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Abstract 

Background 

Affymetrix GeneChips and Illumina BeadArrays are the most widely used commercial single 

channel gene expression microarrays. Public data repositories are an extremely valuable 

resource, providing array-derived gene expression measurements from many thousands of 

experiments. Unfortunately many of these studies are underpowered and it is desirable to 

improve power by combining data from more than one study; we sought to determine 

whether platform-specific bias precludes direct integration of probe intensity signals for 

combined reanalysis. 

Results 

Using Affymetrix and Illumina data from the microarray quality control project, from our 

own clinical samples, and from additional publicly available datasets we evaluated several 

approaches to directly integrate intensity level expression data from the two platforms. After 



mapping probe sequences to Ensembl genes we demonstrate that, ComBat and cross platform 

normalisation (XPN), significantly outperform mean-centering and distance-weighted 

discrimination (DWD) in terms of minimising inter-platform variance. In particular we 

observed that DWD, a popular method used in a number of previous studies, removed 

systematic bias at the expense of genuine biological variability, potentially reducing 

legitimate biological differences from integrated datasets. 

Conclusion 

Normalised and batch-corrected intensity-level data from Affymetrix and Illumina 

microarrays can be directly combined to generate biologically meaningful results with 

improved statistical power for robust, integrated reanalysis. 

Background 

In the clinical sciences, systematic review is a valuable tool to synthesise high-quality 

empirical evidence from independent investigations in order to determine a consensus view. 

Such reviews, or meta-analyses have greater statistical power to identify true effects from 

study-specific artefacts and, as such, are capable of identifying subtle effects that might be 

missed or deemed insignificant in smaller datasets. In the context of gene-expression 

analyses, meta-analysis of results from microarray studies has great potential, but also 

presents significant challenges due to differences between the platforms and analysis 

approaches employed in each study [1-5]. Direct integration of probe-level expression data 

from multiple studies is potentially even more powerful, but is further complicated due to 

differences in the conditions under which each dataset was generated, such as the 

amplification or labelling method, the scanner used or even just the date on which the 

samples were processed. A recent comprehensive review found that the aims of different 

microarray meta-analysis studies were quite distinct, with the majority combining p-values, 

effect size or ranked analysis, with only 27 % (51 studies) seeking to directly merge the data 

and most of these were studies used the same platform [1]. We and others have previously 

demonstrated that non-trivial systematic bias or ‘batch effects’ can occur within both 

Affymetrix GeneChips and Illumina Beadarrays [3,4,6,7], but that they can largely be 

removed from each with appropriate correction methods. 

Gene expression profiling has been applied to many areas of translational cancer research, 

including identification of new drug-targets, monitoring response to treatment, revealing 

mechanisms of resistance, and predicting prognosis [8]. Although the majority of datasets are 

now made publicly available, many studies are limited in size and therefore cannot accurately 

reflect the general population, as they lack statistical power [9,10]. A consequence of this is 

that gene signatures generated from a small cohort of patients (the ‘training set’), will never 

perform as well in subsequent cohorts (‘test sets’) which inevitably have subtle differences in 

composition of patient or tumour variables. We previously showed that combining several 

similar Affymetrix datasets leads to a greater overlap in differentially expressed genes and 

more accurate prognostic predictions [5]. Collection of clinical material often remains the 

rate-limiting step, particularly with valuable ‘window-of-opportunity’ studies that utilise 

matched before- and after-intervention samples from the same patient [6,11-14]. Due to the 

reduced patient-patient variation, these studies can be highly effective for identifying 

consistent gene-expression changes, such as the effects of (neoadjuvant) cancer treatment. 



The extensive patient- and tissue-diversity inherent in molecular studies of cancer, which 

often contribute to underpowered studies [9] and confounding [15], mean that it is currently 

not necessarily critical (or appropriate) to measure gene-expression at the greatest resolution 

or specificity now offered by exon-arrays and RNA-sequencing. Rather, it may be of greater 

utility to maximise the number of existing biologically independent observations by 

combining the growing numbers of datasets in the public repositories, instead of simply 

generating another small independent dataset with limited statistical power [8]. 

Previous comparisons of expression measurements derived from Affymetrix and Illumina 

platforms have reported, ‘generally consistent’ [16], ‘very high agreement’ [17] or 

‘correspondence across platforms was high’ [18]. However these studies are often based on 

titrated or technical replicates rather than clinical samples and have not sought to integrate the 

intensity-level data directly. Cross-platform analysis of microarray data has previously been 

shown to be possible and worthwhile, although this has normally been performed using 

transformed relative values [19], analogous to those from two-colour microarrays and have 

been shown to result in fold change compression [18]. 

Considering the fundamental differences in the design of the two platforms, it is not clear 

whether data derived from Affymetrix and Illumina microarrays can be reliably compared 

directly. In this study we demonstrate that it is possible to directly combine appropriate 

datasets at the intensity level to improve statistical power. We show that the inter-platform 

bias can be sufficiently reduced to expose previously obscured biological variation and that 

such data correction does not amplify meaningless noise in the results. Despite intrinsic 

differences between these technologies, suitably similar studies can be directly integrated for 

robust and powerful meta-analysis. 

Results 

Direct cross-platform integration of MAQC data 

The Microarray Quality Control (MAQC) consortium [18] investigated the reproducibility of 

microarray-derived gene expression measurements by assessing performance across 

platforms, chips, and processing sites using a titration of Universal Human Reference RNA 

(UHRR) and Human Brain Reference RNA (UBRR). We combined the complete MAQC 

Affymetrix and Illumina datasets by re-annotating probes on each platform in terms of their 

Ensembl gene targets (see Methods and Figure 1). As expected, sample A (100 % UHRR) 

replicates from the same platform were found to be more highly correlated with sample C (75 

% UHRR, 25 % HBRR) replicates than the other samples. This was also the case for sample 

B (100 % HBRR) and D (25 % UHRR, 75 % HBRR) replicates, reflecting their relative 

biological similarity (Additional file 1A). Without adjustment, correlations between the same 

samples (A, B, C, or D) processed on different platforms were much lower (R = 0.70-0.77) 

than the same samples processed only on the Illumina Beadarrays (R = 0.98-1.00; Figure 2A 

and Additional file 1A) or Affymetrix GeneChips (R = 0.99-1.00). 

Figure 1 Summary of the data analysis workflow to assess direct integration of Illumina 

and Affymetrix gene expression data. The same/similar processing steps were used 

wherever possible, Affymetrix in green, Illumina in blue 



Figure 2 Affymetrix and Illumina data from the Microarray Quality Control project 

can be directly integrated. A) Pairwise Pearson correlation heatmaps (left) demonstrate 

cross platform bias and the effects of three correction methods, mean-centering, distance-

weighted discrimination (DWD) and an Empirical Bayes method (ComBat). R values range 

from low correlation (red) to high correlation (white) through shades of orange and yellow 

reflecting the overall similarity of expression profiles based upon biological and platform-

specific variation. The shades of purple to pink indicate the samples (A = 100 % UHRR, 

B = 100 % HBRR, C = 75 % UHRR + 25 % HBRR, D = 25 % UHRR + 75 % HBRR). 

Samples are ordered by replicate and lab name rather than by platform. Green bars for 

Affymetrix samples and blue for Illumina samples. Boxplots of correlation coefficients 

within and between labs are shown in (Additional file 1. B) Cross-platform correction 

minimises technical variation whilst maintaining biological variation and differential 

expression. C) Venn diagrams demonstrate the overlap between the 1000 most differentially 

expressed genes between the MAQC UHRR and HBRR (A and B samples) using 

significance analysis of Microarrays (SAM) method with either Affymetrix (Green) or 

Illumina (Blue) alone, or Affymetrix and Illumina together (Purple) 

Adjusting for the platform differences using the mean-centring method [5] provided only a 

marginal improvement compared to uncorrected data, whilst the Distance Weighted 

Discrimination (DWD) method [20] suppressed not only the platform-specific bias but also 

legitimate biological variability between samples (Figure 2 and Additional file 1A). The 

greatest improvement was observed following correction by ComBat, a method that exploits 

variance moderation during data adjustment [21]. Similar correlations were found both across 

and within platforms, suggesting that whilst removing the platform bias, ComBat method 

retains legitimate biological variation between the biologically distinct samples (Figure 2, 

Additional file 1A). Another promising method, Cross-Platform Normalisation (XPN) [22], 

could not be evaluated with these data due to the small number of independent biological 

replicates. 

In addition to correlating expression values, we calculated variance estimates for each of the 

15,781 Ensembl genes probed by the two platforms at the inter-sample, inter-platform, inter-

laboratory, and inter-chip levels using a nested analysis of variance described in methods 

(Figure 2B). As expected, and in agreement with the correlation analysis, the difference 

between the platforms was responsible for the majority of the overall variance in raw (58 %), 

quantile-normalised (47 %), and mean-centered (44 %) expression data. Inter-platform 

variance was significantly reduced by both DWD and ComBat, to 15 % and 7 % of the total, 

respectively. Consistent with the correlation analysis, the DWD method also substantially 

reduced inter-sample variance, which is likely to obscure differences between the samples 

(Figure 2B and methods). Conversely, the ComBat method slightly increased inter-sample 

variance, potentially uncovering meaningful biological differences between the 

UHRR/UBRR titrations. 

To examine the effects of cross-platform integration on the identification of genes 

differentially expressed between UHRR and HBRR, we analysed Affymetrix and Illumina 

data both separately and as a combined dataset. Differential expression was assessed using 

the Significance Analysis of Microarrays (SAM) method [23], identifying the top 1000 

differentially expressed genes and comparing the resulting gene-lists, as described previously 

[5]. Analysis of the 60 combined Affymetrix plus Illumina HBRR and UHRR samples 

together, resulted in lower false discovery rates and a greater number of statistically 

significant differentially expressed genes (Additional file 1B) than when the Affymetrix or 



Illumina (15 ‘A’ and 15 ‘B’) samples were analysed separately. There were also many more 

overlapping genes in the combined analysis and either of the platforms following cross-

platform correction, again with ComBat performing best (Figure 2C). The overlap of 

differentially expressed genes identified by samples processed on either of the two platforms 

independently (15 ‘A’ and 15 ‘B’ samples) was also much more consistent following 

ComBat, than DWD or mean centering correction (Additional file 1C). Taken together, these 

results indicate that combining data across the two platforms increases specificity and reduces 

the number of predicted false positives, suggesting improved statistical power. 

Increasing statistical power through integration of clinical datasets 

In order to evaluate the feasibility of directly comparing intensity level gene expression of 

clinical samples processed separately on the two platforms, we first generated a new dataset 

of Illumina Beadarray data from RNA derived from breast tumour samples that were assessed 

as part of a larger published study using Affymetrix GeneChips [13,24,25] (Figure 3A). 

These samples comprised matched baseline, two-week, and three-month primary breast 

tumours from 6 patients with a clinical response to neoadjuvant Letrozole. As with the 

MAQC data, pairwise Pearson correlations of samples processed on the two platforms were 

significantly increased following correction with the ComBat method, which again 

outperformed mean-centering and DWD by maintaining variation between biologically 

independent samples (Figure 3B and Additional file 2A-C). A fourth method, cross platform 

normalisation (XPN) [22] generated similar results to ComBat, although Pearson correlations 

for the majority of matched samples across both platforms were marginally higher 

(Additional file 2A-C). In addition, a greater number of pairs of Affymetrix and Illumina 

samples clustered together with the XPN method than with ComBat (Additional file 2E). 

Figure 3 Clinical samples processed on Affymetrix and Illumina platforms. A) 

Experiment Layout of the overlapping 18 matched clinical breast cancer samples from 6 

patients from similar Affymetrix and Illumina datasets studying the of the effect of Letrozole 

in the neoadjuvant setting. B) Pairwise Pearson correlation heatmaps (left) from 18 matched 

clinical breast cancer samples from 6 patients demonstrate cross platform bias and the effects 

of three correction methods, mean-centering, distance-weighted discrimination (DWD), an 

Empirical Bayes method (ComBat) and cross platform normalisation (XPN). R values range 

from low correlation (red) to high correlation (white) through shades of orange and yellow 

reflecting the overall similarity of expression profiles based upon biological and platform-

specific variation. The inner diamond represents the matched samples from the two 

platforms. Each patient sample is numbered as untreated (−1), 14 days (−2) and 3 months 

(−3) post treatment. Uncorrected data is NOT shown (to show it on the same colour scale as 

the other plots would not demonstrate the differences between the correction methods) 

We next expanded the cross-platform dataset with 48 new Illumina baseline and matched 

three-month samples from 24 independent patients to give a total of 60 Illumina samples to 

compare with 60 Affymetrix samples from the original dataset. All patients and tumours had 

similar characteristics and were shown to clinically respond to 3 months of neoadjuvant 

Letrozole treatment with tumour ultrasound measurements showing a stable volume 

reduction of 70 % over the three-month period. The twelve samples common to both 

microarrays were retained (Figure 4A). It was necessary to correct for batch effects within the 

platforms due to date of sample processing using ComBat as described previously [3-5]. 

Without cross-platform correction, plotting the fold changes between baseline and three-

month samples across the two platforms results in reasonable concordance (R = 0.68), 



however following XPN correction we see a dramatic improvement in the correlation of fold 

changes (R = 0.99) demonstrating that XPN has greatly reduced the variation between both 

platforms while maintaining a sufficient range of highly-concordant fold changes to account 

for biological variability (Figure 4B). Multidimensional scaling (MDS) demonstrated that the 

samples common to the Affymetrix and Illumina datasets cluster together and that intra- and 

inter-platform batch effects have been minimised (Figure 4C). Prior to XPN correction 

samples from the Affymetrix and Illumina datasets form independent clusters, however after 

correction baseline samples from the same patient cluster closely together as do the three-

month samples from the same patient. XPN correction significantly reduces the bias between 

samples from different platforms, but the baseline and three-month samples from the same 

patients still cluster independently, indicating that the true biological differences (due to 

treatment) are maintained. The standard deviation across genes for all baseline or three-

month samples was higher in Affymetrix than Illumina, but was dramatically increased after 

combining the data. Correction with either ComBat or XPN reduced variation to a level 

similar to that seen in either dataset independently, further suggesting that gene-wise cross-

platform bias is reduced, while true biological variation is maintained (Additional File 2D). 

When all samples of the combined XPN-corrected dataset were clustered by a published list 

of genes identified as most changed in response to neoadjuvant Letrozole [13,24] the baseline 

and three-month samples clustered together regardless of platform (Figure 4D). 

Figure 4 Integration of partially overlapping Affymetrix and Illumina datasets. A) 

Relationship between the baseline and 3 month samples processed on Affymetrix and 

Illumina platforms. R = repeated samples processed on Illumina BeadChips B) Scatterplot 

demonstrating the fold changes between the Affymetrix and Illumina datasets before (grey) 

and after XPN correction (black). C) Multidimensional scaling plots before and after XPN 

correction demonstrating the relationship between overlapping samples (circles = baseline, 

squares = 3 months post treatment with Letrozole, open symbols = Affymetrix, filled 

symbols = Illumina, triangles = Illumina repeated samples, different colours represent 

different patients). D) Hierarchical clustering and heatmap based on published list of genes 

identified as most changed between baseline and 3 month samples in patients treated with 

neoadjuvant Letrozole. Colour bar indicates the platform the sample was processed on with 

Affymetrix in green and Illumina in blue. E) Effect of cross-platform Integration and 

correction on differential gene expression analysis. Plot shows the relationship between the 

estimated false discovery rate relative to the number of significant differentially expressed 

genes identified using SAM analysis of Affymetrix and Illumina datasets independently and 

when combined both before and after XPN correction. Venn diagrams showing the 

overlapping genes between the 1000 most differentially expressed genes using the SAM 

method are available in Additional file 3 

Increasing sample number by integration of the Affymetrix and Illumina datasets resulted in 

the identification of a greater number of significantly differentially expressed genes using 

pairwise SAM (i.e. there was greater consistency of the changes between baseline and three-

month samples from the same patients) at a given false discovery rate (Figure 4E). 

Interestingly, correction of the combined data by XPN showed only minor improvement 

compared with uncorrected data in a pairwise SAM analysis with an impressive 93.8 % 

overlap of genes (Additional file 3A). However, when a non-pairwise SAM method was used 

(i.e. two unmatched groups: (i) all baseline samples and (ii) all three-month samples), XPN 

correction of the integrated data was essential (Additional file 3B&C). There was an 

impressive 90 % overlap of common differentially expressed genes following XPN 

correction when comparing the baseline samples from one platform with the three-month 



samples from the other. By contrast, the overlap between baseline and three-month groups in 

each dataset (Affymetrix or Illumina) independently was only 42.4 % (Additional file 

3A&B). Finally, comparing the uncorrected Affymetrix baseline versus Illumina three-month 

samples (and vice versa) with the XPN-corrected equivalent resulted in a very poor overlap 

(12.1 %), indicating the importance of XPN correction for robust differential gene expression 

of cross-platform integrated datasets. 

Published Affymetrix and Illumina datasets can be successfully integrated 

Two publicly available non-subtype specific primary breast cancer datasets of comparable 

size and composition (Nadiri et al. [26] n = 153 on Illumina WG6v1 and Desmedt et al. [27] 

n = 198 on Affymetrix HGU133A) were assigned to molecular subtypes using centroids from 

the intrinsic gene signatures of Sorlie et al. (2003) [5], Parker et al. [28], and Hu et al. [29]. 

This was performed on each dataset independently and then both datasets were combined, 

both before and after XPN correction. Clustering the integrated data before correction 

resulted in two distinct clusters representing the two datasets, highlighting the platform-

specific systematic bias (Figure 5). Following XPN correction the integrated data clustered 

based on true biological differences with two clear clusters representing the basal/Her2 

intrinsic subtype and the luminal subtype for each of the intrinsic centroids (Figure 5). 

Assignment of molecular subtype was highly consistent (Sorlie: 96.6 %, Hu: 94.9 % and 

Parker: 96.6 %) between uncorrected and XPN-corrected datasets, further suggesting that the 

XPN correction method does not adversely affect the biological interpretation of the data. 

Figure 5 Comparison of primary breast tumour gene expression profiles generated on 

Affymetrix and Illumina platforms. The Nadiri et al. [26] study used Illumina WG6v1 

BeadChips, whilst the Desmedt et al. dataset [27] was generated with Affymetrix HG-U133A 

arrays. A) Before cross-platform correction. B) After XPN. Hierarchical clustering of 

tumours is based upon the 500 most variable genes (thumbnails show all genes). i) Subtypes 

were assigned by three methods Sorlie et al. (2003) [5], Parker et al. [28] and Hu et al. [29]. 

Red = basal, purple = ERBB2, blue = luminal A, light blue = luminal B, green = normal-like. 

Clusters of genes associated with the subtypes are highlighted as follows; ii) ERBB2 gene 

cluster, iii) luminal gene cluster, iv) basal gene cluster 

Once again, increasing sample number through integrating datasets results in a greater 

number of significantly differentially expressed genes, between the Sorlie et al. basal and 

luminal-A or the more subtle comparison of luminal A and luminal B subtype samples, at a 

given FDR (Additional file 4). Uncorrected integrated data performs poorly in comparison to 

the integrated data after XPN correction or indeed to either dataset independently. 

Discussion 

The biggest obstacles to the direct comparison of data obtained from different microarray 

platforms are differences in the sequence and the number of probes that target each transcript. 

Many studies simply use the most highly or variably expressed probe to represent a gene, 

despite evidence that some probes hybridise to multiple genes and others have out-dated or 

incorrect annotation [30-34]. Limiting integration of data to only those genes where the probe 

sequences are identical, or comparing measurements simply based upon the official gene 

symbol would severely restrict our ability to evaluate whether data from different platforms 



can be directly integrated. For this reason, probes were re-annotated in this study using 

alternative CDFs [32] for Affymetrix and a validated composite look-up list for Illumina [35]. 

The microarray quality control (MAQC) project declared that expression values generated on 

different platforms cannot be directly compared because unique labelling methods and probe 

sequences will result in variable signals for probes that hybridize to the same target [18]. 

However in the interests of making the best use of published data on valuable clinical 

material, we asked whether it would be reasonable to integrate Affymetrix and Illumina data 

in the interests of improving statistical power and unearthing true biological findings. It has 

previously been shown that robust classifiers developed using data generated from one 

platform can accurately predict the phenotype of samples assessed on a different platform 

[36]. In this study we demonstrate that it is possible to combine Affymetrix and Illumina gene 

expression data for meaningful integrative reanalysis. As we have previously demonstrated 

for either platform alone, integration of microarray data should only be performed with 

appropriately similar datasets [3-5], although exactly where the similarity threshold lies is an 

important consideration that is still to be determined. 

During our analyses we found the Distance Weighted Discrimination (DWD) method [20], 

which has been used for cross-platform normalisation in a number of published studies (cited 

by more than 50), inadequate in terms of its ability to remove technical noise and preserve 

biological variability. Perhaps this method is best suited to transformed data such as that 

generated by two-colour cDNA studies. We used relatively strict filter-thresholds in our 

analyses, including conservative detection p-values to limit the analysis to clearly expressed 

genes as a previous meta-analysis approach found low or intermediate expressing genes to 

have poorer inter-platform reproducibility than highly expressed genes [14]. Another recently 

published comparison of cross-platform normalization methods also found XPN to have the 

highest inter-platform concordance [37]. Like our study this focused on direct adjustment 

approaches, where the major batch effect (platform used) is clearly identifiable rather than 

surrogate variable analysis (SVA) approaches [38,39], which look at latent or unknown 

variables, such as when samples are processed on different days, in different groups or by 

different people. Direct integration approaches are only appropriate for small numbers of 

highly similar datasets specifically selected to answer clearly defined questions, as opposed 

to recent global survey-based approaches used to identify common tissues or expression 

profiles across all available datasets [40-42]. Whilst integrating data across platforms 

increases the number of samples, it also has an impact on the number of genes represented. 

Genes may be ‘lost’ at the reannotation stage if not present on both arrays. Therefore 

integration is a trade-off between increased sample numbers and decreased gene number. 

Sample numbers are perhaps the biggest factor in the reliability of microarray studies. Ein-

Dor et al. suggested that thousands of samples are needed to generate a robust gene list for 

predicting outcome in cancer [9]. The overlap of differentially expressed genes between 

single and integrated Affymetrix and Illumina datasets was found to be high, although it 

should be remembered that it has previously been demonstrated that greater biological 

reliability is seen between studies at the pathway, rather than individual gene level [8]. 

Conclusion 

In this study we sought to evaluate whether it is reasonable to directly combine appropriate 

Affymetrix and Illumina datasets for reanalysis. We found that despite fundamental 

differences in the technology, data from these platforms can legitimately be combined at the 



normalised and corrected intensity level, rather than the fold change level for robust 

reanalysis with improved statistical power than the original datasets alone. 

Materials and Methods 

Data generation 

Affymetrix gene expression data was generated from primary breast tumour core biopsies 

before, 10–14 days after and approximately 3 months following neoadjuvant Letrozole 

treatment as part of a previously described clinical study [13,25]. The research was carried 

out in compliance with the Helsinki Declaration, with all patients giving informed consent to 

be included in the study which had been approved by the local ethics committee (LREC; 

2001/8/80 and 2001/8/81). RNA was extracted, amplified and labelled as previously 

described [25], before hybridisation to HGU-133A GeneChips (Affymetrix) according to the 

standard protocol. RNA from a subset of 18 samples (baseline, 10–14 days and 3 month 

samples from 6 patients defined as clinical responders to treatment) used in the 

aforementioned study [13,25] was then amplified using the WT-Ovation FFPE System 

Version 2 (NuGEN), purified using the Qiaquick PCR Purification Kit (Qiagen), biotinylated 

using the IL Encore Biotin Module (NuGEN), purified using minElute Reaction Cleanup Kit 

(Qiagen) and quantified using a Bioanalyser 2100 with RNA 6000 Nano Kit (Agilent). cRNA 

was then hybridised to Human HT-12v3 expression Beadarrays (Illumina, Cambridge, United 

Kingdom) according to the standard protocol for NuGEN amplified samples. A new Illumina 

gene expression dataset was also generated from primary breast tumour core biopsies before, 

10–14 days after and approximately 3 months following neoadjuvant Letrozole treatment. 

RNA was extracted using the miRNeasy Mini Kit with RNAse Free DNAse treatment 

(Qiagen). RNA was then amplified, labelled, purified, quantified and hybridised as described 

above for the Illumina 18 sample subset. All raw gene expression files and clinical annotation 

generated in this study are publicly available from the caBIG supported Edinburgh Clinical 

Research Facility Data Repository (https://catissuesuite.ecmc.ed.ac.uk/caarray/). 

Published MAQC and breast cancer datasets 

Methods for the MAQC Illumina Human-6 Expression BeadChip (v1) and Affymetrix U133 

Plus 2.0 array hybridisations are provided in the original study [18]. The NCBI GEO 

accession is GSE5350. Publicly available primary breast cancer datasets [26,27] were 

downloaded datasets from NCBI GEO and ArrayExpress. Breast cancer subtypes were 

assigned using three signatures from Sorlie et al. (2003) [5], Parker et al. [28] and Hu et al. 

[29] as described previously [43]. 

Data processing and analysis 

All data was processed using the R/Bioconductor software and packages [44], see Figure 1 

for the workflow, scripts are available from the authors by request. A custom Chip Definition 

File (CDF) file [32] was used to map the Affymetrix data to Ensembl gene annotations and 

RMA implemented by the affy package used for normalisation. Illumina probe profiles were 

quantile normalised using the lumi package and mapped to Ensembl gene sequences using a 

composite list comprising mappings from reMOAT [35], BioMart and a custom BLAST 

sequence search of the online Ensembl gene database where there was agreement between at 

least two of the resources (Additional File 5). Where multiple Illumina probes represented an 



Ensembl gene the mean expression level was calculated. The data was then filtered using 

Illumina or Affymetrix probe detection P-values, removing probes that were undetected 

(p > 0.05 in the total minus 3 samples). 

A number of batch-correction and cross-platform normalisation methods were evaluated, 

including mean centering [5], ComBat [21], Distance Weighted Discrimination [20] and 

cross-platform normalisation (XPN) [22] in order to determine the most effective method for 

reducing the bias imposed by the different platforms. Principal component analysis and 

hierarchical clustering analysis was performed using Cluster [45]. Significance analysis of 

Microarrays (SAM) [23] pairwise differential gene expression analysis was performed using 

the siggenes package (R/Bioconductor). 

We applied a linear additive model to log-scale expression data to estimate the variances in 

the MAQC dataset. The variation introduced at a given level propagates additively 

throughout subsequent levels, allowing these variance contributions to be modelled. The total 

variance for a given gene was assumed to be the aggregate of individual contributions from 

the inter-sample, -platform, -laboratory, and -replicate variability. These contributions are 

assumed to be independent and randomly drawn from log-normal distributions and, as all 

factors meet in unique combinations a nested variance model is individually applied to each 

gene such that the model of the measured expression, Xijkl, of each probe is defined as 

Χijkl = μ + Αi + Bij + Cijk + Dijkl + εijkl.(i = 1,… ,s; j = 1,…,t; k = 1,…,u; l = 1,…,v) where μ is the 

geometric-mean expression of the gene from the given sample-type, Ai is the effect attributed 

to the i
th

 sample, Bij is the random effect of the j
th

 platform, Cijk is the random effect of the k
th

 

lab, Dijkl is the random effect of the l
th

 replicate hybridisation, and εij is the residual 

measurement error. Finally, s is the total number of samples, t is the number of platforms on 

which the samples were assessed, u is the number of labs processing the arrays, and v is the 

number of replicate samples in the corresponding platform processed in each lab. The 

variance of any given observation, Xijkl, is σ
2

A + σ
2

B + σ
2
C + σ

2
D + σ

2
; these components 

represent the inter-sample, inter-platform, inter-laboratory, and inter-replicate variance 

respectively. The estimation of σ
2

A σ
2

B, σ
2

C , σ
2

D, and σ
2
 is performed independently for each 

gene as stated in [46]. Models of this kind are formally defined in [47,48] and have 

previously been used to optimise gene-expression experimental design [49,50]. All variance 

estimates were performed using a REML procedure implemented in the nlme package in R 

[51,52]. 
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Additional files 

Additional_file_1 as PDF 

Additional file 1 A) Boxplots showing the Pearson correlation coefficients within and 

between labs. B) Plot showing the relationship between the false discovery rate and the 

number of genes identified comparing UHRR (A) with HBRR (B) using either 15 Affymetrix 

or 15 Illumina replicates or both together. C) Venn diagrams showing the overlaps between 

the 1000 most significant differentially expressed genes using the SAM method (each 

comparison is 15 ‘A’ samples versus 15 ‘B’ samples). 

Additional_file_2 as PDF 

Additional file 2 A) Boxplots showing the range of Pearson correlation coefficients between 

18 matched samples (including baseline, 14-day and 3 month from 6 patients) for different 

correction methods. B) Affymetrix dataset and C) Illumina dataset boxplots showing the 

range of Pearson correlation coefficients between all possible sample combinations for 

different correction methods. D) Boxplots of standard deviation for each gene across all 

samples from the same subgroup (baseline and 3 months) for Affymetrix and Illumina 

datasets independently and when combined both before and after correction with either 

ComBat or XPN. E) Hierarchical clustering of samples based on Pearson correlation after 

either ComBat or XPN correction. Colour denotes samples from the same patient, the 

suffixes on patient ID’s denote as follows: ‘.1’ = Baseline, ‘.2’ = 14-day and ‘.3’ = 3 months. 

Additional_file_3 as PDF 

Additional file 3 Venn diagrams showing the overlaps between the 1000 most significant 

differentially expressed genes using A) pairwise SAM analysis and B&C) non–pairwise 

SAM analysis with Affymetrix (Green), Illumina (Blue) and combined (Teal). 

Additional_file_4 as PDF 

Additional file 4 Plots showing the relationship between false discovery rate against the 

number of significant differentially expressed genes identified across a range values of delta 

using SAM analysis in Affymetrix (Desmedt) and Illumina (Nadiri) datasets independently 

and when combined both before and after XPN correction to identify genes differentially 

expressed between the basal and luminal A (A) or luminal A and luminal B subtypes (B). 

Additional_file_5 as XLS 

Additional file 5 Excel workbook with lists of the overlapping Ensembl gene identifier 

agreement for reMOAT, BLAST and BioMART; Lists of significant differentially expressed 

genes from SAM analysis; List of the 500 most variable genes from Figure 5. 
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