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Abstract

Recent stochastic evolutionary models have shown that the most likely

convention when the probability of a mutation is su±ciently small is co-

ordination on the risk-dominant strategy rather than the payo®-dominant

one. This paper looks at the consequences of player movement between

locations when there are constraints which limit the number of agents

who can reside at each location. If the constraints are strong then the risk-

dominance result continues to hold. However, we show that when su±cient

movement is possible, the most likely outcome involves a mixed state in

which agents at di®erent locations coordinate on di®erent strategies. In the

asymmetric case, it is the location with the stronger constraint, limiting

movement, that coordinates on the payo®-dominant strategy.

JEL classi¯cation numbers: C72, C73, D83.

Keywords: Evolution, Local Interaction, Equilibrium Selection.
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1 Introduction

How do players know which equilibrium to play when a game has multiple equi-

libria? This question has been at the heart of recent research in game theory.

The focus of attention has been the 2x2 Coordination Game such as the one given

in ¯gure 1 that has two Nash equilibria in pure strategies, one of which is Pareto-

e±cient but is riskier to play than the other. Harsanyi and Selten (1988) call

the former equilibrium payo®-dominant and the latter risk-dominant. Schelling

(1960) appeals to the prominence of e±ciency to suggest that agents will play

for the payo®-dominant equilibrium in the expectation that other agents will be

similarly attracted by its focal status. But Harsanyi and Selten have emphasised

that such an expectation may not be well-founded. If each player optimises on

the assumption that the opponent is equally likely to play either strategy, the

outcome will be the risk-dominant equilibrium of the game, which therefore also

has a focal status that may outweigh that of the payo®-dominant equilibrium.

Evolutionary game theory has given the argument another perspective. By

modelling the process by which agents adjust their strategies out of equilibrium

we can analyse how it is that one equilibrium strategy rather than another may be

selected. The principle underlying the dynamic systems studied in evolutionary

game theory is that successful strategies will be used by a greater proportion of

the population in future periods.
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          s1           s2

s1   5,5   0,3
s2   3,0   4,4

Figure 1

2x2 Coordination Game

To illustrate the idea consider the Coordination Game of ¯gure 1. The game

has two pure-strategy equilibria, e1 = (s1; s1) and e2 = (s2; s2). Notice that e1 is

payo®-dominant while e2 is risk-dominant. There is also a mixed-strategy equi-

librium where s1 is played with probability 2=3. When expressed in terms of the

fraction q of the population using strategy s1, these Nash equilibria correspond

respectively to q = 1, q = 0 and q = 2=3. Assume that members of the popu-

lation are randomly matched each period to play this game. They adjust their

choice by playing the strategy that yielded the highest expected payo® in the

previous period when they are given the chance to do so. This simple adjustment

process leads to a dynamic system for which the population states q = 1 and

q = 0 are stable stationary points. Denote these stationary states by E1 and E2

respectively. Consider the case where q > 2=3. If a revision opportunity arises,

then the optimal response against the current state is to play s1. The proportion

playing s1 will therefore grow over time until the state where everyone plays s1

is reached. The basin of attraction of E1 is therefore (2=3; 1], since it will be

selected from any state where q > 2=3. Similarly the basin of attraction of E2,

where everyone plays s2, is [0; 2=3). A third possible stationary state is q = 2=3.
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At this point, no agent has an incentive to change his strategy. However, only

E1 and E2 are locally stable.

Kandori et al. (1993) and Young (1993) added to this analysis by assuming

that agents sometimesmutate by changing their strategies at random. Each agent

has a positive probability of mutating each period. There is therefore a small but

positive probability that there will be a large number of simultaneous mutations.

Once in an equilibrium, it is therefore no longer the case that the system will

stay there forever because enough simultaneous mutations will eventually occur

to move the system into the other basin of attraction. The system therefore needs

to be described in terms of a probability distribution over the states.

Kandori et al. show that, when the probability of mutation goes to zero, the

distribution becomes concentrated entirely on the risk-dominant equilibrium, E2.

The reason for this is that more mutations are required to move from E2 to E1

than from E1 to E2. As the mutation rate goes to zero the probability of the

¯rst transition becomes negligible compared with the second. The time-limit of

the distribution over population states therefore puts all its mass on E2 when the

mutation rate becomes vanishingly small. We can therefore say that E2 is the

most likely equilibrium when the mutation rate is very small. (Following Kandori

et al., equilibria that have a positive probability as the mutation rate goes to zero

will be called long-run equilibria). Ellison (1993) extends this result to a model

of local interaction where players are located around a circle and interact only

with a subset of the population who are close to them.
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The stable states can be thought of as conventions. If a society is following

a particular convention then it is in the interest of all participants to conform.

The convergence to risk-dominance suggests that the dynamic process will not

necessarily lead to the best convention for society. This negative result has been

countered by introducing movement between locations. In Kandori et al., the

location structure does not matter since each agent is equally likely to be matched

with every other agent in the population. In models of local interaction, agents

are more likely to be matched with neighbouring players. An agent's choice

of location is therefore important, since this will determine his or her expected

payo®. Thus, if agents are given the chance, they will move to the location

where they get the highest expected payo®. In Ellison's model, however, this

phenomenon is absent, since agents are located at ¯xed positions around a circle

and remain there. If this assumption is relaxed, it may be more di±cult to upset

the payo®-dominant equilibrium because agents may move away from a locality

in which deviant mutations have occurred in search of a higher payo®. Similarly,

the risk-dominant equilibrium may now be easier to upset since a few localised

mutations may entice movement towards this locality. Ely (1995) presents a

model based on this idea in which such movement makes the long-run equilibrium

E1 rather than E2.

A third possibility when local interaction is modelled is for conventions to

co-exist. We often observe di®erent societies coordinating on di®erent strategies.

For example, in some cultures it is conventional to greet people with a handshake
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whereas in others a peck on the cheek (or on each cheek) is the conventional

thing to do1. We demonstrate how the co-existence of conventions can arise as

a result of constraints on the number of people that can reside at each location.

Capacity constraints may arise from physical aspects of the locations or may

be imposed by local governance. For example, there may be a certain number

of slots at each location, limiting the number that can play there, or one can

imagine neighbouring societies who impose restrictions on the maximum number

of inhabitants. Once this limit is reached, further immigration is prohibited. Such

constraints may be imposed when there is a negative payo® to congestion. There

may also be a minimum number of agents at each location. Such a constraint

may arise when some agents are immobile or simply prefer to stay put. We will

call these agents patriots.

Goyal and Janssen (1997) ¯nd that conventions can co-exist if there is some

initial period of isolation when the societies evolve to di®erent conventions. They

present a deterministic model that restricts attention to non-exclusive conventions

where agents can choose to be °exible at some cost allowing them to coordinate

correctly with whoever they meet. Co-existence then arises if the cost is at some

intermediate level. In contrast, there is no initial period of isolation in our model.

We show that the situation where two societies have di®erent conventions can be

the most likely scenario when constraints are present. When no movement is

possible, we know the long-run equilibrium will involve agents from both islands

1I'll avoid completing the analogy by suggesting one of the conventions is e±cient!
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coordinating on the risk-dominant strategy. This continues to be the case if a

limited amount of movement is possible. The coexistence arises when su±cient

movement is possible. That is, when the capacity constraints are not too strong

and a su±cient proportion of the population is mobile. In equilibrium one loca-

tion will play the e±cient equilibrium and the other will play the risk-dominant

one with a binding constraint (either the location playing the risk-dominant equi-

librium has only patriots left or the location playing the e±cient equilibrium is

full to capacity). In the symmetric case each location is equally likely to be the

one that plays the e±cient equilibrium. The most interesting result arises when

we look at the asymmetric case where the locations have di®erent capacity con-

straints and di®erent numbers of patriots. The location that has the stronger

capacity constraint (or fewer patriots) will be the one that plays the e±cient

equilibrium.

In section 2 we look at a simple symmetric model where strategy revision is

instantaneous, i.e. everybody revises their strategy each period, but the chance

to move to the other location only arises with some positive probability. We start

with this model to make clear the techniques that are being used. In section 3 we

show that the results hold when there is inertia in strategy revision and section

4 looks at the asymmetric case.
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2 Basic Model

We begin by presenting a basic model of local interaction with movement between

locations. We assume that there are two islands and agents are randomly matched

with someone on the same island to play the game of ¯gure 2 in which A > C,

D > B, A > D and A+ B < C +D. Hence e1 = (s1; s1) is the payo®-dominant

equilibrium while e2 = (s2; s2) is risk-dominant. The probability with which s1 is

played in the mixed-strategy equilibrium is q¤ = (D¡B)=(A¡C+D¡B) > 1=2:

          s1           s2

s1   A,A   B,C
s2   C,B   D,D

Figure 2

Each island has pN patriots who never change location where 0 < p < 1:

The global population is 2N and the capacity of each island is cN where c > 1.

The maximum number of agents who can reside at each location is therefore dN

where d = min(c; 2¡p) and 1 < d < 2: Strategy revision is instantaneous, that is

everybody chooses a strategy that is a best response to the state in the previous

period. The opportunity for an agent to change islands arises with a positive

probability each period. When such an opportunity arises, a mobile agent will

choose the island and strategy that would have maximised their expected payo®

in the previous period. If the agent is indi®erent between two choices then we

assume they choose either with a positive probability. However, an agent cannot

move to an island that is full to capacity. If the number of agents who wish to
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move to island i is greater than (Nd¡ni), where ni is the current number on the

island, then only (Nd¡ ni) of them will be allowed to move.

The state space is

S = f(n
1
1

n1
;

n12
2N ¡ n1

) : n11 2 (0; 1; :::; n1); n12 2 (0; 1; :::; 2Nn1); N(2¡ d) 6 n1 6 Ndg

where n1i is the number playing strategy s1 on island i and n1 is the number of

agents on island 1. Denote a state of the system by s = (q1; q2; n1) 2 S, where qi

is the proportion of the population playing s1 on islands i.

The dynamics give rise to a Markov process, P , on state space S. From any

initial condition, the system will move to a state or set of states where it remains.

Following Young (1993), such a set will be called a recurrent communication class.

The recurrent communication classes are characterised later.

Without mutations, the system will move to one of these classes and remain

there. Now assume that each agent mutates independently, with probability ",

with the consequence that a strategy is re-selected at random on their current

island2. This allows the system to move between classes and gives rise to the

2All the results go through if we assume a strategy and location is re-selected at random
by a mobile agent with the restriction that the capacity constraint cannot be broken. If the
number who re-select a location at random would take that location over its capacity then that
island becomes full to capacity and some agents select a strategy at random on their current
island instead.
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perturbed transition matrix P " given by,

P "ij = Pij(1¡ ")2N +
2NP
k=1

cijk"
k(1¡ ")2N¡k (1)

where Pij is the ijth element of P , the unperturbed transition matrix and cijk

is some non-negative number that depends on the exact speci¯cation of the dy-

namics.

Proposition 1: P " has a unique stationary distribution ¹(") and lim"!0 ¹(")

exists.

Proof. Young (1993) shows that this is true if P " is a regular perturbation

of P which requires that the following conditions hold,

i) P " is aperiodic and irreducible.

ii) lim"!0 P "ij = Pij :

iii) P "ij > 0 for some " implies 9r > 0 such that 0 < lim"!0 ²¡rP "ij < 1:

From (1) conditions (ii) and (iii) are clearly satis¯ed. When P "ij > 0 then r is

0 if Pij > 0 or equal to the lowest value of k such that cijk > 0. We now show that

P " is aperiodic and irreducible. The diagonal elements of P " are all positive. This

is because in any state, there is a positive probability that nobody moves and

that there are mutations that keep the same numbers playing each strategy on

both islands. Hence P " is aperiodic. There is a positive probability of going from

any state to the class in which both islands coordinate on the same equilibrium.
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This simply requires a certain number of mutations on each island. We can then

have any number of agents on each island up to Nd and for a given number of

agents on each island, we can have any number playing each strategy, as there is

a positive probability that nobody moves while a certain number mutate. It is

therefore possible to go from any state to any other and the process is irreducible.

De¯nition 1: The set of states in the support of lim"!0 ¹(") will be called

the long-run equilibria.

De¯nition 2: A k-tree, h, de¯ned on state space R (the set of recurrent

communication classes), is a set of ordered pairs,(i ! j) i; j 2 R, such that each

state x 6= k is the initial point of one arrow and from every state there is a path

which leads to k.

Let M(i; j) be the minimum number of mutations required to go from class i

to j. We know that such a number exists because P " is irreducible. The cost of

a k-tree is
P

(i!j)2hM(i; j):

Proposition 2: The long-run equilibria are the set of states in the recurrent

communication class which has the lowest cost k-tree.

For the proof the reader is referred to Young (1993). The intuition is clear.

The long-run equilibria are the set of states in the recurrent communication class

that is easiest to °ow into from all other recurrent communication classes. Hence

to ¯nd the long-run equilibria we need to characterise the recurrent communica-

tion classes and the costsM(i; j) of moving between them and then ¯nd the class
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that has the lowest cost k-tree.

Recurrent communication classes.

One recurrent communication class is the set of all states where q1 = q2 = 0.

The basin of attraction of this class is f(q1; q2) : q1 6 q¤; q2 6 q¤g, since best

replies will lead both islands to coordinate on the risk-dominant equilibrium. In

this class the system will move between states where q1 = q2 = 0 and n1 2

(N(2 ¡ d); Nd), since agents move with a positive probability when they are

indi®erent and n1 must lie in this range due to the constraint
3.

Now consider any initial condition with q1 > q¤ and q2 6 q¤. Best replies

will move the system towards q1 = 1 and q2 = 0. This will result in movement

into island 1, since the higher payo® equilibrium is being played there. The

system will eventually move to the equilibrium state (1; 0; Nd). Similarly the set

of states with q1 6 q¤ and q2 > q¤ form the basin of attraction of the equilibrium

(0; 1; N(2¡d)). The ¯nal possibility is for both populations to coordinate on the

payo®-dominant equilibrium. The basin of attraction for this class is f(q1; q2) :

q1 > q¤; q2 > q¤g, and the recurrent communication class is the set of all states

with q1 = q2 = 0 and n1 2 (N(2 ¡ d); Nd). The four recurrent communication

3If agents are randomly paired then a mobile agent who knows that her current location has
an even number of agents will strictly prefer not to move when agents on both locations are
coordinating on the same strategy to avoid the small chance of remaining unmatched. However,
it is not necessary to assume that agents know the exact number at their current location. The
only crucial restriction is that the dynamics must reinforce successful strategies. A boundedly
rational agent may adopt a successful strategy simply through imitation. If we want to assume
agents do know the exact numbers then we need the additional assumption that agents move
around in pairs or that in the event of an odd one out, mobile agents are always matched.
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classes are illustrated in ¯gure 3.

              Class                         Class                       Class                         Class
                 1                               2A                                          2B                                            3

    R   P R          P

Is.1         [N(2-d),Nd]                     Nd                          N(2-d)                   [N(2-d),Nd]

    R   R P          P

Is.2         [N(2-d),Nd]                  N(2-d)                          Nd                      [N(2-d),Nd]

Figure 3: Recurrent communication classes.

Row i of circles illustrates the equilibrium played on island i

in each of the classes (risk dominant, R or payo® dominant, P ),

plus the values ni can take in that class.

Lemma 1: To ¯nd the class which has the minimum cost k-tree it is su±cient

to ¯nd the minimum cost trees between just three classes, ruling out either 2A or

2B.

Proof. Let h be a minimum cost k-tree. Adjust the tree so that at least

one of 2A or 2B have no predecessors without changing the cost. This is easy to

do since i ! 2A can be transferred to i ! 2B (or vice versa) leaving 2A with

no predecessors (and this will not change the cost as M(i; 2A) = M(i; 2B) and
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M(2A; i) = M(2B; i) for i 2 (1; 3) from symmetry). We can split the adjusted

k-tree into two parts, a minimum cost k
0
-tree de¯ned on the vertices (1,2,3) and

2A added at minimum cost. It must be a minimum cost k0-tree because any

adjustments which reduce the cost would also reduce the cost of the k-tree but

we started with a minimum cost k-tree. Hence we can ¯nd the minimum cost

k-tree by ¯rst ¯nding the minimum cost k0-tree and then adding a 2-state at

minimum cost. This cost will be common to all k-trees and so does not need to

be considered.

1-trees 2-trees 3-trees

A1 : 3 ! 2 ! 1 A2 : 1 ! 2 Ã 3 A3 : 1 ! 2 ! 3

B1 : 2 ! 3 ! 1 B2 : 3 ! 1 ! 2 B3 : 2 ! 1 ! 3

C1 : 2 ! 1 Ã 3 C2 : 1 ! 3 ! 2 C3 : 2 ! 3 Ã 1

Table 1

k-trees

This leaves nine trees that we need to compare (3 for each communication

class). These trees are illustrated in table 1. To compare the costs of the k-trees

we need to ¯nd the minimum cost of moving between the 3 classes. Consider

the transition from class 1 to 2A. We want the minimum number of mutations

required to get into the basin of attraction of class 2A,f(q1; q2) : q1 > q¤; q2 6 q¤g,
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from a state in class 1, (0; 0; n1). Hence we require a proportion q
¤ of island

1 to mutate. Now the less populated island 1 is, the smaller the number of

mutations required to achieve this. The minimum value of n1 is N(2 ¡ d) so

M(1; 2A) = N(2 ¡ d)q¤. The dynamics will then move the system to the state

(1; 0; Nd). The cost of moving back is Nd(1 ¡ q¤) since we require the system

to move back to a state where q1 6 q¤ and island 1 is full to capacity. A direct

jump will not necessarily yield the minimum number of mutations. For example

consider the transition from class 1 to 3. A direct jump from class 1 to 3 requires

2Nq¤ simultaneous mutations. However, it is easier to go from class 1 to 2

and then from 2 to 3 since this only requires 2(2 ¡ d)Nq¤ mutations. Hence

M(1; 3) = 2(2¡ d)Nq¤. All the minimum costs are given in ¯gure 4.

 (2-d)Nq*
       1        2

dN(1-q*)

 2(2-d)Nq*
       1        3

2N(1-q*)

 (2-d)Nq*
       2        3

(2-d)N(1-q*)

Figure 4

Minimum costs (M(i; j)'s)of moving between recurrent

communication classes.
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Proposition 3: The long-run equilibria are: the set of states in class 1 if

d < 2q¤; states 2A and 2B if d > 2q¤.

Proof. From proposition 2, the long-run equilibria are the set of states in the

recurrent communication class which has the lowest cost k-tree. It is a simple

exercise to see that the lowest cost 1-tree is A1. The other two 1-trees include

the transition 3 ! 1, which has the same cost as A1 but also include a transition

from class 2 at some cost. Similarly, the lowest cost 3-tree is A3 as the other two

3-trees include the transition 1 ! 3, which has the same cost as A3. Finally, the

lowest cost 2-tree is A2. The other two 2-trees include the transitions 3 ! 1 and

1 ! 3. In each case the cost is reduced by going directly to class 2.

The only di®erence between the cost of A2 and A3 is in the transition between

classes 2 and 3. Since M(2; 3) > M(3; 2) (as q¤ > 1
2
), A2 always has a lower cost.

This leaves two candidates for minimum cost k-tree, A1 and A2. The cost of A1

is less than the cost of A2 if M(2; 1) < M(1; 2). Hence class 1 has the lowest cost

k-tree if

d(1¡ q¤) < (2¡ d)q¤ => d < 2q¤

If the inequality is reversed then class 2 has the minimum cost k-tree.
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d                                                         d=2q*

                                                                      Key

            2                                                                     A1 :1             2           3

                                           A2                                                     A2 : 2           1

        3

                                                    A1

1
                                      0.5                    1                  q*

Figure 5

Long-run equilibria

The long-run equilibria are illustrated in ¯gure 5. Hence the long-run equi-

libria are the set of states where everyone plays s2, the risk-dominant strategy if

d < 2q¤. The critical value of d where class 1 becomes the long-run equilibrium

increases with the degree of risk-dominance. If d is above this critical value then

class 2 has the minimum cost k-tree. The long-run equilibria are the two states

where agents on the two islands coordinate on di®erent strategies. In fact, from

the symmetry of the cost structure, states 2A and 2B will each have a probability

of one half in the limit-distribution.

The intuition follows from the analysis. In class 2, the island playing the

payo®-dominant equilibrium becomes more populated as d increases because in

equilibrium it is full to capacity. The transition to class 1 therefore becomes more

di±cult. Eventually class 1 becomes more costly to °ow into. Hence with su±-
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ciently large capacities/su±ciently few patriots, the payo®-dominant equilibrium

will be played on one of the islands. We never observe class 3 as the long-run equi-

librium where both islands coordinate on the payo®-dominant equilibrium. The

reason for this is that in class 2 all mobile agents want to move out of the island

playing the risk-dominant equilibrium. However, no movement out is possible

because the other island is full to capacity (or because it contains only patriots).

Hence it is as if the other island does not exist. As it is more di±cult to get out

of a risk-dominant equilibrium than to get in, the long-run equilibrium involves

the island coordinating on the risk-dominant strategy45.

4We have only considered the case where there is a constraint (d < 2): If d = 2 (p = 0 and
c > 2) then the island playing the risk-dominant equilibrium becomes empty. As in Ely (1995),
the long-run equilibrium would then involve all agents coordinating on the payo®-dominant
strategy.

5One of the interpretations for the capacity constraints given in the introduction is that they
are imposed by local governance to limit congestion. A congestion e®ect can be introduced by
imposing a tie-breaking rule where agents move to an island that is less congested when they
are otherwise indi®erent. With this additional e®ect, class 1 reduces to the state (0; 0; N) and
class 3 reduces to the state, (1; 1; N). The four recurrent communication classes are then 4
single states. This will not signi¯cantly a®ect the long-run equilibria as only one mutation
is required to get agents moving between islands. (The conditions in proposition 3 become,
d < 2q¤ + 1=N and d > 2q¤ + 1=N).
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3 Inertia in strategy revision.

The previous results rely on the assumption that strategy revision is instanta-

neous. We now extend the model to the case where there is a positive probability

that agents simply continue to use the strategy they used in the previous pe-

riod. However, if they do revise their strategy they do so by playing a best

reply. As before, there is a positive probability that they are given the chance

to move islands and agents will then choose the island and strategy that would

have maximised their expected payo® in the previous period, as long as this does

not involve moving to an island that is full to capacity. The state space S, is the

same as in the case with no inertia. The above dynamics, however, give rise to a

di®erent transition matrix, P 0. All other aspects of the model are the same. The

perturbed transition matrix is given by

P 0"ij = P
0
ij(1¡ ")2N +

2NP
k=1

cijk"
k(1¡ ")2N¡k

The same reasoning as before can be used to show that P 0" is aperiodic and

irreducible. Hence we can apply propositions 1 and 2 and ¯nd the long-run

equilibria by ¯nding the recurrent communication class that has the lowest cost

k-tree. The recurrent communication classes are the same as in the model with

no inertia and are illustrated in ¯gure 3. However, the basins of attraction of

the recurrent communication classes are now di®erent. This changes the cost
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of moving between classes. In the model without inertia, the minimum cost of

the transition 2 ! 1 is Nd(1 ¡ q¤). We can now achieve this transition with

fewer mutations because after a certain number of mutations on the e±cient

island, it will be optimal for agents to move and get a payo® of D. If there

are (2 ¡ d)(1 ¡ q¤)N mutations followed by movement, then there is a positive

probability that 2N(d ¡ 1) agents move and that all the agents that move were

playing s1, while nobody revises their strategy on the e±cient island. Hence the

proportion playing s1 will be

(Nd¡ 2N(d¡ 1)¡ (2¡ d)(1¡ q¤)N)=(Nd¡ 2N(d¡ 1)) = q¤

However, we must ensure that it is optimal to move and this requires a proportion

(1¡ q0) of the e±cient island to mutate, where q0 satis¯es Aq0+B(1¡ q0) = D or

q0 = (D¡B)=(A¡B). Hence (1¡q0)dN mutations are required before anyone will

move. Since the number of mutations must satisfy both of the above conditions,

the minimum number of mutations required will bemax[(1¡q0)dN; (2¡d)(1¡q¤)].

The minimum costs of moving between recurrent communication classes are given

in ¯gure 6.
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 (2-d)Nq*
       1        2

max[(1-d)N(1-q*),(1-q’)Nd]

 2(2-d)Nq*
       1        3
 max[(1-d)N(1-q*),(1-q’)Nd]+(2-d)N(1-q*)

 (2-d)Nq*
       2        3

(2-d)N(1-q*)

Figure 6

Minimum costs of moving between recurrent

communication classes with inertia.

Proposition 4: The long-run equilibria with inertia are: all states in class 1

if d < 2q¤

q¤+1¡q0 ; states 2
A and 2B if d > 2q¤

q¤+1¡q0 :

Proof. From proposition 2 we know that we need to ¯nd the class with the

minimum cost k-tree. Also to ¯nd the class which has the minimum cost k-tree it

is su±cient to ¯nd the minimum cost trees between just three classes, ruling out

either 2A or 2B (lemma 1). Of the nine trees (table 1), it is a simple exercise to see

that the minimum cost tree is either 3 ! 2 Ã 1 or 3 ! 2 ! 16. Hence the set of

states in class 1 will be the long-run equilibria whenmax[(2¡d)(1¡q¤); (1¡q0)d] <

(2 ¡ d)q¤. This condition reduces to (1 ¡ q0)d < (2 ¡ d)q¤ as (2 ¡ d)(1 ¡ q¤) is

6The reasoning is exactly the same as in the proof of proposition 3.
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always less than (2 ¡ d)q¤: Solving for d gives d < 2q¤

q¤+1¡q0 : If the inequality is

reversed then class 2 has the minimum cost k-tree.

Apart from the transitions 2 ! 1 and 3 ! 1 the minimum costs of moving

between recurrent communication classes are the same as the model with no

inertia. The only signi¯cant di®erence is that it is easier to move from class 2

to class 1 as fewer mutations are required. Class 1 therefore has a slightly larger

range over which it is the long-run equilibrium. Otherwise the long-run equilibria

are similar - class 1 if d is below some critical value and class 2 if it is above this

value, where the critical value is increasing with q¤:
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4 Asymmetric constraints.

We now turn to the case where the limit on the number of agents who can reside

at each location is di®erent. This may be because the locations do not have

the same number of patriots or because they have di®erent capacity constraints.

We extend the basic model to allow for these asymmetries: Assume the capacity

of island i is ciN where ci > 1 and the number of patriots on island i is piN

where 0 < pi < 1. The maximum number of agents who can reside on island i

is therefore diN where di = min(ci; 2 ¡ pj) and 1 < di < 2: We can follow the

reasoning of section 2 to characterise the recurrent communication classes and

the minimum costs of moving between them. These are given in ¯gures 7 and 8.

              Class                         Class                       Class                         Class
                 1                               2A                                          2B                                            3

    R   P R          P

Is.1        [N(2-d2),Nd1]                   Nd1                         N(2-d2)                [N(2-d2),Nd1]

    R   R P          P

Is.2        [N(2-d1),Nd2]                N(2-d1)                         Nd2                  [N(2-d1),Nd2]

Figure 7
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 (2-d2)Nq* (2- d1)Nq*
       1        2A        1       2B

d1N(1-q*) d2N(1-q*)

    (2- d1)Nq*+(2-d2)Nq* (2-d2)N(1-q*)+(2-d1)Nq*
       1        3       2A       2B

2N(1-q*) (2-d1)N(1-q*)+(2-d2)Nq*

 (2- d1)Nq*              (2-d2)Nq*
       2A        3       2B       3

         (2- d1)N(1-q*)          (2-d2)N(1-q*)

Figure 8

As before, the recurrent communication classes either involve agents on both

islands coordinating on the same strategy or the agents coordinating on di®erent

strategies with the island playing the e±cient equilibrium full to capacity.

Proposition 5: The long-run equilibria with asymmetric constraints are:

the set of states in class 1 if d1 < min[2¡ (1¡q¤)
q¤ d2,

2
1¡q¤ ¡ q¤

1¡q¤d2];

state 2A if d1 >
2

1¡q¤ ¡ q¤

1¡q¤d2 and d1 < d2;

state 2B if d1 > 2¡ (1¡q¤)
q¤ d2 and d1 > d2:
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d1

            2

                                        2B-tree                                                  

    2A-tree

                              1-tree

   2                      d2

Figure 9

The equilibria are illustrated in ¯gure 9 for the case where q¤ = 2
3
. The

proof is given in the appendix. As before, we move away from the equilibrium

where both locations coordinate on the risk-dominant strategy when su±cient

movement is possible but not to the equilibrium where both locations coordinate

on the payo®-dominant strategy. The intuition is the same as in the basic model.

However, with asymmetric constraints we ¯nd that the most likely state when

su±cient movement is possible involves the location with the stronger constraint

coordinating on the payo®-dominant strategy and the other location coordinating

on the risk-dominant strategy.

To see why this is consider the cost of moving between states 2A and 2B.

Assume d1 < d2 so that island 1 has the stronger constraint. To move between
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2A and 2B either via class 3 or class 1 requires that one island is converted from

coordinating on the risk-dominant strategy and the other island is converted

from coordinating on the payo®-dominant strategy. Converting an island from

coordinating on the risk-dominant strategy requires a larger proportion (q¤) of the

population to mutate and it is therefore this part of the transition that dominates

the relative costs of the transitions. Now since the minimum possible number on

island 2, (2 ¡ d1) is greater than the minimum possible number on island 1

(2 ¡ d2); the transition 2
A ! 2B is more di±cult than the transition 2B ! 2A:

Intuitively, when island 2 is coordinating on the risk-dominant strategy, it has

a larger population than when island 1 is coordinating on the risk-dominant

strategy and is therefore more di±cult to escape from.

Now, consider the case where there are no capacity constraints. The long-run

equilibria will be determined by the number of patriots on each island. If there

are many patriots so that only limited movement is possible, the equilibrium will

involve all agents coordinating on the risk-dominant strategy. However, if the

number of mobile agents is su±ciently large, then the most likely state when the

mutation rate is small will be agents on the island with fewer patriots coordinating

on the payo®-dominant strategy, and agents on the other island coordinating on

the risk-dominant strategy. Again, the intuition for this result is that the island

with more patriots is more di±cult to convert when it is playing the risk-dominant

equilibrium. The islands can impose capacity constraints to further limit mobility

(by setting ci < 2 ¡ pj). An island that has more patriots can then counter
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having more patriots by setting a su±ciently strong capacity constraint. The

minimum possible number that can reside at the other island will then increase

making it more di±cult for that island to escape from playing the risk-dominant

equilibrium. However, if both islands compete by increasing constraints we will

end up with little mobility and all agents coordinating on the risk-dominant

strategy.
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5 Conclusions

Game theorist have turned to evolutionary models in recent years to address the

question of equilibrium selection. A particularly useful technique has been used

to characterise the limit of the stationary distribution of a stochastic Markov

process when the mutation rate goes to zero. This allows us to address the

question of equilibrium selection in the long-run when the mutation rate is very

small. Kandori et al. and Young show that the equilibrium selected in this way

is the risk-dominant one rather than the payo®-dominant one.

We show that the introduction of movement between locations will upset the

long-run equilibrium where everyone plays the risk-dominant strategy if su±cient

movement is possible. However, if there are constraints which limit the number of

agents who can reside on each island then we do not move to an equilibrium where

everyone coordinates on the payo®-dominant strategy. Instead, when su±cient

movement is possible, the most likely scenario will be that the islands have dif-

ferent conventions. Agents on one island will coordinate on the payo®-dominant

strategy while agents on the other island will coordinate on the risk-dominant

one.

On a more practical level, the results show that imposing restrictions on move-

ment hinders e±ciency. If both islands impose a su±cient capacity constraint the

equilibrium will involve all agents playing the risk-dominant strategy. However,

if no constraints are imposed and one island has more patriots than the other, it
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is in the interest of that island to impose a su±cient capacity constraint. Hence,

without a binding agreement, capacity constraints will result in the risk-dominant

convention on both islands.
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A Appendix

Proof of propostion 5. Consider the minimum cost 1-trees. A 1-tree that

includes the transition 2i ! 2j cannot be a minimum cost 1-tree as the 1-tree

where the transition 2i ! 2j is replaced by 2i ! 1 has a lower cost. We can

also eliminate any 1-tree that includes the transition 3 ! 1 but not 2i ! 2j as

M(3; 1) =M(3; 2i)+M(2i; 1) and a 1-tree with the transition 3 ! 1 replaced by

3 ! 2i ! 1 will reduce the cost as the transition from 2i is removed elsewhere.

Similarly, a 3-tree that includes the transition 2i ! 2j or 1 ! 3 cannot be a

minimum cost 3-tree. A 2i-tree that includes either 1 ! 3 or 3 ! 1 can be

eliminated as we can replace the transitions with 1 ! 2i or 3 ! 2i: Finally, a

2i-tree that includes the transition 2j ! 2i but not 1 ! 3 or 3 ! 1 can be

eliminated as there will be a lower cost transition, 2j ! 1 or 2j ! 3: In each

case this leaves us with four possible candidates for minimum cost trees which

are illustrated in the table below.

1-trees 2A-trees 2B-trees 3-trees

3 ! 2B ! 1 Ã 2A 3 ! 2B ! 1 ! 2A 2A ! 1 ! 2B Ã 3 2A ! 1 ! 2B ! 3

2B ! 3 ! 2A ! 1 2B ! 3 ! 2A Ã 1 1 ! 2A ! 3 ! 2B 2B ! 1 ! 2A ! 3

3 ! 2A ! 1 Ã 2B 2B ! 1 ! 2A Ã 3 3 ! 2A ! 1 ! 2B 1 ! 2A ! 3 Ã 2B

2A ! 3 ! 2B ! 1 1 ! 2B ! 3 ! 2A 2A ! 3 ! 2B Ã 1 1 ! 2B ! 3 Ã 2A
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Since M(3; 2i) < M(2i; 3) we can eliminate all 3-trees as possible candidates.

Now assume d1 < d2: Since M(3; 2
A) > M(3; 2B) all 1 and 2-trees in row 3 can

be eliminated by the trees in row 1. The 2-trees in row 4 can be eliminated by

trees in row 2 (as M(1; 2A) < M(1; 2B)) and it is easy to check that the 1-tree in

row 2 always has a lower cost than the 1-tree in row 4. The 2A-tree in row 1 has

a lower cost than the 2B-tree in row 1 as

M(2B; 1) +M(1; 2A) < M(2A; 1) +M(1; 2B):

The 2A-tree in row 2 has a lower cost than the 2B-tree in row 2 as

M(2B; 3) +M(3; 2A) < M(2A; 3) +M(3; 2B):

This leaves us with a simple comparison between 1-trees and 2A-trees which

amounts to comparing M(1; 2A) and M(2A; 1): A 1-tree will have the lowest cost

if M(1; 2A) > M(2A; 1) or,

N(2¡ d2)q¤ > N(1¡ q¤)d1

d1 <
2

1¡ q¤ ¡ q¤

1¡ q¤d2

If the inequality is reversed, a 2A¡tree will have the lowest cost. Repeating the

analysis for the case where d1 > d2, we come down to a comparison between
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M(1; 2B) and M(2B; 1): A 1-tree will have the lowest cost if

N(2¡ d1)q¤ > N(1¡ q¤)d2

d1 < 2¡ 1¡ q¤
q¤

d2
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