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Abstract In recent years, Bayesian models have become increasingly popular as a
way of understanding human cognition. Ideal learner Bayesian models assume that
cognition can be usefully understood as optimal behavior under uncertainty, a hypoth-
esis that has been supported by a number of modeling studies across various domains
(e.g., Griffiths and Tenenbaum, Cognitive Psychology, 51, 354–384, 2005; Xu and
Tenenbaum, Psychological Review, 114, 245–272, 2007). The models in these studies
aim to explain why humans behave as they do given the task and data they encounter,
but typically avoid some questions addressed by more traditional psychological mod-
els, such as how the observed behavior is produced given constraints on memory and
processing. Here, we use the task of word segmentation as a case study for investigat-
ing these questions within a Bayesian framework. We consider some limitations of the
infant learner, and develop several online learning algorithms that take these limitations
into account. Each algorithm can be viewed as a different method of approximating
the same ideal learner. When tested on corpora of English child-directed speech, we
find that the constrained learner’s behavior depends non-trivially on how the learner’s
limitations are implemented. Interestingly, sometimes biases that are helpful to an
ideal learner hinder a constrained learner, and in a few cases, constrained learners
perform equivalently or better than the ideal learner. This suggests that the transition
from a computational-level solution for acquisition to an algorithmic-level one is not
straightforward.
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1 Introduction

Language acquisition can be thought of as an induction problem, where the child
observes some finite set of linguistic data, and must generalize beyond those data to
form a more abstract representation of the language that can be used to produce and
understand novel forms. In recent years, there has been growing interest and success
in examining induction problems in many areas of cognition using a rational analy-
sis approach (Oaksford and Chater 1998), often through the use of Bayesian models
(Griffiths et al. 2008, 2010; Tenenbaum et al. 2006). These models are typically used
to examine problems at Marr’s (1982) computational level of analysis, asking what
the goal of the computation is and the general strategy by which it might be solved.
They are ideal learners, which solve the induction problem optimally given partic-
ular assumptions about internal representation and the information available to the
learner. Researchers have found that human behavior accords with that of the models
in a number of domains, including language (e.g., Frank et al. 2009; Griffiths and
Tenenbaum 2005; Tenenbaum and Griffiths 2001; Xu and Tenenbaum 2007). These
results are useful for showing that humans can integrate data optimally in many cases,
but due to their focus on the computational level of explanation, the models tell us
very little about the actual processes and mechanisms by which humans might achieve
these behaviors—what Marr (1982) termed the algorithmic level of analysis. Indeed,
one of the main criticisms of the Bayesian approach is that its frequent neglect of
algorithmic-level explanations is unsatisfying to those who are interested in the pro-
cesses by which humans make their inductive leaps (McClelland et al. 2010). Given
the limitations on human cognitive abilities (e.g., memory and processing), what kinds
of algorithms might actually be used to compute the solutions that are optimal under a
Bayesian model? What kinds of approximations might be required, and will different
approximations lead to different results?

In this paper, we begin to address these very general questions by using the task of
word segmentation by human infants as a case study. Our work can be viewed as one
instance of a recent trend towards examining cognitively plausible implementations
of Bayesian models (Brown and Steyvers 2009; Sanborn et al. in press; Shi et al. in
press). The problem of word segmentation is useful for our purposes because previous
work has already analyzed the behaviors of ideal learners on this task, characterizing
the differences between learners making different assumptions about the nature of the
input data. Specifically (as discussed further in Sect. 2.2), ideal learners who assume
that words are predictive of other words (implemented using a bigram model) are
more successful than learners who make the simpler unigram assumption that words
are independent units (Goldwater et al. 2009).

The results of Goldwater et al. (2009) (henceforth GGJ) were obtained by imple-
menting their ideal learners using an algorithm that stored the entire corpus in memory.
Here we ask whether more cognitively plausible algorithms, which take into account
human memory and processing limitations, yield similar results (either quantitatively
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or qualitatively). We develop three different algorithms, where each algorithm can be
viewed as a different method of approximating the same ideal learner. Like GGJ’s
ideal learners, our learners are unsupervised: their input consists of strings of pho-
nemes with no word boundaries marked (except for utterance boundaries), and no
initial lexicon of known words. Unlike GGJ’s ideal learners, our learners use online
(incremental) processing algorithms, which assume that the learner can only store and
process a limited amount of data at once. When tested on a corpus of English child-
directed speech (Bernstein-Ratner 1984), we find that the modeled learner’s behavior
depends non-trivially on how the learner’s processing limitations are implemented. In
particular, not all of the constrained learners exhibit the same qualitative differences
between unigram and bigram versions as do the ideal learners. In some cases, the con-
strained unigram learners actually perform better than the ideal unigram learners, a
behavior we discuss in light of Newport’s “Less is More” hypothesis about human lan-
guage acquisition (Newport 1990). These results show that different kinds of cognitive
limitations (constraints on the kinds of hypotheses learners entertain—e.g., whether
or not words are predictive—and constraints on memory and processing) can inter-
act in surprising and non-trivial ways. In particular, learners with restricted hypothesis
spaces (here, unigram learners) may actually benefit from having restricted processing
powers as well. Also, although the online learners we explore here are less successful
than the most powerful learner we tested (the ideal bigram learner), we find they are
able to utilize the statistical information in the data quite well, achieving comparable
performance to other recent models of word segmentation, and far better performance
than a simple transitional probability learner (Saffran et al. 1996).

2 Statistical Word Segmentation

Word segmentation is the task of identifying word boundaries in fluent speech, and
is one of the first problems that infants must solve during language acquisition. A
number of weak cues to word boundaries are present in fluent speech, and there is
evidence that infants are able to use many of these, including phonotactics (Mattys
et al. 1999), allophonic variation (Jusczyk et al. 1999b), metrical (stress) patterns
(Morgan et al. 1995; Juszcyk et al. 1999c), effects of coarticulation (Johnson and
Jusczyk 2001), and statistical regularities among sequences of syllables (Saffran et al.
1996). With the exception of the last cue, all these cues are language-dependent, in
the sense that the way the cue relates to word boundaries differs between languages.
For example, English words are most often stressed on the initial syllable, while in
other languages stress might be more typical on the penultimate or final syllable.
Similarly, phonotactic constraints differ between languages, with legal words in one
language being illegal in others. Thus, one would normally assume that in order to use
these cues, infants must have already learned some of the words in the language in
order to identify the dominant stress patterns and phonotactics [though see Blanchard
et al. (2010) for one way language-specific phonotactics might be learned at the same
time the initial segmentation problem is being solved]. Since the point of word seg-
mentation is to identify words in the first place, needing to know words in order to
learn segmentation cues creates a chicken-and-egg problem. Fortunately, language-
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independent cues, such as statistical regularities between syllables or phonemes, can
help infants out of this problem by allowing them to identify words (statistically coher-
ent sound sequences) or word boundaries (statistically incoherent sound sequences)
without already knowing what some words are. Infants appear to use these regulari-
ties earlier than other kinds of cues (Thiessen and Saffran 2003), which suggests that
strategies exploiting regularities in syllable or phoneme sequences can indeed provide
the initial bootstrapping step for word segmentation. Consequently, although most
of the other cues mentioned above are also statistical in nature, research (especially
computational research) into statistical word learning has tended to focus on the use
of syllable and phoneme regularities.

Before describing the models we will be exploring here, we first briefly review
some other unsupervised models of word segmentation. A complete review of previ-
ous work is beyond the scope of this paper; instead we describe only some of the most
recent models, which we will use for comparison to our own, and refer the reader to
Goldwater (2006) for additional references.

2.1 Recent Statistical Word Segmentation Models

2.1.1 WordEnds

WordEnds (Fleck 2008) is an unsupervised learning algorithm that operates in batch
mode over sequences of phonemes. It focuses on boundaries (rather than words), and
works by estimating the probabilities of different phoneme sequences occurring at
word beginnings and endings, using these to identify locations that are likely to be
word boundaries. An initial estimate of the probabilities is made by looking at the
sequences that occur at utterance boundaries. These initial probabilities are used to
hypothesize new word boundaries, which are then used to update the learner’s esti-
mates of probable word beginnings and endings, and the process continues iteratively.
As a final cleanup measure, the learner merges hypothesized words together if the
merged word occurs frequently enough in the existing segmentation. Although lexical
items are used in the last step of the algorithm, WordEnds is not primarily word-based,
in that it does not try to optimize a lexicon or explicitly model entire words or their
relationships to each other (the phoneme sequences to the right and left of a word
boundary are assumed to be independent, so the learner does not assume one word is
predictive of the next).

2.1.2 Bootstrap Voting Experts

Hewlett and Cohen (2009) introduced a learning model called Bootstrap Voting
Experts that works by chunking together sequences of phonemes that have low inter-
nal entropy and high boundary entropy. Thus, like WordEnds, this learner uses pho-
nemic probability information, but no explicit model of words or a lexicon. Also like
WordEnds, the learner iterates over the corpus in batch mode, improving subsequent
segmentation hypotheses by information gained from previous segmentation hypoth-
eses. Using a sliding window of a fixed length, two “voting experts” use accumulated
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entropy knowledge to vote whether a boundary should be inserted between two pho-
nemes; if the number of votes exceeds a pre-determined threshold, the learner inserts
a word boundary.

2.1.3 PHOCUS

Blanchard et al. (2010) created PHOCUS (PHOnotactic CUe Segmenter), an online
learner that couples statistical word learning with phonotactic constraints. In par-
ticular, Blanchard et al. demonstrate a way in which language-specific phonotactic
constraints, realized as likely and unlikely phonemic sequences, can be learned at
the same time that segmentation is being attempted and an explicit lexicon is built.
The learner uses an online algorithm, processing one utterance at a time and starting
with an initially empty lexicon. The learner considers all possible segmentations of
each utterance and chooses the one that is most probable, as computed by multiplying
together the probabilities of each hypothesized word. The newly segmented words
are then added to the lexicon (or, if they already exist, their counts are incremented).
The relative frequency of each word in the lexicon is used as its probability when
segmenting future utterances, and phonotactic probabilities are computed based on
the current lexical items. Possible words that are not in the lexicon are assigned prob-
abilities using these phonotactic probabilities. Note that when the learner starts out,
no lexical items exist, so utterances will not be segmented, but added to the lexicon
whole. However, since some utterances are individual words, they allow the learner
to begin to find boundaries in later utterances.

This model is the most similar to those we introduce below, in that it uses an online
algorithm and computes probabilities of different segmentations based on a learned
lexicon. The main differences are in exactly how the probabilities are computed and
the use of phonotactic probabilities in the PHOCUS learner. The best-performing
variants of this learner also include domain-specific universally applicable knowledge
about words—namely, well-formed words must have a least one syllabic sound, and
the learner knows which sounds are syllabic.

In addition, some of our learners assume that words are predictive of each other,
whereas PHOCUS does not.

2.2 Bayesian Word Segmentation

The starting point of our research is the work of Goldwater et al. (2009) (GGJ), which
provides a Bayesian learning analysis of how statistical information could be used by
infants to begin to segment words from continuous speech. It is a computational-level
approach which defines the goal of learning as identifying the optimal segmentation
of the input corpus from the space of all possible segmentations. Each segmentation
implicitly defines a lexicon (the set of word types occurring in the segmentation);
the learner decides which segmentation is optimal based on the words in the learned
lexicon and their frequencies.

In the language of Bayesian analysis, the learner seeks to identify an explanatory
hypothesis that both accounts for the observed data and conforms to prior expectations
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about what a reasonable hypothesis should look like. GGJ develop two models within a
Bayesian framework where the learner is presented with some data d (a corpus of pho-
nemically transcribed utterances, where each utterance is an unsegmented sequence of
phonemes)1 and seeks a hypothesis h (a segmentation of the corpus into a sequence of
words) that both explains the data (i.e., concatenating together the words in h forms d)
and has high prior probability. The optimal solution is the hypothesis with the highest
probability, given the data:

P(h|d) ∝ P(d|h)P(h) (1)

The learner determines the posterior probability of h having observed d based on
P(d|h)—the likelihood of d being observed if h was true—and P(h)—the prior
probability of h. Since a hypothesis is only a sequence of words, if the hypothesis
sequence matches the observed sequence of phonemes, the likelihood is 1; if the
hypothesis sequence does not match the observed sequence, the likelihood is 0. For
example, hypotheses consistent with the observation sequence lookatthedoggie (we
use orthographic rather than phonemic transcriptions here for clarity) include lookat-
thedoggie, look at the doggie, lo oka t th edo ggie, and lookatthedoggie. Inconsistent
hypotheses, for which P(d|h) = 0, include i like pizza, a b c, and lookatthat.

Since the likelihood is either 0 or 1, all of the work in the models is done by the prior
distribution over hypotheses. For GGJ, the prior of h encodes the intuitions that words
should be relatively short, and the lexicon should be relatively small. In addition, each
of the two models encodes a different expectation about word behavior: in the unigram
model, the learner assumes that words are statistically independent (i.e. context is not
predictive); in the bigram model, words are assumed to be predictive units.

To encode these intuitions mathematically, GGJ use a model based on the Dirich-
let Process from nonparametric Bayesian statistics (Ferguson 1973), which can be
summarized as follows. Imagine that the sequence of words w1 . . . wn in h is gener-
ated sequentially using a probabilistic generative process. In the unigram model, the
identity of the i th word is chosen according to

P(wi = w|w1 . . . wi−1) = ni−1(w) + αP0(w)

i − 1 + α
(2)

where ni−1(w) is the number of times w has occurred in the previous i − 1 words, α

is a parameter of the model, and P0 is a base distribution specifying the probability
that a novel word will consist of the phonemes x1 . . . xm :

P0(w = x1 . . . xm) =
m∏

j=1

P(x j ) (3)

1 Note that the units over which these models operate are phonemes, rather than phonetic features (Chris-
tiansen et al. 1998) or syllables (Swingley 2005). This is not uncontroversial, as it makes the model insen-
sitive to feature-based similarity between sounds and abstracts away from many details of phonetic and
acoustic variation. However, it was chosen based on the available input corpora, and to facilitate comparison
with other word segmentation models.
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The equation in (2) enforces the preference for a small lexicon by stating that the
probability of a word is approximately proportional to the number of times that word
has occurred previously. Thus, hypotheses where a small number of words occur fre-
quently will be preferred over those with larger lexicons, where each word occurs less
often. In addition, the first time a word appears in the sequence, ni−1(w) = 0, so the
probability of the word is completely determined by the equation in (3). Since (3) is a
product of the phonemes in the word, words with fewer phonemes (i.e., shorter words)
will be preferred. The GGJ model also includes a geometric distribution over utter-
ance lengths, to account for the fact that the corpus consists of individual utterances.
A more detailed description of both the unigram model and the bigram model (below)
can be found in the original paper.

The bigram model, which is based on a hierarchical Dirichlet Process (Teh et al.
2006), is conceptually similar to the unigram model except that it tracks not only the
frequencies of individual words, but also the frequencies of pairs of words. Just as the
unigram model prefers hypotheses where a small number of words appear with high
frequency, the bigram model prefers hypotheses where a small number of bigrams
appear with high frequency (in addition to the assumptions of the unigram model).
The model is defined as follows:

P(wi = w|wi−1 = w′, w1 . . . wi−2) = ni−1(w
′, w) + β P1(w)

ni−1(w′) + β
(4)

P1(wi = w) = bi−1(w) + γ P0(w)

bi−1 + γ
(5)

where ni−1(w
′, w) is the number of times the bigram (w′, w) has occurred in the first

i − 1 words, bi−1(w) is the number of times w has occurred as the second word of
a bigram, bi−1 is the total number of bigrams, and β and γ are model parameters.
The preference for hypotheses with relatively few distinct bigrams is enforced in the
equation in (4), by making a bigram’s probability approximately proportional to the
number of times it has occurred before. This is analogous to the equation in (2) for
the unigram model. When a new bigram is created, its probability is determined by
the equation in (5), which assigns higher probability to new bigrams that use words
that already occur in many other bigrams (i.e., the model assumes that a few words
create bigrams very promiscuously, while most do not).

2.3 Ideal and Constrained Bayesian Inference

2.3.1 Ideal Learners

To evaluate the performance of both the unigram and bigram Bayesian models in an
ideal learner framework, GGJ used Gibbs sampling, a stochastic search procedure
often used for ideal learner inference problems. Gibbs sampling, a type of Markov
chain Monte Carlo procedure, is a batch algorithm that iterates over the corpus multiple
times. Gibbs samplers are guaranteed to converge, which means that after a number of
initial iterations (usually called “burn-in”), each iteration produces a sample from the
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posterior distribution of the model in question (here, either the unigram or bigram GGJ
model). This convergence guarantee is what makes these samplers popular for ideal
learner problems, since it means that the true posterior of the model can be examined
without the effects of additional constraints imposed by the learning algorithm.

During each iteration of GGJ’s Gibbs sampler, every possible boundary location
(position between two phonemes) in the corpus is considered in turn. At each loca-
tion b, the probability that b is a boundary is computed, given the current boundary
locations in the rest of the corpus (details of this computation can be found in GGJ;
critically, it is based on the equations defining the Bayesian model and thus on the
lexicon and frequencies implicit in the current segmentation). Then the segmentation
is updated by inserting or removing a boundary at b according to this probability,
and the learner moves on to the remaining boundary locations. Pseudocode for this
algorithm is shown in (6).

Pseudocode for Gibbs sampler (Ideal Learner) (6)

Randomly initialize all word boundaries in corpus
For i = 1 to number of iterations

For each possible boundary location b in corpus
(1) Compute p, the probability that b is a boundary

(b = 1) given the current segmentation of the
rest of the corpus

(2) With probability p, set b to 1; else set b to 0

GGJ found that in order to converge to a good approximation of the posterior, the Gibbs
sampler required 20000 iterations (i.e., each possible boundary in the corpus was sam-
pled 20000 times), with α = 20 for the unigram models, and β = 10, γ = 3000 for
the bigram models.

Due to the convergence guarantees noted above, this algorithm is well-suited to the
computational-level analysis that GGJ were interested in, allowing them to ask what
kinds of segmentations would be learned by ideal learners with different assumptions
about the nature of language. GGJ discovered that an ideal learner that is biased to
heed context (the bigram model) achieves far more successful segmentation than one
that is not (the unigram model). Moreover, a unigram ideal learner will severely un-
dersegment the corpus, identifying common collocations as single words (e.g., you
want segmented as youwant), most likely because the only way a unigram learner
can capture strong word-to-word dependencies is to assume those words are actually
a single word. This tells us about the expected behavior in learners who are able to
make optimal use of their input—that is, what in principle are the useful biases for
humans to use, given the available data.

Turning to the algorithmic level of analysis, however, the GGJ learner is clearly
less satisfactory, since the Gibbs sampling algorithm requires the learner to store the
entire corpus in memory, and also to perform a significant amount of processing
(recall that each boundary in the corpus is sampled 20000 times). In the following sec-
tion, we describe three algorithms that make more cognitively plausible assumptions
about memory and processing. These algorithms will allow us to investigate how such
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memory and processing limitations might affect the learner’s ability to achieve the
optimal solution to the segmentation task (i.e., the solution found by the ideal learners
in GGJ).

2.3.2 Constrained Learners

To simulate limited resources, all the learning algorithms we present operate in an
online fashion, so that processing occurs one utterance at a time rather than over
the entire corpus simultaneously. Under GGJ’s Bayesian model, the only informa-
tion necessary to compute the probability of any particular segmentation of an utter-
ance is the number of times each word (or bigram, in the case of the bigram model)
has occurred in the model’s current estimation of the segmentation. Thus, in each
of our online learners, the lexicon counts are updated after processing each utter-
ance (and in the case of one learner, during the processing of each utterance as
well). The primary differences between our algorithms lie in the additional details
of how resource limitations are implemented, and whether the learner is assumed to
sample segmentations from the posterior distribution or choose the most probable
segmentation.2

2.3.2.1 Dynamic Programming Maximization

We first tried to find the most direct translation of the ideal learner to an online learner
that must process utterances one at a time, such that the only limitation is that utterances
must be processed one at a time. One idea for this is an algorithm we call Dynamic
Programming Maximization (DPM), which processes each utterance as a whole, using
dynamic programming (specifically the Viterbi algorithm) to efficiently compute the
highest-probability segmentation of that utterance given the current lexicon.3 It then
adds the words from that segmentation to the lexicon and moves to the next utterance.
This algorithm is the only one of our three that has been previously applied to word
segmentation (Brent 1999). Pseudocode for this learner is shown in (7).

2 We note also that some of the algorithms differ on whether they would converge on the optimal solution,
given infinite resources (infinite iterations, infinite memory buffers, etc.). The first algorithm (Dynamic
Programming Maximization) would not, while the other two (Dynamic Programming Sampling, Decayed
Markov Chain Monte Carlo) would. In this sense, the latter two algorithms might be considered ideal,
though the particular implementations here (with their limited resources) are not. Under this view, we
are comparing both a constrained non-ideal algorithm and constrained ideal algorithms against an uncon-
strained ideal algorithm. While all ideal algorithms may be asymptotically equivalent, we will find they
exhibit interesting differences given finite resources, and that not all of them compare favorably with the
constrained non-ideal algorithm.
3 Technically, the probabilities computed by the Viterbi algorithm (and the forward algorithm used by the
DPS model) are only an approximation of the true probabilities of the segmented utterances, since they
are based on the contents of the lexicon not including any of the words in the current utterance. Equa-
tion (2) shows that in the true posterior, the words segmented at the beginning of the utterance will affect
the probabilities of the words at the end of the utterance.
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Pseudocode for DPM Learner (7)

initialize lexicon (initially empty)
For u = 1 to number of utterances in corpus

(1) Use Viterbi algorithm to compute the highest
probability segmentation of utterance u, given
the current lexicon

(2) Add counts of segmented words to lexicon

2.3.2.2 Dynamic Programming Sampling

We then created a variant that is similar to DPM, but instead of choosing the most
probable segmentation of each utterance conditioned on the current lexicon, it chooses
a segmentation based on how probable that segmentation is. This algorithm, called
Dynamic Programming Sampling (DPS), computes the probabilities of all possible
segmentations using the forward pass of the forward-backward algorithm, and then
uses a backward pass to sample from the distribution over segmentations. Pseudocode
for this learner is shown in (8); the backward sampling pass is an application of the
general method described in Johnson et al. (2007).

Pseudocode for DPS learner (8)

initialize lexicon (initially empty)
For u = 1 to number of utterances in corpus

(1) Use Forward algorithm to compute probabilities
of all possible segmentations of utterance u,
given the current lexicon

(2) Sample segmentation, based on probability of
the segmentation

(3) Add counts of segmented words to lexicon

2.3.2.3 Decayed Markov Chain Monte Carlo

We also examined a learning algorithm that recognizes that human memory decays
over time and so focuses processing resources more on recent data than on data heard
further in the past (a recency effect). We implemented this using a Decayed Mar-
kov Chain Monte Carlo (DMCMC) algorithm (Marthi et al. 2002), which processes
an utterance by probabilistically sampling s word boundaries from all the utterances
encountered so far. The sampling process is similar to Gibbs sampling, except that the
learner only has the information available from the utterances encountered so far to
inform its decision, rather than information derived from processing the entire corpus.

The probability that a particular potential boundary b is sampled is given by the
exponentially decaying function b−d

a , where ba is the number of potential boundary
locations between b and the end of the current utterance, and d is the decay rate. Thus,
the further b is from the end of the current utterance, the less likely it is to be sampled.
The exact probability is based on the decay rate d. For example, suppose d was 1, and
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Table 1 Likelihood of sampling a given boundary in DMCMC, d = 1

Boundary position b−d
a Relative probability

End–1 1−1 = 1/1 = 1.00 1.00/(�(probs)) = 0.44

End–2 2−1 = 1/2 = 0.50 0.50/(�(probs)) = 0.22

End–3 3−1 = 1/3 = 0.33 0.33/(�(probs)) = 0.15

End–4 4−1 = 1/4 = 0.25 0.25/(�(probs)) = 0.11

End–5 5−1 = 1/5 = 0.20 0.20/(�(probs)) = 0.08

The relative probability of a given boundary being sampled is the decay probability b−d
a divided by the sum

of the decay probabilities for all boundary positions under consideration (in this example, five boundary
positions)

there are 5 potential boundaries that have been encountered so far. The probabilities
for sampling each boundary are shown in Table 1.

After each boundary sample is completed, the learner updates the lexicon. Pseudo-
code for this learner is shown in (9).

Pseudocode for DMCMC learner (9)

initialize lexicon (initially empty)
For u = 1 to number of utterances in corpus

Randomly initialize word boundaries for
utterance u.
For s = 1 to number of samples to be taken per
utterance
(1) Probabilistically sample one potential

boundary from utterance u or earlier, based
on decay rate d (has bias to sample more
recent boundaries) and decide whether a word
boundary should be placed there

(2) Update lexicon if boundary changed (inserted
or deleted)

We note that one main difference between the DMCMC learner and the Ideal learner
is that the Ideal learner samples every boundary from the corpus on each iteration,
rather than being restricted to a certain number from the current utterance or earlier.
The Ideal learner thus has knowledge of future utterances when making its decisions
about the current utterance and/or previous utterances, while the DMCMC learner does
not.4 In addition, restricting the number of samples in the DMCMC learner means that
it requires less processing time/resources than the Ideal learner.

4 We note, however, that the DMCMC learner does have knowledge of “future” utterances when it samples
boundaries from utterances further back in the corpus than the current utterance. However, this knowledge
of the “future” utterances (compared to the utterance being sampled) only extends to the current utterance,
rather than to the whole corpus (which includes utterances after the current utterance). Only at the very
end of the corpus would a DMCMC learner have knowledge of the entire corpus when doing any of its
samples—but it does not have this knowledge initially, while the Ideal learner does.
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Table 2 Probability of
sampling a boundary from the
current utterance, based on
decay rate

Decay rate Probability of sampling within current utterance

2.0 0.942

1.5 0.772

1.0 0.323

0.75 0.125

0.50 0.036

0.25 0.009

0.125 0.004

We examined a number of different decay rates, ranging from 2.0 down to 0.125.
To give a sense of what these really mean for the DMCMC learner, Table 2 shows the
probability of sampling a boundary within the current utterance assuming the learner
could sample a boundary from any utterances that occurred within the last 30 min of
verbal interaction (i.e., this includes child-directed speech as well as any silences or
pauses in the input stream). Calculations are based on samples from the alice2.cha file
from the Bernstein corpus, where an utterance occurs on average every 3.5 s. As we
can see, the lower decay rates cause the learner to look further back in time, and thus
require the learners to have a stronger memory in order to successfully complete the
boundary decision process.

The DMCMC learner has some similarity to previous work on probabilistic human
memory, such as Anderson and Schooler (2000). Specifically, Anderson and Schooler
argue for a rational model of human memory that calculates a “need” probability for
accessing words, which is approximately how likely humans are to need to retrieve that
word. The higher a word’s need probability, the more likely a human is to remember
it. The need probability is estimated based on statistics of the linguistic environment.
Anderson and Schooler demonstrate that the need probability estimated from a number
of sources, including child-directed speech, appears to follow a power law distribution
with respect to how much time has elapsed since the word was last mentioned. Our
DMCMC learner, when doing its constrained inference, effectively calculates a need
probability for potential word boundaries—this is the sampling probability calculated
for a given boundary, which is derived from an exponential decay function. Potential
word boundaries further in the past are less likely to be needed for inference, and so
are less likely to be retrieved by our DMCMC learner.

3 Bayesian Model Results

3.1 The Data Set

We tested the GGJ Ideal learner and our three constrained learners on data from the
Bernstein corpus (Bernstein-Ratner 1984) from the CHILDES database (MacWhinney
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Table 3 Samples of Bernstein
corpus

English orthography Phonemic transcription

you want to see the book yu want tu si D6 bUk

look there’s a boy with his hat lUk D*z 6 b7 wIT hIz h&t

and a doggie &nd 6 dOgi

you want to look at this yu want tu lUk &t DIs

2000).5 We used the phonemic transcription of this corpus that has become standard
for testing word segmentation models (Brent 1999). The phonemically transcribed cor-
pus contains 9790 child-directed speech utterances (33399 tokens, 1321 types, average
utterance length = 3.4 words, average word length = 2.9 phonemes). See Table 3 for
sample transcriptions and Appendix Fig. A1 for the phonemic alphabet used. Unlike
previous work, we used cross-validation to evaluate our models, splitting the corpus
into five randomly generated training sets (∼8800 utterances each) and separate test
sets (∼900 utterances each), where each training and test set were non-overlapping
subsets of the data set used by GGJ. We used separate training and test sets to examine
the modeled learner’s ability to generalize to new data it has not seen before (and
been iterating over, in the case of the Ideal learner). Specifically, we wanted to test
if the lexicon the learner inferred was useful beyond the immediate dataset it trained
on. Temporal order of utterances was preserved in the training and test sets, such that
utterances in earlier parts of each set appeared before utterances in later parts of each
set.6

3.2 Performance Measures

We assessed the performance of these different learners, based on precision and
recall over word tokens, word boundaries, and lexicon items, where precision is
(# correct)/(# found) and recall is (# correct)/(# found in the gold standard). To
demonstrate how these measures gauge performance differently, let us consider the
evaluation of the utterances “look at the doggie” and “look at the kitty”, which are
translated into phoneme characters as “lUk &t D6 dOgi” and “lUk &t D6 kIti”. Sup-
pose the algorithm decided the best segmentation was “lUk&t D6 dOgi” and “lUk&t
D6kIti”. For word tokens, precision is 2/5, while recall is 2/8; for word boundaries
(utterance-initial and utterance-final boundaries are excluded), precision is 3/3, while
recall is 3/6; for lexicon items, precision is 2/4, while recall is 2/5.

5 We note that the statistical strategies we explore here are meant to be an initial bootstrapping method for
children to break into word segmentation—as such, we believe testing these strategies on a corpus this size
is not unreasonable. However, see additional results from a larger English corpus in the Discussion section
that follow the same trends observed in the Bernstein corpus.
6 Although the Ideal learner is not sensitive to the order of presentation in the training set, the constrained
learners are, since they process the data incrementally and early segmentation decisions impact future
segmentation decisions.
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Fig. 1 Word token F-scores for
each of the learners, averaged
over the test sets
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3.3 Performance

Table 4 reports the scores for each Bayesian learner, along with results (where avail-
able) from other statistical learners discussed previously. F scores (F = (2 * precision *
recall)/(precision + recall)) are also provided. Note that the results for the WordEnds,
Bootstrap Voting Experts (BVE), and PHOCUS learners are not strictly comparable
to our own results, since they do not use a separate training and test set. Instead,
they trained over the entire Bernstein corpus and were evaluated by how well they
segmented that corpus. In addition, PHOCUS performance was computed after dis-
carding the first 1000 utterances [see Blanchard et al. (2010) for discussion as to
why]. The results for the transitional probability learner are from an implementation
that computes transitional probabilities based on an initial sweep through the corpus
(technically making it a batch algorithm; online versions are possible but would require
some form of smoothing to avoid zero-probability transitions). The learner then inserts
boundaries at each transitional probability minimum, as suggested by Saffran et al.
(1996). (One could segment instead at a fixed transitional probability threshold; we
found no threshold that worked better than using the minimum.)7

As for the parameters of our own learners, all DMCMC learners have s = 20000
(20000 samples per utterance), as we found this gave the best segmentation perfor-
mance. While this may still seem like a lot of processing, this learner nonetheless
takes 89% fewer samples than the ideal learner in GGJ, which is a substantial savings
in processing resources. In addition, the DMCMC unigram learners fared best with
d = 1.0, while the DMCMC bigram learners fared best with d = 0.25. Figure 1 shows
the F scores over word tokens for each of the Bayesian learners (both unigram and
bigram variants) while Fig. 2 shows the F scores over lexicon items.

A few observations: First, while there is considerable variation in the performance of
our constrained learners, all of them out-perform a transitional probability learner oper-
ating over phonemes (compare Bayesian learner results to TransProb learner results in
Table 4). In addition, our best Bayesian learners compare favorably to other statistical

7 We note that our transitional probability learner achieves comparable or better performance compared
to other reported transitional probability learner implementations: The one in Brent (1999) operated over
phonemes and had token F-scores in the 40s and lexicon precision near 15, while the one in Gambell and
Yang (2006) operated over syllables and had token F-scores near 30.
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Fig. 2 Lexicon item F-scores
for each of the learners,
averaged over the test sets
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learning algorithms, particularly with respect to their scores over lexicon items. For
example, though the batch-learning WordEnds model achieves comparable boundary
scores (BF) to many of our online Bayesian learners, its lexicon score (LF) is much
lower than most of our online Bayesian learners (LF WordEnds = 36.6, LF all learners
but Bigram DPS: 51.8–65.0). Similarly, while PHOCUS achieves comparable token
scores to our best online Bayesian learner (TF PHOCUS: 75.8, TF Bigram DMCMC:
73.0), its lexicon score is lower (LF PHOCUS: 54.5, LF Bigram DMCMC: 62.6).
Thus, our online Bayesian learners seem better able to extract a reliable lexicon from
the available data than other recent statistical learners, including one (PHOCUS) that
relies on domain-specific knowledge about word well-formedness.

Second, when we examine the impact of the unigram and bigram assumptions on
word token performance, we find that the bigram learners do not always benefit from
assuming words are predictive of other words. While the Ideal, DPM and DMCMC
learners do (bigram F > unigram F, Ideal: p < .001, DPM: p = .046, DMCMC:
p = .002), the DPS learner is harmed by this bias (unigram F > bigram F: p < .001).
This is also true for the lexicon F scores: While the Ideal and DPM learners are helped
(bigram F > unigram F, Ideal: p < .001, DPM: p = .002), the DPS and DMCMC
learners are harmed (unigram F > bigram F, DPS: p < .001, DMCMC: p = .006).8

Third, when comparing our ideal learner to our constrained learners, we find—
somewhat unexpectedly—that some of our constrained learners are performing
equivalently or better than their ideal counterparts. For example, when we look
at word token F-scores for our bigram learners, the DMCMC learner seems to
be performing equivalently to the Ideal learner (DMCMC �= Ideal: p = 0.144).
Among the unigram learners, our DPM and DMCMC learners are equally out-
performing the Ideal learner (DPM > Ideal: p < .001, DMCMC > Ideal: p < .001,
DPM �=DMCMC: p = 0.153) and the DPS is performing equivalently to the
Ideal learner (Ideal �=DPS: p = 0.136). Turning to the lexicon F-scores, the
results look a bit more expected for the bigram learners: The Ideal learner is
out-performing the constrained learners (Ideal > DPM: p < .001, Ideal > DPS: p <

.001, Ideal > DMCMC: p < .001). However, among the unigram learners we again

8 All p-values reported above and below were calculated by comparing 5 runs (1 per test set) of each of the
mentioned learners in a two-tailed t-test analysis (i.e., 5 observations from each learner were aggregated,
and compared against each other).
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Table 4 Average performance of different learners on the five test sets, along with published results from
other recent statistical learners where available and the results from a transitional probability learner

TP TR TF BP BR BF LP LR LF

Bayesian Unigram Learners (words are not predictive)

GGJ-Ideal 63.2 48.4 54.8 92.8 62.1 74.4 54.0 73.6 62.3

(0.99) (0.80) (0.85) (0.67) (0.42) (0.42) (0.92) (1.89) (1.30)

DPM 63.7 68.4 65.9 77.2 85.3 81.0 61.9 56.9 59.3

(2.82) (2.68) (2.73) (1.86) (1.67) (1.64) (2.17) (2.07) (2.09)

DPS 55.0 62.6 58.5 70.4 84.21 76.7 54.8 49.2 51.8

(4.82) (3.99) (4.45) (3.73) (1.79) (2.85) (1.64) (3.14) (2.2)

DMCMC 71.2 64.7 67.8 88.8 77.2 82.6 61.0 69.6 65.0

(1.57) (2.31) (1.97) (0.89) (2.17) (1.53) (1.18) (0.43) (0.67)

Bayesian Bigram Learners (words are predictive)

GGJ-Ideal 74.5 68.8 71.5 90.1 80.4 85.0 65.0 73.5 69.1

(1.41) (1.53) (1.46) (0.75) (1.01) (0.82) (1.19) (1.71) (1.15)

DPM 67.5 71.3 69.4 80.4 86.8 83.5 66.0 63.2 64.5

(1.13) (0.74) (0.90) (0.96) (0.63) (0.57) (1.00) (1.46) (1.05)

DPS 34.2 47.6 39.8 54.9 85.3 66.8 39.0 34.4 36.5

(2.16) (2.16) (2.13) (1.40) (2.07) (1.00) (2.02) (2.42) (2.19)

DMCMC 72.0 74.0 73.0 84.1 87.4 85.7 61.1 64.2 62.6

(1.24) (1.76) (1.43) (0.98) (1.47) (0.94) (1.41) (1.35) (1.17)

Comparison Learners

WordEnds 70.7 94.6 73.7 82.9 36.6

BVE 79.1 79.4 79.3 92.8 90.5 91.6

PHOCUS 77.7 74.0 75.8 89.7 83.6 86.5 47.3 64.0 54.5

TransProb 34.3 42.7 38.0 52.8 71.1 60.6 24.3 39.7 30.1

(0.88) (0.83) (0.87) (1.22) (1.00) (1.15) (0.55) (1.1) (0.70)

Note that the PHOCUS results are from the “3s” implementation, which performed best on the corpus.
Precision (P), recall (R), and F-score (F) over word tokens (T), word boundaries (B), and lexicon items
(L) resulting from the chosen word segmentation are shown. Standard deviations are shown in parentheses
where available

find something unexpected: the DMCMC learner is out-performing the Ideal learner
(DMCMC > Ideal: p = .006). The Ideal learner is still out-performing the other two
constrained learners, however (Ideal > DPM: p = .031, Ideal > DPS: p < .001).

Fourth, GGJ found that both their ideal learners tended to undersegment (putting
multiple words together into one word), though the unigram learner did so more than
the bigram learner (see Table 5 for examples).

One way to gauge whether undersegmentation is occurring is to look at the boundary
precision and recall scores. When boundary precision is higher than boundary recall,
undersegmentation is occurring; when the reverse is true, the model is oversegmenting
(splitting single words into more than one word). If we examine Table 4, we can see
that (as found by GGJ) the Ideal learners are undersegmenting, with the bigram model
doing so less than the unigram model. Looking at our constrained learners, we can
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Table 5 GGJ ideal learner
model performance: Unigram
versus Bigram

Segmentations are shown in
their English orthographic form,
and undersegmentations are
italicized

Unigram model Bigram model

youwant to see thebook you want to see the book

look theres aboy look theres a boy

with his hat with his hat

and adoggie and a doggie

you wantto lookatthis you want to lookat this

lookatthis lookat this

havea drink have a drink

okay now okay now

whatsthis whats this

whatsthat whats that

whatisit whatis it

look canyou take itout look canyou take it out

Fig. 3 Performance of unigram
learners on whole utterances,
first words, and last words
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Unigram learner performance: utterance portions

see that the unigram DMCMC learner is also undersegmenting. However, every other
constrained model is oversegmenting, with the DPS learners being the most blatant
oversegmenters; the bigram DMCMC learner appears to be oversegmenting the least.

We also examined performance on the first and last words in utterances, as compared
to performance over the entire utterance, based on work by Seidl and Johnson (2006)
who found that 7-month-olds are better at segmenting words that are either utterance-
initial or utterance-final [see Seidl and Johnson (2006) for detailed discussion on why
this might be]. If our models are reasonable reflections of human behavior, we hope to
find that their performance on the first and last words is better than their performance
over the entire utterance. Moreover, they should perform equally on the first and last
words in order to match infant behavior. Figures 3 and 4 show word token F-scores
for unigram and bigram learners, respectively, for whole utterances, first words, and
last words. Table 6 shows the significance test scores for comparing first word, last
word, and whole utterance performance for each of the learners.

Looking first to the Bayesian unigram learners, we find that the DPM and DMCMC
learners match infant behavior best by improving equally on first and last words, com-
pared to whole utterances. The Ideal learner improves on both first and last words,
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Fig. 4 Performance of bigram
learners on whole utterances,
first words, and last words
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Bigram learner performance: utterance portions

Table 6 Significance test scores (two tailed t-test) for comparisons between first word, last word, and
whole utterance performance across the five test sets

First �=whole Last �=whole Last �=first

Unigram models (words are not predictive)

GGJ–Ideal .001 <.001 .003

DPM .008 .046 .108

DPS .008 .130 .038

DMCMC <.001 .003 .207

Bigram models (words are predictive)

GGJ–Ideal <.001 .157 .050

DPM <.001 .005 .730

DPS <.001 .003 .372

DMCMC .002 .069 .029

Non-significant differences are italicized

but improves more for last words than for first words, making its performance slightly
different than infants’. The DPS learner only achieves better performance for first
words, making its performance even more different from infants’. Turning to the
Bayesian bigram learners, we find that only the DPM and DPS learners are matching
infants by improving equally on first and last word performance, compared to whole
utterance performance. Both the Ideal and DMCMC learners only improve for first
words, and not for last words.

4 Discussion

Through these simulations, we have made several interesting discoveries. First, though
none of our constrained learners out-performed the best ideal learner (the bigram
learner) on all measures, our constrained learners still were able to extract statistical
information from the available data well enough to out-perform learners that seg-
ment by tracking transitional probability. Since transitional probability strategies have
historically been strongly associated with the idea of “cognitively plausible statis-
tical learning” in models of human language acquisition (e.g., Saffran et al. 1996;
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Table 7 Performance on test set 1 for DMCMC learners with varying samples per utterance

s 20000 10000 5000 2500 1000 500 250 100

% Ideal learner samples 11.0 5.7 2.8 1.4 0.57 0.28 0.14 0.057

Unigram, d = 1 69.8 68.5 65.5 63.5 63.4 60.0 56.9 51.1

Bigram, d = 0.25 74.9 71.8 68.3 66.1 64.6 61.2 59.9 60.9

Learners were tested with the decay rate that yielded the best performance at 20000 samples per utterance
(unigram = 1, bigram = 0.25). F-scores over word tokens are shown, as well as the processing comparison
to the ideal learner (as measured by number of samples taken)

Saffran 2001; Perruchet and Desaulty 2008; Pelucchi et al. 2009), our result under-
scores how statistical learning can be considerably more successful than is sometimes
thought when only transitional probability learners are considered. In addition, our
online Bayesian learners also out-performed several recent statistical models of word
segmentation with respect to identifying a reliable lexicon, while performing compa-
rably at token and word boundary identification. Our results suggest that even with
limitations on memory and processing, a learning strategy that focuses explicitly on
identifying words in the input and optimizing a lexicon (as all our learners here do) may
work better than one that focuses on identifying boundaries (as transitional probability
learners and some recent statistical learning models do).

Second, we discovered that a bias that was helpful for the ideal learner—to assume
words are predictive units—is not always helpful for constrained learners. This sug-
gests that we must be careful in transferring the solutions we find for ideal learners to
learners who have constraints on their memory and processing the way that humans
do. In this case, we speculate that the reason some of our constrained learners do not
benefit from the bigram assumption has to do with the algorithm’s ability to search
the hypothesis space; when tracking bigrams instead of just individual words, the
learner’s hypothesis space is much larger. It may be that some constrained learners
do not have sufficient processing resources to find the optimal solution (and perhaps
to recover from mistakes made early on). However, not all constrained learners suffer
from this. There were constrained learners that benefited from the bigram assumption,
which suggests less processing power may be required than previously thought to con-
verge on good word segmentations. In particular, if we examine the DMCMC learner,
we can decrease the number of samples per utterance to simulate a decrease in pro-
cessing power. Table 7 shows the F-scores by word tokens for both the unigram and
bigram DMCMC learner with varying samples per utterance. Though performance
does degrade when processing power is more limited, these learners still out-perform
the best phonemic transition probability learner variant we identified (which had scores
around 38 for word tokens), even when sampling only 0.057% as much as the ideal
learner. Moreover, the bigram assumption continues to be helpful, even with very little
processing power available for the DMCMC learner.

If we constrain the ideal learner so it can only sample as often as the DMCMC
learner does, we find that the unigram learner’s segmentation performance is not quite
as good as the DMCMC unigram learner’s (see Table 8), though the bigram learner
is much closer to (and in the case of the lexicon scores, better than) the DMCMC
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Table 8 Performance on test set 1 for DMCMC learners and ideal learners that only sample approximately
as much as the DMCMC learners do

TP TR TF BP BR BF LP LR LF

Unigram Learners (words are not predictive)

GGJ–Ideal 62.7 49.6 55.4 90.5 63.5 74.7 55.8 73.7 63.5

DMCMC 72.6 67.2 69.8 88.1 78.8 83.2 61.3 68.3 64.6

Bigram Learners (words are predictive)

GGJ–Ideal 70.0 66.3 68.1 86.2 79.8 82.9 61.3 68.3 64.6

DMCMC 68.6 72.3 70.4 81.2 87.4 84.2 59.5 60.5 59.9

DMCMC learners sampled 20000 times per utterance with decay rate = 1 for the Unigram learner and
0.25 for the Bigram learner. Ideal learners made 2000 iterations over the corpus, sampling every potential
boundary once each iteration

Table 9 Posterior probability versus segmentation performance on test set 1 for Ideal and DMCMC learners

Log posterior probability TF BF LF

Unigram learners (words are not predictive)

GGJ-Ideal −18077 55.4 74.7 63.5

DMCMC −19959 69.8 83.2 64.6

Bigram Learners (words are predictive)

GGJ-Ideal −15642 68.1 82.9 64.6

DMCMC −16264 70.4 84.2 59.9

Note that smaller absolute values of log posterior probability indicate segmentations that have higher prob-
ability under the model

bigram learner. One could imagine that the DMCMC learner scores so well because
the DMCMC algorithm is simply more efficient than the Gibbs sampler used by the
ideal learner—i.e., given the same number of total samples, DMCMC is able to find
a higher probability segmentation than the Gibbs sampler. According to the results
in Table 9, however, this is not the case: even when achieving higher segmentation
scores, the DMCMC learner still finds a segmentation that actually has a lower poster-
ior probability than its ideal learner counterpart. So it is not that the DMCMC learner
is better at finding optimal solutions than the ideal learner—instead, it appears that
some solutions that are sub-optimal with respect to posterior probability are actually
better than those “optimal” solutions with respect to segmentation performance mea-
sures. This suggests that there could be something gained by the DMCMC learner’s
method of approximated inference if we are more interested in good segmentation
performance (to be discussed further below).

Turning to the more general comparison of the ideal learner to the constrained
learners, we made a surprising discovery—namely that some of our constrained uni-
gram learners out-performed the ideal learner. This is somewhat counterintuitive, as
one might naturally assume that less processing power would lead to equivalent if not
worse performance.
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Table 10 Average performance of different learners on five test sets from the Pearl-Brent derived corpus

TP TR TF BP BR BF LP LR LF

Unigram models (words are not predictive)

62.4 48.1 54.3 92.0 62.1 74.2 50.0 69.9 58.3

(0.52) (0.67) (0.62) (0.33) (0.53) (0.39) (0.76) (1.10) (0.84)

DPM 53.6 66.1 59.2 66.7 88.5 76.1 60.9 38.5 47.2

(3.15) (2.19) (2.79) (2.37) (0.54) (1.61) (1.79) (1.70) (1.81)

DPS 46.3 61.6 52.8 60.9 89.5 72.4 51.4 28.5 36.6

(5.48) (3.66) (4.87) (4.61) (1.33) (3.10) (3.15) (4.22) (4.29)

DMCMC 67.5 61.0 64.1 86.3 74.5 79.9 53.8 61.0 57.2

(1.71) (3.92) (2.80) (1.24) (4.08) (1.96) (3.11) (2.47) (2.82)

Bigram models (words are predictive)

GGJ-Ideal 70.4 68.3 69.4 85.6 82.0 83.7 60.5 65.5 62.9

(1.03) (0.75) (0.89) (0.78) (0.31) (0.53) (0.98) (0.67) (0.80)

DPM 61.9 70.3 65.9 75.2 89.6 81.7 61.0 48.9 54.3

(1.58) (0.97) (1.27) (1.16) (0.83) (0.61) (0.79) (1.01) (0.68)

DPS 32.3 48.4 38.7 52.8 90.5 66.6 37.6 23.7 29.1

(4.99) (4.73) (5.10) (3.47) (0.95) (2.63) (1.62) (1.69) (1.74)

DMCMC 69.2 73.1 71.1 81.1 87.6 84.2 52.7 53.0 52.8

(1.19) (0.96) (1.08) (0.89) (0.49) (0.69) (1.41) (1.37) (1.34)

Precision (P), recall (R), and F-score (F) over word tokens (T), word boundaries (B), and lexicon items (L)
resulting from the chosen word segmentation are shown. Standard deviations are shown in parentheses

To rule out the possibility that these results are an artifact of this particular corpus,
we tested our learners on a larger corpus of English, the Pearl-Brent derived corpus
available through CHILDES (MacWhinney 2000). This corpus contains child-directed
speech to children between 8 and 9 months old, consisting of 28,391 utterances (96,920
word tokens, 3,213 word types, average words per utterance: 3.4, average phonemes
per word: 3.6). In Table 10, we report the learners’ performance on five test sets
generated from this corpus (these were generated the same way as the ones from
the Bernstein-Ratner corpus were). The same surprising performance trend appears,
where the DMCMC unigram learner is out-performing the Ideal unigram learner—
though only with respect to tokens and word boundaries, and not with respect to
lexicon items.

We subsequently looked at the errors being made by both the ideal and the DM-
CMC unigram learners on these English corpora, and discovered a potential cause for
the surprising behavior. It turns out that the ideal learner makes many more under-
segmentation errors on highly frequent bigrams consisting of short words (e.g., can
you, do you, and it’s a segmented as canyou, doyou, and itsa) while the DMCMC
learner does not undersegment these bigrams. When the DMCMC learner does make
errors on frequent items that are different from the errors the ideal learner makes, it
tends to oversegment, often splitting off sequences that look like English derivational
morphology, such as “-s” (plural or 3rd sg present tense) and “-ing” (progressive)
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Table 11 Analysis of unshared errors made by the ideal and DMCMC unigram learners for items occurring
7 or more times in the first test set of each corpus

Corpus Ideal learner (undersegmentation) DMCMC learner (oversegmentation)

Bernstein-Ratner 749 62

Pearl-Brent 1671 185

(e.g., ringing segmented as ring ing, and flowers segmented as flower s). If we survey
the errors made by each learner for items occurring 7 or more times in the first test
set of each English corpus and which are not shared (i.e., only one learner made the
error), we find the DMCMC learner’s additional errors are far fewer than the ideal
learner’s additional errors (Table 11).

Why might this particular error pattern occur? A possible explanation for this error
pattern is related to the ideal learner’s increased processing capabilities. Specifically,
the ideal learner is granted the memory capacity to survey the entire corpus for fre-
quency information and update its segmentation hypotheses for utterances occurring
early in the corpus at any point during learning. This allows the ideal unigram learner
to notice that certain short items (e.g., actual words like it’s and a) appear very fre-
quently together. Given that it cannot represent this mutual occurrence any other way,
it will decide to make these items a single lexical item; moreover, it can fix its previous
“errors” that it made earlier during learning when it thought these were two separate
lexical items. In contrast, the DMCMC learner does not have this omniscience about
item frequency in the corpus, nor as much ability to fix “errors” made earlier in the
learning process. This results in the DMCMC learner leaving these short items as
separate, particularly when encountered in earlier utterances. As they then continue to
exist in the lexicon as separate lexical items, undersegmentation errors do not occur
nearly as much.

In summary, more processing power and memory capacity does appear to hurt the
inference process of the ideal unigram learner, even if that learner identifies a segmen-
tation with a higher posterior probability. This behavior is similar to Newport’s (1990)
“Less is More” hypothesis for human language acquisition, which proposes that lim-
ited processing abilities are advantageous for tasks like language acquisition because
they selectively focus the learner’s attention. With this selective focus, children are
better able to home in on the correct components for language since they do not con-
sider as much complex information. Transferring this idea to our unigram learners,
the more limited inference process of the DMCMC learner focuses its attention only
on the current frequency information and does not allow it to view the frequency
of the corpus as a whole. Coupled with this learner’s more limited ability to correct
its initial hypotheses about lexicon items, this leads to superior segmentation perfor-
mance. We note, however, that this superior performance is mainly due to the unigram
learner’s inability to capture word sequence predictiveness; when it sees items appear-
ing together, it has no way to capture this behavior except by assuming these items
are actually one word. Thus, the ideal unigram learner’s additional knowledge causes
it to commit more undersegmentation errors in its quest to find the segmentation with
the highest posterior probability. The bigram learner, on the other hand, does not have
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this problem—and indeed we do not see the DMCMC bigram learner out-performing
the ideal bigram learner.

Turning to general undersegmentation behavior, we also discovered that the ten-
dency to undersegment the corpus depends on how constraints are implemented in our
learners, as well as whether the learners assume words are predictive or not. According
to Peters (1983), English children tend to make errors that indicate undersegmenta-
tion rather than oversegmentation, so perhaps learners that undersegment are a better
match for children’s behavior. Here, the Bayesian learners that undersegmented on
the English data were both of the ideal learners as well as the unigram DMCMC
learner.

Another finding is that models differ on their ability to match infant word seg-
mentation behavior at utterance edges (the first word and the last word). Some of our
constrained models are in fact better able to match infant behavior on this measure than
our ideal models. Seidl and Johnson (2006) review a number of proposed explanations
of why utterance edges are easier, including perceptual/prosodic salience, cognitive
biases to attend more to edges (including recency effects), or the pauses at utterance
boundaries. In our results, we find that all of the models find utterance-initial words
easier to segment, and most of them also find utterance-final words easier. Since none
of the algorithms include models of perceptual salience, our results suggest that this
explanation is probably unnecessary to account for the edge effect, especially for
utterance-initial words. Rather, it seems simpler to assume that the pauses at utterance
boundaries make segmentation easier by eliminating the ambiguity of one of the two
boundaries of the word.

However, if this were the only effect at utterance edges, then we would expect
all of our models to find both initial and final words easier. In fact, some of them,
including the ideal bigram learner, find only initial words easier. This finding suggests
that some other statistical property of final words actually make them more diffi-
cult than initial words for (at least some) purely statistical learners. For example, the
words and phrases that end sentences (often nouns or verbs) may be more variable or
infrequent than the words that start sentences (often pronouns or determiners). Since
utterance-final words seem to be at least as easy for infants as utterance-initial words,
a recency effect could be playing an important role here. However, in light of the
varying results of the different models, further analysis of the statistical properties of
utterance-final versus utterance-initial words is warranted before drawing any strong
conclusions.

5 Conclusions and Future Work

One moral of this investigation is that a simple intuition about human cognition, such
as having memory and processing limitations, can be cashed out multiple ways in
online learning algorithms. Here, we examined limitations such as processing utter-
ances incrementally and implementing recency effects with exponential decay func-
tions. Having explored several learner instantiations incorporating this intuition, we
find that the learning assumptions or biases that work best depend on how limita-
tions are implemented. And in fact, some biases that are helpful for an ideal learner,
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such as using context to guide hypotheses, may hinder a constrained learner with
more limited memory and processing resources. On a related note, if the learner does
not use word context, having less memory and processing resources may in fact be
beneficial.

We view these investigations as a first step towards understanding how to translate
computational-level solutions into algorithmic-level ones for language acquisition, as
there are clearly other ways of implementing constrained algorithms. One question
we might ask is whether any given learner represented by a combination of a model
and a constrained learning algorithm (such as our constrained learners here) can be
represented solely by a model that explicitly defines those same constraints. Then, if
this second model could be optimized, we would find it yields the same answer as the
constrained learners here. This would place what we are currently considering algo-
rithmic-level constraints back into the computational-level definition of the model.
While this is possible, it is by no means certain and it could very well be that this latter
kind of model is considerably more complicated.

It is also useful to ask if the effects discovered here are robust, and persist across
different languages. If the learning model presented here is meant to be a first pass lan-
guage-independent method for word segmentation, we would want it to be successful
in languages besides English. Moreover, with respect to empirical grounding, we can
take further inspiration from what is known about the representations infants attend
to, and allow our algorithms to have knowledge of syllables (Jusczyk et al. 1999a),
to track stressed and unstressed phonemes/syllables separately (Curtin et al. 2005;
Pelucchi et al. 2009), and to have additional prior phonotactic knowledge argued to
be universal in human language (e.g., Blanchard et al. 2010).

The transition from a computational-level solution for an acquisition problem to
the algorithmic-level approximation may not necessarily be straightforward. By inte-
grating what we know of the human ability to utilize available statistical information
with what we know of human limitations, we can come to understand how infants
accomplish the things they do.
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Appendix: Phoneme Encoding of Corpus

See Fig. A1.
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Fig. A1 Phoneme encoding. Taken with permission from Goldwater et al. (2007)
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