichols et al., 2009a) and facilitates subsequent deriva-

tion of ES cells, including from otherwise recalcitrant strains

(Nichols et al., 2009b; Ying et al., 2008). Early blastocysts

cultured in 2i or 2i/LIF for 48 hr develop expanded Oct4-positive

ICMs with a large component of Nanog-expressing cells along

with Gata4-positive hypoblast (Figure 6A). Nanog null ES cells

expand more efficiently in 2i or 2i/LIF than in serum and LIF

(Figure S4). Therefore if Nanog�/� embryos have the capacity

to produce any epiblast cells, their recovery should be maxi-

mized in 2i/LIF. We harvested intercross blastocysts at E3.5

when the newly formed ICM is indistinguishable between mutant

and wild-type. After culture in 2i or in 2i/LIF for 48 hr, all 43

Nanog-positive embryos had an ICM containing a large

compartment of cells double positive for Oct4 and Nanog, with

overlying Gata4-positive cells. In 10 Nanog-negative embryos

the ICM had completely degenerated with neither Oct4 nor

Gata4 detectable. Five of these displayed Eed foci in all cells

(Figures 6A–6C). Lack of Gata4 staining in both freshly harvested

and cultured Nanog-deficient blastocysts indicates that the loss

of ICM does not arise by unscheduled differentiation into hypo-

blast, as we previously speculated (Chambers and Smith,

2004; Mitsui et al., 2003). Instead, these findings suggest that

without Nanog, ICM cells are unable to progress into a correctly

specified and viable epiblast and that hypoblast either does not

form or rapidly degenerates.

Nanog�/� ICM Cells Can Differentiate into Trophoblast
but Do Not Make Hypoblast
We investigated in more detail the fate and potency of Nanog null

ICM cells. We stained intercross E4.5 embryos with Troma1 to

detect cytokeratin 8 expressed by trophoblast (Nichols et al.,

1998). We costained for Oct4 and activated caspase 3 to monitor

apoptosis. Nanog immunostaining could not be used in this

combination with available antibodies. Therefore mutant

embryos were identified by low or absent Gata4. This correlated

with reduced ICM cell numbers and increased caspase immuno-

reactivity (Figure 6D). In three out of four of these embryos some

Oct4-positive cells costained withTroma1, which was never

seen in the wild-type or heterozygous embryos at this stage

(Figures 6E and 6F). These cells appeared to be on the surface

of the embryo, suggesting incorporation into the trophoblast.

We isolated 56 ICMs from E3.5–E3.75 intercross blastocysts

and cultured them in medium supplemented with LIF and serum.

Individual genotypes were determined from the trophoblast

lysates. Wild-type and heterozygous ICMs sustained a central

cell mass and produced outgrowths of cells with refractile and

migratory features characteristic of parietal endoderm (Figures

6G and 6H). In 3 out of 48 cases, outgrowths also contained large

flattened cells of trophoblast morphology, suggesting that those

ICMs had been harvested from early stage blastocysts and re-

tained the capacity for trophoblast production (Nichols and

Gardner, 1984). Eight out of eight null ICMs did not maintain

any undifferentiated cell mass and either failed to attach and de-

generated or produced a few trophoblast cells with spread

morphology and large nuclei (Figure 6G). In no case did we

observe either persistent ICM or hypoblast in a null embryo

culture.

We conclude that Nanog mutant ICM cells are blocked in

a transition stage of ICM development. Null cells cannot prog-

ress to pluripotency and therefore have only two options, differ-

entiation into trophoblast or death.

DISCUSSION

Nanog can command constitutive self-renewal of ES cells

(Chambers et al., 2003) and appears able to reverse precommit-

ment perturbations of the pluripotent state (Chambers et al.,

2007; Silva and Smith, 2008; Suzuki et al., 2006). Nanog also

greatly increases the efficiency of nuclear reprogramming by

ES cell fusion (Silva et al., 2006). It is therefore somewhat

surprising that Nanog is not represented among the minimal

combinations of exogenous factors found to convert mouse

somatic cells into iPS cells (Takahashi and Yamanaka, 2006).

This study offers an explanation (Figure 7). Our results indicate

that Nanog is in fact decisive for attaining this pluripotent ground

state. However, this requirement is during the final phase of re-

programming when other key factors are already present and

may be fulfilled by activation of endogenous Nanog. A role in

the culmination of somatic cell reprogramming is mirrored by

the pivotal function revealed for Nanog in establishing pluripo-

tency in the embryo.

Analyses of reprogramming in Nanog-deficient cells show that

it is fully dispensable for the initial steps: loss of differentiated

characteristics and creation of a pre-pluripotent state. Indeed

pre-iPS cells, which have silenced somatic genes, exhibit

expression of some markers of pluripotency but not Nanog (Silva

et al., 2008; Sridharan et al., 2009). The failure to respond to

2i/LIF, which efficiently converts wild-type pre-iPS cells to
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Figure 5. Phenotypic Analysis of Nanog Null Blastocysts
(A) Counts of the total number of Oct4-stained internal cells in blastocysts from Nanog+/� intercrosses determined by confocal analysis.

(B) Nanog, Oct4, and Gata4 immunostaining of E4.5 blastocysts.

(C) Counts for total number of Gata4-positive cells with weak or strong signal in E4.5 embryos.

(D) Nanog-negative E4.5 blastocyst stained for Oct4 and Eed. Asterisk marks shrunken nucleus of dying cell. Insets show Eed nuclear bodies in Oct4 stained cells.
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pluripotency (Silva et al., 2008), indicates that Nanog�/� pre-iPS

cells cannot attain pluripotent status. This block is overcome,

however, by introduction of Nanog. Therefore, Nanog mediates

acquisition of pluripotency by dedifferentiated partially reprog-

rammed cells.

The in vivo phenotype of Nanog deletion shows that it is critical

for early ICM cells to mature into pluripotent epiblast. This

explains why mutant embryos cannot give rise to ES cells (Mitsui

et al., 2003), even though Nanog-deficient ES cells are viable

(Chambers et al., 2007). Cells that are allocated to the ICM but

unable to upregulate Nanog progressively degenerate between

E3.5 and E4.5. This occurs by a combination of differentiation

into trophoblast and apoptosis (Figures 6D to 6F). The failure

of Nanog null ICMs to form hypoblast is unexpected. It is

possible that Nanog plays a role in potentiating hypoblast spec-

ification. Alternatively, hypoblast may be specified but unable to

survive in the absence of paracrine support from a nascent

epiblast. This would be consistent with the detection of occasional

mutant cells showing weak Gata4 staining.

Oct4 and its partner Sox2 are expressed ubiquitously in

morulae and early blastocysts and are present throughout the

ICM until after segregation of the hypoblast (Avilion et al.,

2003; Chazaud et al., 2006; Palmieri et al., 1994). Expression

of these factors is therefore too wide to define the epiblast.

Nanog, in contrast, is upregulated at the time of compaction. It

may fluctuate in early ICM cells (Chazaud et al., 2006; Dietrich

and Hiiragi, 2007) but subsequently is uniformly and exclusively

expressed in the nascent epiblast. This restricted expression of

Nanog is associated with and essential for prosecuting the tran-

sition to pluripotency in a subset of cells that already express

Oct4 and Sox2. We propose that the presence of Nanog

harnesses Oct4 and Sox2 to create ground state pluripotency.

In this context, Nanog may be considered the specification

factor for epiblast.

Erasure of X chromosome silencing is a unique epigenetic

signature of arrival at authentic pluripotency. Presence of a

silenced X chromosome in pre-pluripotent female embryo cells

along with Oct4 and Sox2 mirrors the circumstances in partially

reprogrammed pre-iPS cells. The timing of Nanog action in both

somatic cell reprogramming and epiblast formation implies

a requirement for coincident expression of other pluripotency

factors. Previously, we showed that fusion of ES cells overex-

pressing Nanog with NS cells results in an equivalent pluripotent

hybrid yield as fusion with ES cells, where there is no requirement

for reprogramming (Silva et al., 2006). Thus, in the appropriate

transcription factor context, Nanog levels can modulate reprog-

ramming up to maximal efficiency. Moreover, stable Nanog

overexpression in EpiSCs, which express most pluripotent

factors, is sufficient to direct reprogramming upon withdrawal

of the EpiSC maintainance factors Fgf and activin. Most strik-

ingly, Nanog acts synergistically with the absent factor Klf4,

such that transient expression of both is sufficient to convert

EpiSCs to ground state pluripotency.

The reprogramming process can be divided into discrete

stages related to the requirement for Nanog activity (Figure 7).

The first stage culminates in the generation of dedifferentiated

pre-pluripotent cells sustained by Oct4, Sox2, and Klf4 trans-

genes. In some circumstances, influenced by factors such as

character of the reprogramming vector and genetic background,

cells are able to transit out of this stage stochastically and reach

authentic pluripotency (Jaenisch and Young, 2008). In many

cases, however, cells are blocked in the pre-iPS cell state (Okita

et al., 2007; Silva et al., 2008). Cells in this condition express

some markers of pluripotency but Nanog remains silenced (Silva

et al., 2008; Sridharan et al., 2009). Transfer to serum-free 2i/LIF

culture relieves the block and allows generation of pluripotency.

Our findings establish that this culminating step is critically

dependent on Nanog. How might Nanog achieve this? A recent

comparison by chromatin immunoprecipitation of pre-iPS cells

and fully reprogrammed iPS cells identified multiple genes that

are co-occupied by Oct4, Sox2, and Klf4 in ES cells but not in

pre-iPS cells (Sridharan et al., 2009). Many of these genes

have been proposed as targets of Nanog in ES cells. Therefore,

Nanog may orchestrate transition to the pluripotent ground state

by facilitating cooperative binding of the core pluripotency

factors to their cognate ES cell targets. Mechanisms could

include Nanog-dependent recruitment of protein complexes

comprised of the core factors or Nanog-dependent chromatin

modulation to render loci accessible, as suggested for intron

1 of the Xist locus (Navarro and Avner, 2009).

In conclusion, our findings suggest that Nanog lies at the heart

of a convergent mechanism for attaining the ground state of

authentic pluripotency both in embryonic development and in

the final phase of somatic cell reprogramming. We surmise

that Nanog choreographs the emergent gene regulatory network

of pluripotency into a functional and self-sustaining configura-

tion. The next challenge is to elucidate precisely how Nanog

brings about this synthesis.

EXPERIMENTAL PROCEDURES

Nanog�/� NS cells were derived using the established NS cell derivation

protocol (Conti et al., 2005) from E12.5 fetal forebrain of a chimeric fetus after

flow cytometric purification of GFP-expressing null cells. Nanog+/+ NS cells

were derived from E12.5 fetal forebrain of transgenic lines that constitutively

express the fusion protein tauGFP and the puromycin resistance gene or

that carry regulatory sequences of the mouse Oct4 gene driving GFP and puro-

mycin resistance (Silva et al., 2006). Nanog�/� rescue NS cells were derived by

transfection with pPyfloxNanogIPdsRedIB to obtain cells that express consti-

tutively Nanog and puromycin resistance. Nanog�/� pre-iPS cells were trans-

fected using Nucleofection with 1 mg of PBfloxNanogPgkHygro plus 2–3 mg

PBase expression vector, pCAGPBase (Guo et al., 2009), to obtain cells that

express constitutively Nanog and Hygromycin resistance. EpiSCs derived

from E5.5 Oct4GiP epiblast were cultured and transfected as described

(Guo et al., 2009).

The Nanog null mutation generated by homologous recombination has been

described previously (Mitsui et al., 2003). Genotypes of intercross blastocysts

were inferred from presence or absence of Nanog immunostaining.

(E and F) Nanog, Oct4, and Eed immunostainingof diapauseblastocysts.Gender of theblastocyst inferred from Eedstaining is indicatedat the bottom of eachpanel.

(E)Arrows indicateOct4-positivecells inNanog-negative blastocysts.Right panel shows zoomed image froma mutant diapauseembryo (dashed square) stained for

Oct4 and Eed. This shows two cells expressing Oct4 and exhibiting the Eed mark of an inactive X chromosome.

(F) ICM region of a Nanog-positive diapause embryo showing absence of Eed foci in Nanog-positive cells.
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