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Abstract
Maintenance of the corneal epithelium is essential for vision and is a dynamic process
incorporating constant cell production, movement and loss. Although cell based therapies
involving the transplantation of putative stem cells are well advanced for the treatment of human
corneal defects, the scientific understanding of these interventions is poor. No definitive marker
that discriminates stem cells that maintain the corneal epithelium from the surrounding tissue has
been discovered and the identity of these elusive cells is, therefore, hotly debated. The key
elements of corneal epithelial maintenance have long been recognised but it is still not known how
this dynamic balance is coordinated during normal homeostasis to ensure the corneal epithelium is
maintained at a uniform thickness. Most indirect experimental evidence supports the limbal
epithelial stem cell (LESC) hypothesis, which proposes that the adult corneal epithelium is
maintained by stem cells located in the limbus at the corneal periphery. However, this has been
challenged recently by the corneal epithelial stem cell (CESC) hypothesis, which proposes that
during normal homeostasis the mouse corneal epithelium is maintained by stem cells located
throughout the basal corneal epithelium with LESCs only contributing during wound healing. In
this chapter we review experimental studies, mostly based on animal work, that provide insights
into how stem cells maintain the normal corneal epithelium and consider the merits of the
alternative LESC and CESC hypotheses. Finally, we highlight some recent research on other stem
cell systems and consider how this could influence future research directions for identifying the
stem cells that maintain the corneal epithelium.

19.1 Introduction
19.1.1 Introduction to the cornea

The transparent adult cornea has rightly been called our window on the world. Its unique
properties allow it to maintain transparency, refract light and form a protective, impermeable
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barrier. The cornea comprises an outer squamous, non-keratinised epithelium of
keratinocytes, which is about 5- 6 cells thick, a thick stroma of flattened keratocytes
embedded in collagen and the corneal endothelium, comprising a single inner cell layer (Fig
19.1). In addition, an acellular, collagenous basement membrane (Descemet’s membrane)
separates the corneal stroma and endothelium, and in humans and other primates there is
also a distinct acellular Bowman’s layer (anterior limiting lamina) between the stroma and
corneal epithelium. This is rudimentary and indistinct in mice but visible by electron
microscopy (Haustein 1983). The cornea is avascular and absorbs oxygen and nutrients from
the tear film and aqueous humour but it is innervated and the nerves provide additional
trophic support. Mouse corneal anatomy is described in detail in Smith et al. (2002).

The corneal epithelium develops from the head surface ectoderm and both the stromal
keratocytes and corneal endothelium are produced by mesenchyme (Haustein 1983), which
in mice is derived predominantly from neural crest cells with an additional contribution from
cranial mesoderm (Gage et al. 2005). During development, nerves grow into the stroma
from the limbus and form a nerve plexus beneath the epithelium which projects fine nerves
through the epithelium to the ocular surface (McKenna and Lwigale 2011).

The corneal epithelium has more cell layers than the neighbouring conjunctival epithelium,
which is distinguished by the presence of goblet cells and blood vessels, both of which are
incompatible with transparency and absent from the corneal epithelium (Smith et al. 2002).
Mitosis is restricted to the basal layer in both the corneal and conjunctival epithelia. The
basal corneal epithelial cells are cuboidal while the suprabasal cells are progressively more
flattened towards the anterior. These comprise 2-3 layers of polyhedral ‘wing cells’ and 1-3
layers of superficial squamous cells with flattened nuclei (Fig. 19.1), which are held together
by tight junctions to form an effective barrier. Corneal epithelial cells are continuously being
shed (desquamated) from the superficial layer and replenished, yet the tissue maintains a
uniform structure and thickness, so transparency is not compromised.

In the adult, neither the corneal stromal nor endothelial cells divide unless injured;
endothelial cells are arrested in G1 and show contact inhibition (Joyce 2003) whereas
stromal keratocytes exit the cell cycle around the time the eyes open in mice, at postnatal
days (P) 12-14, and remain quiescent in G0 (Zieske 2004; Zieske et al. 2004). The corneal
endothelium consists of a single layer of cells that is critical for maintaining correct
hydration of the corneal stroma via metabolic pumps that actively transport fluid out of the
stroma and into the anterior chamber. The corneal stroma is less hydrated than the
neighbouring sclera and if the cornea becomes too hydrated it swells and becomes opaque.

Laterally, the corneal stroma merges with the sclera and forms a region known as the limbus
at the corneoscleral junction. The limbus is less pronounced in mouse than humans but it
forms a morphological ‘dent’ in the mouse ocular surface that is not always apparent in
histological sections. The epithelial layer of the limbus forms a transition zone between the
corneal epithelium and the conjunctival epithelium. The mouse corneo-limbal epithelial
boundary can be identified by immunostaining for keratin 15 (K15) or K19, which are both
present in the conjunctiva and limbus but not the cornea, or immunostaining for K12, which
is specific for the corneal epithelium (Fig. 19.1e,f). The corneal epithelium is thinner at the
periphery and, unlike the human, the mouse limbal epithelium is also thin. According to the
conventional limbal epithelial stem cell (LESC) hypothesis (Schermer et al. 1986; Cotsarelis
et al. 1989), some basal limbal epithelial cells are stem cells that maintain the corneal
epithelium (see section 19.3). There is some evidence that there may also be separate
populations of stem cells for the stromal keratocytes (Du et al. 2005; Funderburgh et al.
2005) and endothelium (McGowan et al. 2007) that reside in or close to the limbal region
(but below the epithelial layer).
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19.1.2 Scope of this review
The focus of this review is how adult stem cells maintain a healthy cornea. Maintenance
involves a balance of cell production, movement and loss, orchestrated by stem cells. The
conventional LESC hypothesis has recently been challenged. The alternative view proposes
that stem cells scattered throughout the mouse corneal epithelium are responsible for
homeostatic maintenance of the tissue and that LESCs are only active during wound healing
(Majo et al. 2008). Although human limbal epithelium is used successfully as a source of
stem cells for treating human corneal epithelial conditions that are thought to involve a stem
cell deficiency (Rama et al. 2010), this does not prove that limbal epithelial cells maintain
the cornea during normal homeostasis. Such controversies highlight the difficulty in
defining a stem cell niche, however this is a matter crucial to understanding the basis of
corneal stem cell biology. The availability of genetic and transgenic resources makes the
mouse the experimental animal of choice for many investigations of the cornea. Mouse
models of human corneal abnormalities provide insights into many aspects of normal and
abnormal corneal epithelial maintenance. The aim of this review, therefore, is to discuss our
present understanding of the basic cell biology of stem cells that maintain the corneal
epithelium, to focus on the mouse to examine its contribution and to discuss its relevance as
an effective model for human corneal epithelial maintenance.

19.2 Maintenance of stratified squamous epithelia by adult stem cells
Adult stratified squamous epithelia are composed of layers of flattened epithelial cells lying
on top of a basement membrane and are often found in tissues that are subjected to constant
abrasive forces such as the skin, the oral mucosa and the corneal epithelium. These tissues
are highly dynamic; cells are constantly lost from the tissue surface and therefore must be
replaced in order to maintain a constant cellular mass. Their inherent self-renewing capacity
is driven by an adult stem cell (SC) population that resides in the basal layer of the
epithelium. SCs divide to produce transient (or transit) amplifying cells (TACs) that
proliferate in the basal layer before differentiating, moving through the suprabasal layers to
the outer stratified layers and finally being shed from the tissue surface (Kruse 1994; Ren
and Wilson 1996). Although, overall, net asymmetric division is required to maintain the SC
pool and produce TACs, in some systems SCs need not always divide asymmetrically but
may also divide symmetrically to produce two TACs or two SCs, providing a stochastic
mechanism whereby some SC lineages expand and others are lost (Nakagawa et al. 2007;
Snippert et al. 2010; Lopez-Garcia et al. 2010; Klein and Simons 2011). The adult stem cells
that maintain these epithelia divide relatively infrequently, however they have the potential
to divide indefinitely (Braun and Watt 2004). Identification of the stem cells has, therefore,
exploited these features using incorporation of tritiated thymidine (3H-TdR) or the
thymidine analogue bromodeoxyuridine (BrdU) into the DNA of dividing cells during S-
phase of the cell cycle (Potten and Loeffler 1990). Although the stem cells divide
infrequently they can be labelled by prolonged exposure and the label is retained over time
but lost from the more rapidly dividing daughter cells. However, these traditional label-
retaining methods may preferentially identify a subset of functional stem cells. For example,
SCs may alternate between active and quiescent periods or separate populations of active
and quiescent SC populations may exist (see section 19.8). The more quiescent SCs, though
less likely to incorporate label during the period of exposure, are more likely to retain that
label during the chase period (Li and Clevers 2010). The use of this approach to identify
stem cells that maintain the corneal epithelium is discussed in section 19.3.2. In addition to
cell production by stem cells and proliferation of TACs, the mechanism of corneal epithelial
maintenance involves centripetal migration of cells from the periphery (as discussed in
section 19.4.2).
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Label-retaining stem cells in the mouse epidermis have also been identified by an elegant
transgenic system whereby chromatin is labelled with GFP when a transgene producing a
histone-2B (H2B)-GFP fusion protein is expressed early in development and then switched
off for the chase period via a Tet-Off switch, activated by continuous doxycycline treatment
(Tumbar et al. 2004). This GFP label-retaining cell approach is more powerful and easier to
interpret than the conventional BrdU label-retaining cell method because (i) all the potential
stem cells can be labelled with H2B-GFP before the chase period, (ii) live H2B-GFP-
positive cells can be FACS-sorted and used for transcriptional profiling, (iii) H2B-GFP
labelling can be restricted to specific tissues, so simplifying analysis of label-retaining cells.
It is likely that this and similar transgenic approaches will be used to identify putative stem
cells as GFP label-retaining cells in other tissues, including the ocular surface.

19.3 Stem cells that maintain the corneal epithelium
19.3.1 The limbal epithelial stem cell hypothesis

The burden of evidence (discussed in section 19.3.2) suggests that during adult corneal
epithelial homeostasis cell production depends on a population of adult stem cells at the
periphery of the cornea. These are known as limbal epithelial stem cells (LESCs) because
they are thought to reside in the basal layer of the limbal epithelium (limbus) at the
corneoscleral junction (Schermer et al. 1986; Cotsarelis et al. 1989; Lehrer et al. 1998; Li et
al. 2007); Fig. 19.1. LESCs cycle slowly unless stimulated to proliferate by corneal insult.
Daughter TACs move into the corneal epithelium, where they undergo several further
rounds of division to maintain the epithelium, move centripetally and leave the basal layer of
the epithelium at variable times as pairs of cells (Beebe and Masters 1996). TAC
populations near the periphery have a greater replicative potential than their more centrally
located counterparts (Lehrer et al. 1998). Once in the suprabasal layers, the cells
differentiate, become post-mitotic, move vertically to the superficial layer and are
subsequently lost by desquamation at the corneal surface. In order to maintain a uniform
corneal epithelial thickness, some TACs must leave the basal layer at the periphery of the
cornea and others must move on towards the centre, but it is not known how this process is
regulated.

19.3.2 Indirect evidence that stem cells in the limbus maintain the corneal epithelium
The hypothesis that the corneal epithelium is maintained by SCs in the limbus was proposed
by Schermer et al. (1986), based on the conclusion that the basal limbal epithelium was less
differentiated than the suprabasal limbal epithelium and both basal and suprabasal corneal
epithelia in the rabbit. More recent studies also indicate that basal limbal epithelial cells are
morphologically distinct from basal corneal epithelial cells, being smaller and euchromatin-
rich with a high nucleus to cytoplasm ratio (Romano et al. 2003; Chen et al. 2004). These
are properties that are believed to be typical of stem cells in a variety of tissues (Barrandon
and Green 1985; Tani et al. 2000; Gaspar-Maia et al. 2009). Evidence that cells move
centripetally from the limbal region was also emerging at the time that the LESC hypothesis
was proposed (Kinoshita et al. 1981; Buck 1985) and this was confirmed later (section
19.4.2).

Subsequent label retaining experiments in the mouse identified a population of putative stem
cells in the basal layer of the limbal epithelium (Cotsarelis et al. 1989; Lehrer et al. 1998).
The early label retaining studies relied on wounding of the central cornea in order to
stimulate LESCs to divide during an initial pulse of tritiated thymidine (3H-TdR) label. Such
methods may not recapitulate the unwounded homeostatic mechanisms accurately
(Cotsarelis et al. 1989). However, the results were confirmed using BrdU perfusion by
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osmotic minipump, which avoided the need for wounding because of the much-increased
length of the pulse period (Lehrer et al. 1998).

SCs may divide infrequently in vivo but their proliferative potential can be unmasked by
culturing them in vitro. Barrandon and Green classified human epidermal cultures as
holoclones, paraclones or meroclones, depending on their proliferation characteristics and
the morphology of the colonies produced (Barrandon and Green 1987). Holoclones have the
greatest proliferative potential and are thought to be produced from SCs. Paraclones form
abortive colonies and are believed to consist mainly of terminally differentiated cells.
Meroclones constitute a transitional class and are cultures formed by cells with limited
growth potential, now thought to be TACs. Pellegrini et al. (1999) showed that cells cultured
from human limbal tissue, but not central or paracentral corneal tissue, were able to produce
holoclones, suggesting that stem cells are found in the human limbus but not in the cornea
itself. As discussed in section 19.8, care must be taken in the interpretation of ex-vivo
culture experiments, as it is possible to unmask proliferative potential that is not relevant to
normal homeostasis.

Clinical data also suggest that the limbus contains a population of stem cells. If the corneal
epithelium is completely destroyed along with the limbal zone, a situation that occurs in
patients with chemical burns, standard cornea replacement is ineffective but transplantation
of small pieces of healthy, human limbal epithelial tissue can reconstitute the entire corneal
epithelium (Kenyon and Tseng 1989; Tseng 1989). However, grafts that include both limbal
and corneal tissue seem to be more successful than limbal grafts alone and treatment with
cultured limbal cells is also proving effective (Rama et al. 2010; Shortt et al. 2011).

19.3.3 The quest for markers of LESCs
Table 19.1 summarises a selection of the most promising positive and negative markers of
the various human limbal/corneal epithelial compartments. Although a number of markers
are specifically enriched in the basal limbal epithelium no single marker has been
unambiguously confirmed as LESC specific. The most promising combination of markers
currently appears to be a C/EBPδ-positive, Bmi1-positive, ΔNp63α-positive population
identified in the human peripheral limbus (Barbaro et al. 2007).

The markers outlined in Table 19.1 are indicative of a tissue hierarchy that is initiated in the
basal limbus and terminated in the suprabasal cornea, further supporting the LESC
hypothesis. Markers of basal limbus are associated with SC-like properties including
quiescence (C/EBPδ), self-renewal and proliferation (Bmi1 and ΔNp63α) and cell adhesion
(N-cadherin and integrin α9) whereas markers of suprabasal cornea appear more associated
with terminal differentiation (keratin 3/12, connexin 43). Five of the most promising and
widely cited markers of LESCs/TACs are discussed in further detail below.

ΔNp63α—The p63 transcription factor has been identified as a marker of the most
proliferative basal cells in the skin (Yang et al. 1998) and is required for the development of
all stratified epithelia. Homozygous p63 null mouse embryos die postnatally and have severe
limb defects and lack development of epidermal tissues (Mills et al. 1999). Six isoforms are
generated from the p63 gene. Three isoforms (p63α, β and γ), having transactivating
activity, are transcribed from the upstream promoter and have distinct C termini, whilst the
three ΔN isoforms which lack the N-terminal coding exons are transcribed from a
downstream intronic promoter (Parsa et al. 1999; Yang and McKeon 2000). Di Iorio et al.
(2005) showed that ΔNp63α is present in the human basal limbal epithelium and that
ΔNp63γ may be expressed at low levels in superficial cornea and limbus. Neither ΔNp63α
nor ΔNp63β is present in resting (non-wounded) human corneas but all three ΔNp63
isoforms are expressed widely in the corneal epithelium after wounding. ΔNp63α has,
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therefore, been proposed as a marker of both quiescent and active LESCs (Pellegrini et al.
2001; Barbaro et al. 2007) but its expression pattern suggests it is also likely to be expressed
in early TACs. In the mouse, unspecified ΔNp63 isoforms are detectable in the basal layer
of the corneal epithelium at all times (Collinson et al. 2002; Moore et al. 2002; Ramaesh et
al. 2005). In agreement with a role for ΔNp63α in LESCs, a recent report shows that
individuals who are heterozygous for some p63 mutations have LESC deficiency (Di Iorio et
al. 2012).

ABCG2—The multi-drug resistance gene ATP-binding cassette sub-family G member 2
(ABCG2) was identified in a subpopulation of bone marrow cells (known as the side-
population) that efluxed Hoechst 33342 nuclear dye and exhibited SC-like properties
(Goodell et al. 1996). ABCG2 has been proposed as a stem cell marker in other systems. It
may protect stem cells from exogenous damage by exporting toxic compounds from the cell.
It is detectable in the basal limbal epithelium by immunohistochemistry or RT-PCR of
different species, including mice (Krulova et al. 2008). Cells from limbal explants that
express ABCG2 show high clonogenic potential, however its broad expression pattern in
basal limbus suggests that it is a marker of early TACs as well as LESCs (Budak et al. 2005;
Chen et al. 2004; de Paiva et al. 2005; Krulova et al. 2008).

C/EBPδ and Bmi1—Bmi1 is a proposed oncogene that has been shown to promote neural
stem cell self-renewal by repressing the cell cycle inhibitors p16Ink4a and p19Arf (Molofsky
et al. 2005). It is essential for the maintenance of neural stem cells (distinguishing their self
renewal from progenitor cell proliferation) and is responsible for the maintenance of adult
self-renewing haematopoietic cells (Molofsky et al. 2003; Park et al. 2003). Knockout mice
have defects in haematopoiesis, skeletal patterning and neurological development (Van der
Lugt et al. 1994; Park et al. 2003). Bmi1 is expressed in limbal epithelium side-population
cells (see above) but is expressed at extremely low levels if at all in the central cornea
(Umemoto et al. 2006).

The CCAAT enhancer-binding protein δ (C/EBPδ) is a transcription factor that has been
shown to regulate the cell cycle in an epithelial specific manner by inducing a G0/G1 arrest
(O’Rourke et al. 1999; Hutt et al. 2000). Barbaro et al. (2007) demonstrated colocalisation
of C/EBPδ and Bmi1 in human peripheral basal limbal epithelial cells constituting ~10% of
the total population. They show that this expression overlaps with ΔNp63α expression but
that after wounding there is a distinct population of cells that are ΔNp63α-positive but
Bmi1 and C/EBPδ-negative. They suggest that ΔNp63α marks quiescent LESCs, activated
SCs and early TACs but C/EBPδ and Bmi1 only mark a subpopulation of LESCs that are
quiescent during normal corneal maintenance (Fig. 19.2) but may be activated during
wounding (also see section 19.5). The balance of proliferative proteins (Bmi1 and ΔNp63α)
and quiescence-associated factors (C/EBPδ) may allow slow cycling LESCs to exist in an
intermediate state between quiescence and proliferation, poised to proliferate more rapidly if
stimulated to do so by corneal injury.

Integrin α9—Integrins are membrane-bound glycoproteins important in cell-cell and cell-
matrix adhesion. The corneo-limbal distribution of integrin α9 changes postnatally. At P7 in
the mouse (a time when the cornea epithelium is still growing in size) integrin α9 positive
cells are distributed throughout the epithelium but by P42 expression is restricted to the
basal limbal epithelium (Pajoohesh-Ganji et al. 2004). The expression of integrin α9 is up-
regulated during wound healing (section 19.5). This suggests that integrin α9 is a marker of
LESCs and the early TAC populations (Stepp et al. 1995; Pal-Ghosh et al. 2004).

Identification of markers through mRNA and proteomic expression studies—
Table 19.2 summarises recent attempts to identify genes specific to corneo-limbal
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compartments using mRNA and proteomic expression techniques. A selection of the
markers that have been independently validated from these studies is outlined in Table 19.3.
There is a surprising lack of overlap with the markers described in Table 19.1 and also a
lack of concordance between different studies. Crucially, the methods used to collect the
tissue vary from laser capture dissection (Zhou et al. 2006) to selection of cells by their
adhesive properties (Bian et al. 2010). Zhou et al. (2006) identified around 50 genes that are
differentially expressed between basal limbal and basal corneal epithelium in the mouse.
Further characterisation of randomly picked genes from the initial screen used semi-
quantitative RT-PCR and showed that Ereg (epiregulin), Dach2 (dachshund 2), and Sry (sex
determining region of chromosome Y) transcripts were found exclusively in limbal basal
cells and not in corneal basal cells. Furthermore, diablo, cyclin M2 and multiple PDZ
domain protein were expressed at significantly higher levels in corneal basal cells compared
to limbal basal cells. Epiregulin-LacZ mice showed β-galactosidase-positive staining
restricted to the basal limbal epithelium (Zhou et al. 2006). Because the basal limbal
epithelium contains early TACs as well as LESCs it is not clear if these markers will be
useful and further studies are required to determine if any are expressed specifically in
LESCs.

19.3.4 The limbal niche
The microenvironment surrounding adult SCs plays a vital role in supporting, protecting and
regulating the function of somatic and germ stem cells (Moore and Lemischka 2006).
Evidence suggests that, in humans, LESCs reside in a specific anatomical location within the
limbus known as the palisades of Vogt (Davanger and Evensen 1971; Townsend 1991; Dua
and Azuara-Blanco 2000). These are subepithelial, vascularised papillae between which the
epithelium projects downwards (Goldberg and Bron 1982). The limbus is a good candidate
for a stem cell niche because it has blood vessels, (which supply growth factors and
nutrients), immune cells (such as Langerhans cells and T-lymphocytes which protect against
pathogens) and, in some species, melanocytes which may protect SCs from ultraviolet light
and potential DNA damage (Baum 1970) (Vantrappen et al. 1985; Boulton and Albon 2004;
Li et al. 2007).

In humans three anatomical sites, associated with the palisades of Vogt, have been identified
as probable LESC locations. These are known as the limbal epithelial crypts (LECs), limbal
crypts (LCs) and focal stromal projections (FSPs). LECs were the first to be described (Dua
et al. 2005) and are anatomical projections from the peripheral aspect of the limbal palisades
that extend either radially into the conjunctival stroma or circumferentially along the limbus
and contain epithelial cells that express K14 and the proposed LESC marker ABCG2 (see
section 19.3.3). Despite their similar names, LECs and LCs are anatomically distinct, with
only the more peripheral LECs extending from the limbus into the conjunctival stroma. (It
may be helpful to rename LECs and/or LCs because the similarity in their names is
confusing and the original terminology has not always been used consistently.) Shortt et al.
(2007b) describe LCs as downward focal projections of the basal limbal epithelium into the
corneal limbal stroma and the FSPs as finger-like projections of stroma, containing a central
blood vessel, extending upwards into the corneal limbal epithelium. LCs and FSPs are
asymmetrically distributed, with the majority concentrated in the superior and inferior
limbal quadrants (Shortt et al. 2007b). Other evidence also suggests the distribution of the
limbal niche is asymmetrical in humans (Lauweryns et al. 1993; Wiley et al. 1991) and mice
(Pajoohesh-Ganji et al. 2004). Epithelial cells in the LC/FSP regions are generally smaller,
have a higher nuclear to cytoplasm ratio and express high levels of p63 and ABCG2. In
addition, cells cultured from LC/FSP-rich regions of the limbus have a higher colony
forming potential than those from non LC/FSP-containing tissue (Shortt et al. 2007b). The
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palisades of Vogt are not present in most species and LCs have not been identified in mouse,
rat or rabbit but have been identified in pig (Notara et al. 2011).

19.3.5 The corneal epithelial stem cell hypothesis
Barrandon and colleagues propose that during normal homeostasis the corneal epithelium is
maintained by stem cells residing throughout the basal layer of the corneal epithelium (Majo
et al. 2008). Central to their argument was the observation that limbal and central corneal
tissue, transplanted into immunocompromised mice, produced clones of centripetally
migrating donor tissue only when the host corneal epithelium was removed. In these cases,
both the corneal and limbal tissues behaved similarly. The authors proposed that LESCs
were active during wound healing but played no role in normal maintenance of the
unwounded corneal epithelium. Although Majo et al. (2008) do not address the question
experimentally, they also suggest that, in contrast to the conventional LESC hypothesis, any
movement in the corneal epithelium was more likely to be centrifugal than centripetal (Fig.
19.3). Using in vitro colony-forming assays, they also demonstrated that the replicative
potential of the limbus and central cornea in culture was similar for many species (Majo et
al. 2008). However, consistent with an earlier observation (Pellegrini et al. 1999), there was
no evidence that the human central and intermediate cornea produced holoclones. For
technical reasons, the holoclone assay currently does not work for the mouse cornea, so they
were unable to investigate whether the mouse cornea produced holoclones.

The results reported by Majo et al. (2008) for the mouse are controversial and open to
several interpretations but importantly they prompt re-evaluation of the conventional LESC
hypothesis. Several authors have reported results that they consider support the new corneal
epithelial stem cell (CESC) hypothesis for humans as well as mice but none is conclusive. A
12-hour, ex-vivo study of human corneal wound healing showed that the initial stage of
wound closure was independent of the limbus (Chang et al. 2008). This experiment has been
interpreted as supporting the CESC hypothesis (Sherwin 2009), but a 12-hour study would
be too short to evaluate the role of the limbus adequately. However, p63-positive, cultured
clonogenic spheres can be isolated from the human central cornea as well as the limbus,
albeit less efficiently, indicating that the human central cornea may contain some cells with
progenitor potential (Chang et al. 2011). Other evidence suggests that the central cornea of
both humans and rabbits has some ability to self-maintain. Thus, some patients with total
LESC deficiency (with conjunctivalisation) retain central islands of normal corneal
epithelium for several years (Dua et al. 2009). Similarly, the central cornea survives for
months after surgical removal or isolation of the limbus in rabbits (Huang and Tseng 1991;
Kawakita et al. 2011), but corneal integrity slowly degenerates and it is incapable of
responding adequately when challenged by corneal wounding. These studies do not disprove
the LESC hypothesis for humans or rabbits because although they imply that the central
corneal epithelium has cells able to act as progenitors, either in culture or if LESCs are
unable to maintain the corneal epithelium, they do not show these cells act as progenitors
during normal homeostasis. Furthermore, autografts of ex vivo-labelled rabbit keratolimbal
explants have shown that transplanted limbal tissue can colonise the corneal epithelium
without wounding of the host tissue (Bradshaw et al. 1999). Thus, there is no reason to reject
the LESC hypothesis for rabbits. If some progenitor TACs are able to assume the stem cell
role in situations where LESCs are unable to maintain the corneal epithelium this would also
explain the transplantation results obtained by Majo et al. (2008) with mice. This latent
potential of some central corneal epithelial cells to proliferate in vitro and in transplantation
experiments does not mean that they act as stem cells during normal tissue homeostasis in
vivo. In younger individuals such cells could be equivalent to stem cells that persist from
fetal stages (Tanifuji-Terai et al. 2006) and in older individuals these could be early TACs
derived from LESCs.
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The evidence for the existence of a LESC population in the mouse cornea is strong. In
interpreting their results to formulate the new CESC hypothesis (Majo et al. 2008), the
authors disregard convincing evidence that during normal maintenance of the unwounded
cornea, corneal epithelial cells move centripetally not centrifugally (Kinoshita et al. 1981;
Buck 1985; Nagasaki and Zhao 2003; Collinson et al. 2002; Endo et al. 2007; Mort et al.
2009), whereas conjunctival epithelial cells do not move significantly in either direction
(Nagasaki and Zhao 2005). The distribution of individual β-galactosidase-positive radial
stripes in the corneal epithelium of KRT5LacZ/− mosaic transgenic mice suggests the stripes
extended centripetally from the limbus, so favouring the LESC hypothesis over the CESC
hypothesis (Douvaras et al. 2012), but this experiment should be repeated with an inducible
lineage marker to provide more conclusive evidence (section 19.8). Thus, while the
transplantation experiment reported by (Majo et al. 2008) has focused attention on the
progenitor potential of the central corneal epithelium, current evidence favours the
conventional LESC hypothesis over the new CESC hypothesis for the mouse as well as
other species.

19.4 Maintaining corneal epithelial homeostasis
19.4.1 Evolution of ideas about corneal epithelial maintenance (XYZ to LESC)

The corneal epithelium undergoes continuous cell renewal, which can replace the whole
tissue every 2 weeks (Cenedella and Fleschner 1990) and corneal homeostasis must be
carefully regulated to ensure a uniform epithelial thickness. Before the role of adult stem
cells was understood, the corneal epithelium was thought to be a self-renewing tissue.
Studies with 3H-TdR labelling had shown that the basal corneal epithelial cells divided and
moved vertically and were sloughed off within 3.5-7 days in mice and rats (Hanna and
O’Brien 1960), so the corneal epithelium was thought to be maintained by proliferation of
the basal epithelial cells. By 1982 evidence was beginning to emerge that corneal epithelial
cells moved centripetally (Kinoshita et al. 1981; Buck 1982) and in 1983 Thoft and Friend
proposed the ‘X, Y, Z hypothesis’ (Thoft and Friend 1983). This described the balance of
proliferation, migration and cell loss by the simple formula X + Y = Z, where X was defined
as “the proliferation of basal epithelial cells”, Y as “the contribution to the cell mass by
centripetal movement of peripheral cells” and Z as “the epithelial cell loss from the surface”.
It was not known whether the centripetal movement included movement of conjunctival
cells across the limbus to the cornea as well as movement of cells from the peripheral
cornea. It had been thought that conjunctival epithelium could transdifferentiate into corneal
epithelium and was a source of new corneal epithelial cells during corneal wound healing
(Friedenwald 1951). However, by 1986 it was becoming clear that this was not the case
(Buck 1986) and the concept of centripetal movement was more firmly established (Buck
1985). Davanger and Evensen (1971) had already shown that the limbus produced cells that
could colonise the corneal epithelium but the idea that the corneal epithelium was
maintained by stem cells located in the limbus did not gain acceptance until later (Schermer
et al. 1986; Cotsarelis et al. 1989).

Although the ’X, Y, Z’ hypothesis of corneal epithelial maintenance has provided the
framework for much of the subsequent research into corneal epithelial homeostasis leading
to the LESC hypothesis, in its original form it does not take account of the role of stem cells
in corneal maintenance. Nowadays the “contribution to the cell mass by centripetal
movement of peripheral cells” (Y) would be interpreted as production of basal corneal
epithelial cells (TACs) by stem cells in the limbus (see section 19.3.1). Production of cells
by stem cells must precede proliferation of TACS, so if the X, Y, Z hypothesis was updated
to allow for stem cells it could be redefined as: YSC + XTAC = ZL, where YSC is production
of basal corneal epithelial cells by limbal epithelial stem cells (LESCs), XTAC is
proliferation of basal corneal epithelial TACs, as originally proposed (Thoft and Friend

Mort et al. Page 9

Results Probl Cell Differ. Author manuscript; available in PMC 2013 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



1983), and ZL is epithelial cell loss from the surface (Fig. 19.1). By including the
qualification that the stem cells are located in the limbus, this revised formulation is
equivalent to the LESC hypothesis. Although the X, Y, Z hypothesis is still much cited it is
now obsolete and has long been superseded by the LESC hypothesis, which currently
provides the most likely explanation of how the corneal epithelium is maintained (as
discussed in section 19.3).

19.4.2 Centripetal migration, differentiation and desquamation of corneal epithelial cells
Centripetal migration in the mouse corneal epithelium has been demonstrated robustly both
directly and indirectly by a number of experimental systems. Directly labelling superficial
and wing cells with India ink allowed Buck (1985) to estimate a rate of centripetal migration
of 17 μm/day. More recently Nagasaki and Zhao (2003) directly visualised centripetal
migration using time-lapse imaging of GFP-bright clusters of corneal epithelial cells in
ubiquitous-GFP reporter mice and estimated the rate of migration to be around 26 μm/day.
Indirect methods using mouse genetic mosaics have also been very informative. When cells
are randomly labelled with an X-linked LacZ transgene or a GFP-tagged lentiviral vector, a
postnatal switch is observed from a randomly orientated mosaic pattern to a pattern of radial
stripes in the corneal epithelium (Fig. 19.4). These patterns extend from the limbal region
towards the central cornea and are evident from about 5 weeks postnatally. The stripes are
thought to represent clones of centripetally migrating epithelial cells produced by LESCs
that become active in the postnatal period prior to stripe formation (Collinson et al. 2002;
Collinson et al. 2004b; Mort et al. 2009; Endo et al. 2007). In most mosaic corneas the
stripes meet at a central clockwise or anticlockwise spiral (Collinson et al. 2002). The
frequency of spirals increases with age, suggesting that they form stochastically but are
stable once formed (Mort et al. 2009). Corneal stripes and spirals are also visualised in some
human conditions (Bron 1973) and are unexplained. They may reflect failure of centripetally
migrating cells to meet precisely at the centre of the tissue, or could arise from small
stochastic variations in movement of the epithelial sheet.

The causes of centripetal movement are still unknown and possibilities include (1)
population pressure from the periphery due to production of new TACs by LESCs (Bron
1973; Sharma and Coles 1989; Wolosin et al. 2000); (2) preferential desquamation of
epithelial cells from the central cornea drawing peripheral cells toward the centre (Lemp and
Mathers 1989; Lavker et al. 1991); (3) chemotaxis involving a gradient resulting in either
attraction to a central signal or repulsion from the periphery (e.g. limbal blood vessels)
(Buck 1985); (4) stimulation by corneal nerves (Jones and Marfurt 1996); (5) response to
endogenous electric currents due to ion flow in wounded and unwounded corneas (McCaig
et al. 2005). Unlike the cornea, the conjunctival epithelium does not show any cell
movement (Nagasaki and Zhao 2005) and mosaic patterns appear as patches rather than
stripes (Collinson et al. 2002; Mort et al. 2009). This is consistent with the idea that stem
cells renewing this epithelium are distributed throughout the tissue (Nagasaki and Zhao
2005).

Differentiation of the corneal epithelium continues after birth. Evidence from expression of
an ocular surface marker in the rat suggests that during development ‘stem-like’ cells reside
throughout the basal layer of the corneal epithelium but become restricted to the limbus
postnatally (Chung et al. 1992). This postnatal loss of stem cells from the central cornea is
supported by analysis of mosaic mouse corneas which shows that transition to LESC-
maintained corneal epithelium occurs between postnatal weeks 5 and 8 and the pattern is not
fully mature until at least 10 weeks (Collinson et al. 2002; Mort et al. 2009). Changing
postnatal expression of the keratins K12 and K14 suggests that the mouse corneal epithelium
may not be fully mature until 3-6 months after birth (Tanifuji-Terai et al. 2006). Expression
of integrin α9β1 suggests that the limbus also matures progressively during the first 8 weeks
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after birth (Pajoohesh-Ganji et al. 2004). Care must be taken when extrapolating results from
animal models to human because there are some notable species differences in corneal
differentiation as well as more obvious differences of tissue size and lifespan. For example,
mice have no Krt3 (keratin 3) gene but keratin 5 is present in the mouse cornea (Byrne and
Fuchs 1993; Lu et al. 2006; Ou et al. 2008). It has been suggested that K5 may pair with
K12 in the cornea of mice and some other species with low K3 levels, including humans and
dogs (Chaloin-Dufau et al. 1993; Hesse et al. 2004).

When TACs undergo their final division both daughter cells leave the basal layer together
and begin the next stage of differentiation synchronously (Beebe and Masters 1996) and
then move to the superficial layer within a few days (Hanna and O’Brien 1960). Few studies
have been undertaken to measure the rate of epithelial shedding in mouse or human corneal
epithelium. However, Ren and Wilson (1996), using both in vivo and in vitro measurements
of corneal epithelial shedding rates in the rabbit, calculated that on average cells are shed at
a rate of 5-15 cells/min from each cornea.

19.5 Corneal epithelial wound healing and homeostasis
Wound healing has been used as an experimental tool to challenge corneal homeostasis and,
thus, has already been mentioned several times in this review. The nature of the corneal
wound healing response depends on the type of injury and is regulated by molecules
produced by the epithelium, stroma and lacrimal glands (Imanishi et al. 2000; Schultz et al.
1994; Wilson et al. 2001; Wilson et al. 2003). Briefly, healing proceeds through three
stages; an initial migratory stage to cover the wound, a proliferative stage to restore the
epithelial thickness and a period of differentiation to restore the epithelium’s complex
structure (Suzuki et al., 2003). In essence this regenerative process mirrors normal corneal
maintenance and has therefore been used as a tool to investigate this process. There are
obvious caveats in the interpretation of results from wound healing studies, already alluded
to elsewhere in this review (e.g. sections 19.3.3 and 19.3.5).

Several studies have shed light on the tissue hierarchy in the corneal epithelium by
examining re-epithelialisation and have helped to identify compartments of putative resting
SCs, activated SCs, TACs and differentiated cells. Cell-cycle double-labelling techniques
have shown that the cornea uses three strategies to generate new epithelial cells in response
to injury: (1) the activation of SCs to replenish the TAC population; (2) additional rounds of
TAC proliferation and (3) the shortening of TAC cell cycle time to produce new tissue more
quickly (Lehrer et al. 1998).

These cell cycle changes are accompanied by changes in the distribution of cells expressing
proposed markers of LESCs and/or early TACs. Upon corneal wounding, early TACs
(expressing ΔNp63α) migrate into the basal layer of the corneal epithelium from the limbus
(Di Iorio et al. 2005). As outlined in section 19.3.3, Barbaro and co-workers identified a
subpopulation of basal limbal epithelial cells that are positive for C/EBPδ, Bmi1 and
ΔNp63α. These are present during normal homeostasis and are thought to represent
relatively quiescent LESCs. After wounding, some of these cells lose expression of C/EBPδ
and Bmi1 but continue to express ΔNp63α as they proliferate, suggesting that some
quiescent LESCs become active LESCs and early TACs, which move from the limbus to the
cornea (Barbaro et al. 2007).

During healing of very large wounds, involving most of the cornea, integrin α9-expressing
TACs move to repair the wound and this is accompanied by a depletion of integrin α9-
expressing basal limbal epithelial cells (Pal-Ghosh et al. 2004). The loss of integrin α9
expression at the limbus after formation of large wounds seemed to correlate with the
presence of goblet cells in the central cornea suggesting ingression of cells from the
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surrounding bulba-conjunctiva. Overall, this suggests that these very large corneal epithelial
wounds place high demands on the stem cell reserve in the limbus, which may cause a
depletion of stem cells and early TACs in the limbus and ingression of conjunctival cells.

19.6 Effects of ageing on corneal epithelial maintenance
Numerical analysis of striping patterns in corneas of adult X-inactivation mosaic mice (Fig.
19.4b) can give an indirect estimate of the number of coherent clones of LESCs maintaining
the corneal epithelium (Collinson et al. 2002; Collinson et al. 2004b; Mort et al. 2009).
Although this is not equal to the number of active stem cells, it is useful for comparing
dynamic patterns of SC maintenance in different experimental groups. The corrected
number of radial stripes in the corneal epithelium declines from ~100 at 10-weeks
postnatally to ~50 at 39-weeks, with no further decline up to 52-weeks (Collinson et al.
2002; Mort et al. 2009). This suggests that the number of coherent clones of LESCs
maintaining the corneal epithelium decreases with age (Fig. 19.5), which could reflect either
a loss of LESCs (Fig. 19.5b) or an increase in the proportion of quiescent LESCs (Fig.
19.5c). Alternatively, stochastic neutral drift in the distribution of LESCs may reduce the
number of LESC clones but not the number of active LESCs (Fig. 19.5d). This possibility is
suggested by lineage tracing studies which have identified similar coarsening of mosaic
patterns derived from SC clones in the mouse testis (Nakagawa et al. 2007) and mouse
intestine (Snippert et al. 2010; Lopez-Garcia et al. 2010; Klein and Simons 2011). Stochastic
replacement of a SC clone by a neighbouring one could occur if SCs did not always divide
asymmetrically to produce one SC and one TAC at each division, but sometimes divided
symmetrically to produce two SCs or two TACs (Fig. 19.6). Similarly, the age-related
decline in frequency of rare corneal epithelial stripes in mosaic KRT5LacZ/− transgenic mice
(Douvaras et al. 2012) could reflect a decline in SC function with age, or neutral drift in
stem cell clones without an overall reduction in SC number. Other methods are required to
investigate whether SC numbers decline with age.

Some observations on the human cornea and limbus support the notion that ageing affects
stem cell numbers. The frequency of holoclones generated from skin of an infant was ten
times greater than from an individual aged 64 (Barrandon and Green 1987) and a recent
study showed that the efficiency of holoclone production from the human corneal limbus
declined with age (Notara et al. 2012). Cells derived from younger donors (0-30 years old)
had a significantly higher colony forming efficiency than cells from middle aged (30-60
years) and older donors (60-90 years). Other age-related changes noted for the human
limbus include increased frequency of eyes without detectable palisades of Vogt (Zheng and
Xu 2008), reduction in limbal crypts and focal stromal projections (see section 19.3.4) in
people over 60 years old (Notara et al. 2012) and an increase in average size of cells in the
basal limbal epithelium (Zheng and Xu 2008). It has also been reported recently that the
frequency of side-population cells (see discussion of ABCG2 marker in section 19.3.3)
declines with age and this could indicate an age-related decline in the number of SCs and
early TACs (Chang et al. 2011).

Despite experimental evidence suggesting that stem cell function may decline with age,
corneal epithelial maintenance appears to be remarkably robust and there is no evidence that
ageing significantly compromises the integrity of the normal, healthy corneal epithelium.
However, older mice of some strains are prone to corneal stromal mineralisation and some
types of mouse cage bedding may trigger neovascularisation and keratitis in older mice
(Smith et al. 2002).
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19.7 Genetic defects of corneal epithelial maintenance
Corneal maintenance is impaired when LESCs are depleted by injury or disease (Daniels et
al. 2001; Shortt et al. 2007a). When LESC deficiency only affects one eye, it can be treated
with autografts of limbal tissue from the unaffected eye (Kenyon and Tseng 1989) or by
transplanting cultured limbal epithelial cells (enriched for putative LESCs and early TACs)
derived from the contralateral eye (Rama et al. 2010). LESC deficiency is also thought to
underlie the corneal deterioration that occurs in people who are heterozygous for PAX6
mutations that cause aniridia (discussed below) and those who are heterozygous for some
p63 mutations (Di Iorio et al. 2012).

19.7.1 Aniridia-related keratopathy (ARK)
Aniridia is an inherited eye disease caused by heterozygosity for a PAX6 mutation
(PAX6+/−), which results in low levels of the PAX6 transcription factor. PAX6 expression is
reduced in eyes of PAX6+/− aniridia patients and also in the abnormal corneal pannus tissue
of patients with Stevens-Johnson syndrome (Li et al. 2008). Eyes of PAX6+/− aniridia
patients develop abnormally and the cornea usually deteriorates progressively causing
corneal opacity that sometimes leads to blindness (Mackman et al. 1979; Nelson et al. 1984;
Nishida et al. 1995). This corneal deterioration is known as aniridic keratopathy or aniridia-
related keratopathy (ARK) and features include irregular thickening of the peripheral
corneal epithelium, in-growth of blood vessels from the limbus, associated with connective
tissue (pannus), stromal scarring and accumulation of goblet cells within the corneal
epithelium. Goblet cells are normally only found in the conjunctival epithelium (beyond the
limbus) and their presence in the corneal epithelium has been interpreted as evidence for
encroachment of conjunctival cells to compensate for poor LESC activity (Nishida et al.
1995). Limbal morphology is abnormal in PAX6+/− aniridia patients and the palisades of
Vogt (putative LESC niche) are absent (Nishida et al. 1995). The conclusion that ARK is at
least partly caused by LESC-deficiency is supported by the clinical observation that
transplantation treatment has much better success when transplanted tissue is healthy limbal
and peripheral corneal tissue (kerato-limbal allograft) rather than central corneal tissue
(penetrating keratoplasty) (Holland et al. 2003).

19.7.2 Pax6+/− mouse aniridia model
Heterozygous Pax6+/− (e.g. Pax6+/Sey-Neu) mice provide an excellent model of both the
developmental eye defects seen in aniridia and the progressive corneal changes
characteristic of ARK, although, unlike humans with aniridia, Pax6+/− mice also have small
eyes (microphthalmia) (Ramaesh et al. 2003; Davis et al. 2003; Sivak et al. 2004; Ramaesh
et al. 2005; Ramaesh et al. 2006; Leiper et al. 2006). It is clear that low levels of Pax6
expression cause abnormal maintenance of the adult cornea in both mice and humans, but
this may involve multiple mechanisms. The presence of goblet cells is consistent with LESC
deficiency (Nishida et al. 1995) but this remains circumstantial because other explanations,
such as abnormal differentiation, are possible (Ramaesh et al. 2005). Proliferation of TACs
in the basal layer of the corneal epithelium is higher in Pax6+/− mice than in wild-type mice
(Davis et al. 2003; Ramaesh et al. 2005) and this could be a secondary response to greater
cell loss from a fragile epithelium (Davis et al. 2003) and/or reduced LESC function, rather
than a direct effect of reduced Pax6 levels on cell proliferation.

Patterns visualised in the corneal epithelia of mosaic and chimeric mice provide clues about
corneal epithelial maintenance. Wild-type (WT) XLacZ, X-inactivation mosaic mice exhibit
radial striping patterns in the corneal epithelium, with stripes converging at a central spiral
or midline and only very rarely do abnormal patterns occur (Fig. 19.7a-c). The pattern in
Pax6+/− XLacZ mosaics is usually disorganised, implying that corneal epithelial cell
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movement is abnormal (Collinson et al. 2004a; Mort et al. 2011; Fig. 19.7d-f). However, it
is unclear whether this is caused by some intrinsic movement defect or a response to chronic
wounding of a thin and fragile corneal epithelium that diverts cells from their normal
centripetal migration. Quantitative analysis implies that Pax6+/− mice have fewer active
clones of LESCs maintaining the corneal epithelium than normal (Collinson et al. 2004a;
Mort et al. 2011). However, it is unclear whether there are fewer active LESCs or if LESCs
are simply clustered into larger clones in Pax6+/− eyes. Quantitative analysis of Pax6+/− ↔
WT mouse chimeras showed that Pax6+/− cells were under-represented in the corneal
epithelium of adults (Collinson et al. 2004a) but not in embryonic day (E) 16.5 fetuses
(Collinson et al. 2001). This implies that Pax6+/− LESCs contribute less well to the adult
corneal epithelium than WT cells, which indicates either that in these chimeras Pax6+/−

LESCs are under-represented relative to WT LESCs or that they produce fewer TACs.
Overall, the mosaic and chimera analyses are consistent with a mild LESC abnormality in
the Pax6+/− mouse model of aniridia.

19.7.3 Other examples of abnormal corneal epithelial maintenance in mice
Although Pax6+/− XLacZ mosaic corneal patterns were mildly disrupted, other Pax6 defects
are associated with more abnormal patterns. Pax6 +/Leca4 XLacZ mosaics (Mort et al. 2011)
and Pax6+/Sey-Neu Gli3+/XtJ XLacZ double heterozygotes (Kucerova et al. 2012) both
produced randomly-orientated patterns of patches in the adults (Fig. 19.7g-j). This suggests
that movement of cells from the limbus is severely reduced or absent and that the corneal
epithelium may be maintaining itself, either because of LESC deficiency or a primary failure
of centripetal cell movement, as reported for Dstncorn1/corn1 mosaics (Zhang et al. 2008),
discussed below. Wild-type mice carrying the PAX77 transgene (Schedl et al. 1996) over-
express Pax6 and show some corneal epithelial abnormalities characteristic of PAX6+/−

heterozygotes (Dorà et al. 2008) but PAX77Tg/− XLacZ mosaics have normal radial stripes
(Fig. 19.7k,l), implying centripetal movement is normal (Mort et al. 2011). Abnormal
striped patterns also occur occasionally in wild-type XLacZ mosaics (Fig. 19.7c) and may be
caused by healing of lateral wounds to generate a second point of stripe convergence during
wound closure. Studies with GFP mosaics confirmed that lateral wounding can create a new
convergence point and cell migration can reorientate after wounding (Fig. 19.7m,n; Mort et
al. 2009).

In Dstncorn1/corn1, CAG-EGFP mosaics, GFP radial stripes begin to emerge but their
centripetal extension ceases at around 6 weeks of age and mosaic patterns become more
globular (Zhang et al. 2008) (Fig. 19.7o,p). Cells in the corneal epithelium are stationary but
proliferative (with regions of epithelial hyperplasia) and comprise a mixture of corneal
epithelial and conjunctival epithelial phenotypes (including goblet cells in older mice), with
BrdU label-retaining cells being distributed throughout the corneal epithelium instead of
being confined to the limbus. The absence of cell movement suggests that the goblet cells
arise by abnormal differentiation within the corneal epithelium, rather than by immigration
from the conjunctiva. The authors proposed that the Dstncorn1/corn1 corneal epithelium
maintains itself with one or more populations of stem cells within the corneal epithelium
that can produce K12-positive corneal epithelial cells, K8-positive conjunctiva-like
epithelial cells and goblet cells (Zhang et al. 2008).

19.8 Research directions for identification of stem cells
As discussed in sections 19.2 and 19.3, the conventional view is that most adult tissues,
including the corneal epithelium, are maintained by populations of long-lived,
predominantly quiescent, SCs, residing in a specialised niche. These SCs show the
hallmarks of being able to ‘self-renew’ (duplicate without losing developmental potential)
and give rise to all differentiated cell types of the tissue or organ in which they reside
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(Potten and Loeffler 1990; He et al. 2009). In the case of the corneal epithelium this SC
population is unipotent generating only differentiated keratinocytes (and undifferentiated
SCs). As discussed in the preceding sections the most plausible hypothesis to explain
corneal epithelial maintenance at present is the LESC hypothesis.

A number of recent observations have forced stem cell biologists to re-appraise their
interpretation of tissue stem cell hierarchies and may inform the current debate. For
example, fast cycling populations of cells with stem cell or progenitor cell characteristics
have been identified in mouse tail epidermis, the hair follicle epithelium and the small
intestine. This evidence suggests either that quiescence is not a prerequisite for an adult SC
population or that, in some tissues, TACs/progenitors are responsible for much of the normal
maintenance (Clayton et al. 2007; Barker et al. 2007; Jaks et al. 2008). Furthermore,
evidence from the small intestine, spermatogonia and interfollicular epidermis suggest that
some tissues may be maintained in a stochastic manner with competition between daughter
cells to occupy the SC niche, rather than by rigid asymmetrical stem cell division (Lopez-
Garcia et al. 2010; Klein et al. 2010; Li and Clevers 2010; Klein and Simons 2011); also see
Fig. 19.6. In addition, SC like potential can be ‘unmasked’ in hair follicle bulge cells that
contribute to repair of the interfollicular epidermis despite the fact that they appear not to be
involved during normal homoeostasis (Ito et al. 2005; Levy et al. 2007; Yu et al. 2008).

These studies suggest that mechanisms of stem cell maintenance may differ between tissues
and that the interaction between the tissue ‘environment’ and the ‘plasticity’ of a particular
cell population is key. Experimental approaches that modify the local environment (by
wounding, transplantation or ex vivo expansion) may therefore induce SC like behaviour in
cells that do not normally contribute to homeostasis (Potten and Loeffler 1990). One current
model suggests that in some tissues there may exist a rapidly cycling ‘committed progenitor’
(CP) responsible for the bulk of tissue maintenance as well as a population of quiescent or
slow cycling SCs. These proposed CPs maintain the tissue and retain a degree of ‘stemness’
which enables them to act as an alternative source of stem cells in response to injury or
physiological stress (Li and Clevers 2010; Klein and Simons 2011; Kaur and Potten 2011);
however CPs have a lower proliferative potential than SCs. In tissues where this model fits
the experimental data, identification of the relevant tissue-maintaining SC will require
additional approaches. It is not yet known whether the corneal epithelium is maintained by
such a combination of quiescent SCs and more active CPs. However it is intriguing that, for
human cornea, Barbaro et al. (2007) identified a Bmi1-positive, C/EBPδ-positive and
ΔNp63α-positive population (possibly a quiescent SC) that responds to injury and a
separate Bmi1- negative, C/EBPδ-negative and ΔNp63α-positive population (possibly a
CP) in uninjured limbus. It remains to be seen however, whether this potential quiescent SC
population contributes to normal tissue maintenance or whether the potential CPs fulfil this
role alone. Lineage tracing studies (see below) should resolve this.

What is clear is that, in order to identify the SC that is responsible for corneal epithelial
maintenance, experimental approaches are required that seek to unpick the tissue hierarchy
without altering the tissue ‘environment’ or unmasking latent ‘plasticity’. To date the most
useful and transparent techniques (in their execution if not in their interpretation) have been
those that use genetic markers driven by the promoters of specific genes to demonstrate
lineage, coupled with conditional diphtheria toxin-mediated cell ablation of those
populations. For example, in the case of the small intestine, two potential SC populations
have been identified. A slow cycling population that expresses Bmi1 is located at the +4
position immediately above the base of the crypt (Sangiorgi and Capecchi 2008). The faster
cycling crypt base columnar cells (CBCs) are interspersed with the Paneth cells at the base
of the crypt and expresses Lgr5 (Barker et al. 2007). Lineage tracing has shown that both
populations give rise to all mature intestinal epithelial cell lineages. However whilst ablation
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of CBCs either genetically or by irradiation leads to expansion of the +4 cells to restore
tissue maintenance (Tian et al. 2011; Yan et al. 2012), genetic ablation of the Bmi1-positive,
+4 cell population results in widespread cell death and is not compatible with crypt
maintenance (Sangiorgi and Capecchi 2008). The evidence suggests, therefore, that CBCs
are responsible for the bulk of tissue maintenance, but that +4 cells sit at the top of the
lineage as quiescent SCs able to divide in response to injury.

This demonstrates how the combination of cell lineage tracing and genetic cell ablation can
be used as powerful tools to tease apart potential SC populations within a tissue. Combined
with the identification of additional cell-specific markers and theoretical modelling of stem
cell dynamics (Lopez-Garcia et al. 2010; Klein and Simons 2011), similar approaches are
likely to be crucial in defining (or rejecting the existence of) SC/CP cell hierarchies in the
corneal epithelium. The expression pattern of Bmi1 in the human cornea (Barbaro et al.
2007) and the availability of Bmi1 transgenic mouse lines (Sangiorgi and Capecchi 2008)
make the gene an obvious starting point for such an analysis. To unambiguously identify the
corneal epithelium-maintaining stem cell population the following key points should be
demonstrated. (1) The prospective SC population can be shown to populate the entire
corneal epithelium though lineage analysis. (2) Ablation of the prospective SC population
should result in corneal deterioration. Thus, although C/EBPδ and Bmi1 appear to be good
candidates as markers of a subpopulation of quiescent LESCs in the human limbus, lineage
tracing and ablation studies are required to determine whether these are the ultimate stem
cells that maintain the corneal epithelium.

19.9 Conclusions
Ocular surface damage and disease are major causes of blindness and so are of great clinical
significance. This has motivated the development of new clinical procedures, including
transplantation of cells cultured from the corneal limbus to treat limbal epithelial stem cell
deficiency (Rama et al. 2010; Shortt et al. 2011). In some respects clinical science is running
ahead of the biological understanding and many fundamental basic research questions
remain unresolved, not least the isolation and characterisation of the proposed LESC
population.

The evidence reviewed here favours a model by which the corneal epithelium is maintained
by LESCs. Evidence that describes a stem cell population within the corneal epithelium
itself (CESCs) may represent the unmasking of latent ’plasticity’ within the resident TAC
population and does not support a fundamental difference between humans and the mouse.
The balance of experimental evidence supports the conventional LESC hypothesis over the
new CESC hypothesis for the mouse as well as other species. Nevertheless, there are
significant differences among species, which need to be taken into account when
extrapolating results from animal models to humans. Despite these differences the mouse
has many advantages as an experimental animal and the availability of mouse genetic
mutants, mosaics and various transgenic models provide powerful experimental resources
with which to unravel the secrets of corneal epithelial maintenance and to model corneal
epithelial defects.

There are currently some promising gene expression patterns that that may open the door to
reliable LESC biomarkers. Careful cell lineage and ablation studies combined with
expression profiling will be required to validate these potential markers and unpick the
tissue hierarchy responsible for corneal epithelial maintenance. With a better understanding
of the basic biology, clinicians will be able to refine their existing therapies and achieve
better clinical outcomes. Furthermore, they will gain better insight and a clearer
understanding of the long-term efficacies of these still relatively new therapies.
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Fig. 19.1. Mouse cornea and limbus
(a) Montage of mouse cornea. (b) Whole eye used to produce montage shown in (a). (c)
Peripheral cornea, limbus and part of the conjunctiva. (d) Higher magnification of the limbal
region shown in (c). (e) Peripheral cornea, limbus and part of the conjunctiva
immunostained for keratin 12 (K12; dark staining) to show the border between the corneal
epithelium (K12 positive) and limbal epithelium (K12 negative). (f) Higher magnification of
dark K12 immunostaining shown in (e) to demonstrate border between corneal and limbal
epithelia. (g) Central cornea showing corneal epithelium, stroma and endothelium. (h-k)
Confocal images of corneal epithelium from tau-GFP transgenic mouse (TgTP6.3; Pratt et
al. 2000) showing optical sections of different epithelial layers, as indicated in (g), from
flattened squamous cells in the superficial layer at the corneal surface (h) to intermediate
“wing cells” in the suprabasal layers and compact basal epithelial cells (k). Scale bars: (a, b)
200μm; (c-f), 50μm; (g), 20μm. Abbreviation in (c): cj, conjunctiva.
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Fig. 19.2. A model of mammalian corneal regeneration and maintenance
Quiescent LESCs that express Bmi1, C/EBPδ (which sustain their quiescence and self
renewal) and ΔNp63α (which primes them for proliferation) reside at the periphery of the
basal limbal epithelium (dark shading; Barbaro et al. 2007). They divide in response to
injury or periodically during tissue maintenance to produce active LESCs and/or early TACs
that down-regulate Bmi1 and C/EBPδ but continue to express ΔNp63α as they proliferate to
produce TACs. Basal limbal cells also express integrin α9, N-cadherin and ABCG2 (Chen
et al. 2004; Hayashi et al. 2007; Budak et al. 2005). In humans ΔNp63α is restricted to the
basal limbal epithelium and although ΔNp63β and ΔNp63γ are expressed in the basal
corneal epithelium during wound healing (not shown) no ΔNp63 isoforms are detectable in
the resting basal corneal epithelium (Pellegrini et al. 2001; Di Iorio et al. 2005). However, in
mice unspecified ΔNp63 isoforms are detectable in the resting basal corneal epithelium
(Collinson et al 2002, Moore et al 2002, Ramaesh et al 2005). During normal maintenance
TACs differentiate and migrate to the suprabasal layers. Here they become wing cells, down
regulate all p63 isoforms and begin to express GST-α4 in the intermediate layers (Norman
et al. 2004). In the most superficial layer of the corneal epithelium they down-regulate GST-
α4 and up-regulate GST-ω1 (Norman et al. 2004). It is not known whether GST-α4 and
GST-ω1 are expressed in the limbal epithelium. The diagram is adapted from one published
by Barbaro et al. (2007) but includes information from both human and mouse studies. Bmi1
and C/EBPδ have been identified in the human ocular surface but not yet in mouse whereas
GST-α4 and GST-ω1 have been identified in mouse but not yet in human.
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Fig 19.3. Alternative hypotheses for maintaining the corneal epithelium
(a) Conventional Limbal Epithelial Stem Cell Hypothesis. Diagram representing the
limbal epithelium and peripheral corneal epithelium with LESCs shown as black basal cells
in the limbus. At time T1, one LESC produces a TAC (shaded grey). At later times (T2-T9)
the daughter cells of this TAC are shown moving centripetally, dividing and, in some cases,
leaving the basal layer, becoming non-mitotic and more differentiated and moving to the
surface. For simplicity, only one clone of labelled cells is illustrated, only one TAC is shown
dividing at each time point, basal and suprabasal cells move centripetally at the same rate
and cells move vertically through the suprabasal layers to the surface relatively slowly. At
T2, T4, T6 and T8 both daughter cells remain in the basal layer but at T3, T5, T7 and T9
both daughter cells move to the first suprabasal layer. (b) Alternative Corneal Epithelial
Stem Cell Hypothesis, (see Majo et al. 2008). Diagram representing the limbal epithelium
and peripheral corneal epithelium with CESCs shown as black basal cells in the corneal
epithelium and quiescent LESCs shown as black basal cells in the limbal epithelium. At time
T1, one CESC produces a TAC (shaded grey). At times T2-T9 the daughter cells of this
TAC are shown moving slowly centrifugally, dividing and, in some cases, leaving the basal
layer. (TACs produced by CESCs in the corneal epithelium could either maintain the local
area of corneal epithelium or move centrifugally (towards the limbus). For simplicity the
clone of cells is shown moving centrifugally but relatively slowly.)

Mort et al. Page 28

Results Probl Cell Differ. Author manuscript; available in PMC 2013 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 19.4. Corneal epithelia of different types of mosaic mice show a transition from patches to
radial stripes
(a, b) β-galactosidase staining in XLacZ X-inactivation mosaics (Collinson et al. 2002). (c,
d) GFP fluorescence in CAG-GFP transgenic mosaics (Zhang et al. 2008). (e, f) GFP
fluorescence in corneal epithelium after transfecting conceptuses with lentiviral vectors
encoding green fluorescent protein (GFP) at embryonic day 9 or 10 (Endo et al. 2007).
Images (c & d) are reproduced with permission of the authors and Molecular Vision. Images
(e & f) are reproduced with permission of the authors and Molecular Therapy.
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Fig. 19.5. Alternative explanations of age-related reduction in corrected stripe number in corneal
epithelia of mouse X-inactivation mosaics
The mosaic corneal epithelium is shown as a disk with radial dark and light stripes produced
by LESCs, represented by dark and light stars, at the edge of the cornea. (For purposes of
illustration dark and light LESCs alternate around the circumference so all dark and light
stripes are the same width.) Dark and light circles represent quiescent LESCs. (a) Full
complement of active LESCs in young eye. (b) Reduced number of LESCs in older eye. (c)
Increased proportion of quiescent LESCs in older eye. (d) Number of LESC clones declines
(without reducing the number of LESCs) by stochastic neutral drift in the distribution of
LESCs (also see Fig. 19.6). The corrected stripe number produced by quantitative analysis
of X-inactivation mosaic patterns indicates the relative number of active LESC coherent
clones rather than the actual or relative number of active LESCs (Collinson et al 2002; Mort
et al 2009). Nevertheless, the possibilities illustrated in the figure still apply – i.e. stripe
numbers can be reduced by stem cell loss, inactivation or redistribution. Adapted from Mort
et al. (2009).
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Fig. 19.6. Asymmetric and symmetric stem cell divisions
Stem cells (SCs) are represented by dark and light circles marked with the letter ‘S’
associated with a niche; transient (or transit) amplifying cells (TACs) are shown as dark and
light hexagons, marked with the letters ‘TA’. (a) Asymmetric division of stem cells always
produces one stem cell and one TAC, which will divide a limited number of times to
produce more differentiated cells. (b) Stem cells might also divide symmetrically to produce
two equivalent daughter cells, which compete with neighbours to occupy limited space on
the niche. Daughter cells securing contact with the niche would become stem cells and
others would become TACs. This would provide scope for stochastic replacement of a SC
by a daughter cell of a neighbouring SC. In the diagram, the top dark SC is lost and both
daughter cells produced by the neighbouring light SC occupy the niche so the light SC clone
expands.
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Fig. 19.7. Normal and abnormal mosaic patterns in the mouse corneal epithelium
(a-l) β- galactosidase staining in XLacZ X-inactivation mosaics; (m-p) GFP fluorescence in
GFP transgenic mosaics. (a, b) Mosaic patterns in corneal epithelia of normal, wild-type
XLacZ X-inactivation mosaic mice show radial stripes that meet at either a central spiral (a)
or at the midline (b). (c) A rare wild-type XLacZ X-inactivation mosaic cornea with two
points of stripe convergence. (d-f) Pax6+/Sey-Neu XLacZ mosaics may have normal striped
patterns (d) but in most cases stripes are disrupted (e, f). (g-j) Pax6+/Leca4 XLacZ mosaics
(g, h) and double heterozygous Pax6+/Sey-Neu Gli3+/XtJ XLacZ mosaics (i, j) have a pattern
of patches rather than stripes. Cornea (j) has a double spiral pattern. (k, l) PAX77Tg/−

XLacZ mosaics over-express Pax6 but usually show a normal pattern of radial stripes. (m,
n) Images from time-lapse confocal microscopy of healing of a 1 mm peripheral wound in a
Y001deltaDRR (PAX6-GFP) mosaic corneal epithelium shows closure of the wound
between 5.25 h. after wounding (m) and 18.75 h. (n) to form a second point of stripe
convergence (Mort et al. 2009). (o, p) Flat whole mount CAG-EGFP corneas show radial
stripes of GFP fluorescence (o) but adult homozygous GFP-Dstncorn1/corn1 corneas (p) show
globular and diffuse GFP patterns (Zhang et al. 2008). Images (o) and (p) are reproduced
from Zhang et al. (2008) with permission of the authors and publishers of Molecular Vision.
Others are from our own studies: a, b, c, m, n (Mort et al. 2009); d (Mort 2007); e,f
(Collinson et al. 2004a); i, j (Kucerova et al. 2012); g, h, k, l unpublished.
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Table 19.3

Top confirmed potential LESC markers from differential expression studies

Molecule Species Confirmed by Reference

Epiregulin Human Microarray + IHC Zhou et al. 2006

Wnt-4 Human Microarray + IHC Figueira et al. 2007

Keratin 14 Human Microarray + IHC Figueira et al. 2007

P-Cadherin Human Microarray + IHC Figueira et al. 2007

SOD2 Human Microarray +IHC +Mass Spec Lyngholm et al. 2008a; Kulkarni et al. 2010

Keratin 15 Human/Rat Microarray +IHC + Mass Spec Figueira et al. 2007; Akinci et al. 2009;
Lyngholm et al. 2008a

ID4 Human 2 independent expression studies Takacs et al. 2009; Wolosin et al. 2000

Spondin-1 Human 2 independent expression studies Takacs et al. 2009; Zhou et al. 2006

S100A8 Human 2 independent expression studies Takacs et al. 2009; Lyngholm et al. 2008a

Catenin-α2 Human 2 independent expression studies Figueira et al. 2007; Zhou et al. 2006

GPX2 Monkey/Pig 2 independent expression studies Ding et al. 2008; Akinci et al. 2009

Keratin 13 Rat/Monkey 2 independent expression studies Adachi et al. 2006; Ding et al. 2008

Abbreviations: IHC, immunohistochemistry; Mass Spec, mass spectrometry.
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