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NOTE Communicated by Jonathan Victor

A Novel Spike Distance

M. C. W. van Rossum
Department of Biology, Brandeis University, Waltham, MA 02454, U.S.A.

The discrimination between two spike trains is a fundamental problem
for both experimentalists and the nervous system itself. We introduce a
measure for the distance between two spike trains. The distance has a
time constant as a parameter. Depending on this parameter, the distance
interpolates between a coincidence detector and a rate difference counter.
The dependence of the distance on noise is studied with an integrate-and-
fire model. For an intermediate range of the time constants, the distance
depends linearly on the noise. This property can be used to determine
the intrinsic noise of a neuron.

1 Introduction

In the analysis of experimental neural data (e.g., when studying the effect of
a certain manipulation or how reproducible the neuron’s response is), one
often encounters the question, “How similar are these two spike trains ?”
A problem is that it is not really known what information to look for in the
spike train. In particular cases the precise timing is known to be important,
whereas in other cases, only the number of spikes in a certain interval seems
of importance (Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1996).
The nervous system itself is possibly confronted with the same question of
similarity, as when it has to respond to a certain visual cue and has to decide
what the appropriate response is (“Was that really a tiger ?!”).

One approach in addressing this question is to introduce a distance that
measures the (dis)similarity of two spike trains. If the distance between two
spike trains is small enough, one can assume that the inputs were identical.
Alternatively, distance measures can be used in a forced-choice experiment
in which the spike train is compared to different templates. In that case, the
template with the smallest distance to the trial should be chosen. Measures
to compare spike trains have been introduced—for example:

• The total spike count. The total number of spikes in the spike trains
is compared. This method is quite effective, but it misses all temporal
structure in the spike trains.

• To resolve temporal structures, the spikes can be binned and the num-
ber of spikes per bin counted. Next, one measures the number of coin-
cident spikes (see, e.g., Kistler, Gerstner, & van Hemmen, 1997). Alter-
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natively, the count is interpreted as a vector in N-dimensional space,
where N is the number of bins. The distance to other spike trains can
be calculated using an N-dimensional Euclidean distance (Geisler, Al-
brecht, Salvi, & Saunders, 1991; MacLeod, Backer, & Laurent, 1998). A
disadvantage of the binning procedure is that it does not distinguish
between a spike shifted so that it just drops out of the bin and a spike
shifted many bin durations. And a spike that is shifted but stays within
the bin is treated like a spike that was not shifted at all. These might
not always be desired effects if the spike timing matters.

• A more flexible distance measure is needed that takes the temporal
structure into account but avoids the problems associated with bin-
ning. In a set of comprehensive papers Victor and Purpura (1996, 1997)
introduced a measure based on a cost function. Two processes differen-
tiate one spike train from another. (1) spikes can be deleted or inserted,
and (2) they can be shifted in time. Victor and Purpura attributed to
both processes a certain (arbitrary) cost and calculated how much it
would cost to transform one spike train into the other one. The cost of
insertion or deletion was fixed to one. If no cost was associated with
the shifting process, the total cost was just the difference in the total
number of spikes. Otherwise the cost function for the shift was taken
to be a monotonic increasing function of the spike time difference.
Although this method has been applied successfully (MacLeod et al.,
1998), the calculation of the full cost function is quite involved. The
reason is that it is not always clear where a displaced spike came from,
and if the number of spikes in the trains is unequal, it can be difficult
to determine which spike was inserted or deleted.

Here we introduce a spike distance closely related to the distance intro-
duced by Victor and Purpura, yet it is easier to calculate and has a physio-
logical interpretation. The distance is used to measure the intrinsic noise of
a model neuron.

2 A Novel Measure

With the goal of a simple distance measure, we propose the following: Given
a spike train with spike times ti,

f orig(t) =
M∑
i
δ(t− ti), (2.1)

where we will assume that all ti > 0. Replace the delta function associated
with each spike with an exponential function, that is, add an exponential
tail to all spikes,

f (t) =
M∑
i

H(t− ti)e−(t−ti)/tc . (2.2)
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Figure 1: Definition of the distance. (Top) Two spike trains (one flipped) are
convolved with an exponential with time constant tc. (Bottom) The difference
squared of the spike trains. The distance is given by the integral of this curve.

Here tc is the time constant of the exponential function and H is the Heav-
iside step function (H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0). In principle,
one could convolve with functions other than the exponential. Our choice
for the exponential function was motivated by its causality, simplicity, and
possible biological interpretation (see section 4). The distance between two
trains f and g we define as (see Figure 1)

D2( f, g)tc =
1
tc

∫ ∞
0

[
f (t)− g(t)

]2 dt. (2.3)

The distance is the Euclidean distance of the two filtered spike trains with
tc as a free parameter.

To get a sense of the distance, consider the two limits of tc. For tc much
smaller than the interspike interval, the smeared functions f and g con-
tribute to the integral only if the spikes are not more than tc apart. This is
very similar to a coincidence detection. For most spike trains, coincident
spikes can be neglected in the limit of zero tc; thus, if f contains M and g
contains N spikes, one has

lim
tc→0

D2( f, g)tc =
1
tc

∫ ∞
0

[
f 2(t)+ g2(t)

]
dt = M+N

2
. (2.4)

The distance counts the noncoincident spikes.
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In the opposite limit, for large tc, the main contribution to the integral
comes from times when the last spike has passed but the exponent has still
not decayed. Assuming that f (g) contains M(N) spikes, one can approxi-
mate

lim
tc→∞

D2( f, g)tc =
1
tc

∫ ∞
0
(Me−t/tc −Ne−t/tc)2dt = (M−N)2

2
. (2.5)

In this limit, D measures the difference in total spike count. Note that it is
important that the upper limit of the integral is taken to be infinity (or, in
practice until the tail of the last spike died out) instead of the time of the last
spike.

The distance thus interpolates between the two extremes of coincidence
detection and measuring difference in total spike count. The distance mea-
sure is very easy to implement numerically. For the best results, the integral
between spikes and after the last spike can be done analytically. After filter-
ing, the spike trains this leaves a sum of N +M terms.

Changing integration variables leads to an alternative expression for the
distance,

D2( f, g) = 1
2

∫ ∞
−∞

Cf−g, f−g(t) e−|t|/tc dt, (2.6)

where Cf−g, f−g(t) is the autocorrelation of the difference of the raw spike
trains, f orig(t)−gorig(t). This shows that the distance can be interpreted as the
weighted integral over the autocorrelation, with the weighting depending
on tc. It also shows that the distance is invariant under time reversal, that is,
the distance is the same if the exponential tails were attached to the other
sides of the spikes.

2.1 Analytical Results. For some simple cases, we can derive analytical
results. Let us consider the distance between two almost identical spike
trains. First consider the insertion of a single spike at time ti into train f ,
other than that, the spike trains are identical, that is,

g(t) = f (t)+H(t− ti)e−(t−ti)/tc .

The distance is

D2
insertion( f, g) = 1

tc

∫ ∞
ti

e−2(t−ti)/tc

= 1
2
. (2.7)

The removal of a spike yields the same answer. Note that the result is inde-
pendent of tc.



A Novel Spike Distance 755

Now suppose a spike is shifted from ti in spike train f to time ti+ δt in g,

g(t) = f (t)−H(t− ti)e−(t−ti)/tc +H(t− ti − δt)e−(t−ti−δt)/tc ,

which yields a distance,

D2
displace( f, g) = 1

tc

∫ ti+δt

ti

e−2(t−ti)/tc + 1
tc

∫ ∞
ti+δt

[e−(t−ti)/tc) − e−(t−ti−δt)/tc ]2,

= 1− e−|δt|/tc . (2.8)

which is unity for small tc and vanishes for large tc. The ratio of distances due
to spike insertion and displacement depends on tc. For a shift δt = tc ln(2),
insertion and displacing cost the same. Note, however, that displacing a
spike never costs more than insertion or removal of two spikes. The reason
is that shifting a spike can always be done by removing the spike at time t
and reinserting it at time t+ δt.

2.2 Correlation Effects. When one considers two trains in which more
spikes are changed, the distance is more complicated and certainly not al-
ways equal to the sum of the individual displacement and insertion dis-
tances. As an example, consider the case where two spikes, time T apart,
are both displaced at time δt. No other spike occurs between the two. For
this case one finds

D2( f, g) = 2
[
1− e−|δt|/tc

]− 2e−|T|/tc [cosh(δt/tc)− 1] . (2.9)

In Figure 2 the distance is plotted for various amounts of shift. The first
term is twice the single spike displacement distance, equation 2.8. The sec-
ond term is due to the correlation and is always negative. Thus, the total
distance of displacing two spikes is less if the spikes are close. This seems a
natural phenomenon, as the spike trains will look more similar when two
neighboring spikes are shifted than when two spikes far apart are shifted.
However, proper description of such effects calls for a more complex dis-
tance measure with the introduction of extra timescales (Victor & Purpura,
1997).

One can also study the insertion of two spikes, time T apart. For that
case, one finds

D2( f, g) = 2
2
+ e−T/tc , (2.10)

that is, the cost of insertion two spikes close together is larger than the cost
of inserting two distant spikes. Equivalently, when more than one spike is
inserted, the distance will increase with increasing tc (see Figure 2).
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Figure 2: Effect of the deletion and shifting of spikes on the distance versus
tc. (Top) All the spikes in the second spike train are shifted 1, . . . , 100 ms with
respect to the first train. At large tc, this shift does not contribute to the distance.
The spike trains were Poisson trains with a duration of 10 s and a rate of 20 Hz.
(Bottom) At random positions, 3, . . . , 8 spikes are deleted from the second spike
train (lower to upper curve). The distance is largest at large tc.

2.3 Distance Between Uncorrelated Poisson Trains. Next we calculate
the distance between two uncorrelated Poisson spike trains, both with a
rate ρ. For small tc, the distance measures the number of spikes (see equa-
tion 2.4). Assuming a total duration of T, on the average ρT spikes will be
produced, so for small tc, D2 = ρT. On the other hand, for large tc, according
to equation 2.5, the distance approaches (M−N)2/2, where M and N again
denote the number of spikes in the trains. The expectation value for (M−N)2

for two Poisson processes is 2ρT; hence, for large tc, one has D2 = ρT. The
average distance is thus identical at small and large tc. Alternatively, one
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Figure 3: Distance between two independent Poisson trains. The distance is on
average constant across tc, but shows large fluctuations at large tc.

can use equation 2.5 and Cf−g, f−g = Cf, f + Cg,g − 2Cf,g = 2ρTδ(t), which
yields D2 = ρT independent of tc.

Numerical simulations are shown in Figure 3. The distance shows large
fluctuations for large tc; the difference in the number of spikes fluctuates
more strongly than the number of nonoverlapping spikes. The reason is
that the difference can be interpreted as a variance, while the number of
nonoverlapping spikes behaves more like a mean value. It is well known
that the variance is a more variable quantity than the mean.

3 Distance Between Two Noise-Driven Spike Trains

Next we study how the distance varies in response to changes in the input
for a spiking neuron. We use a leaky integrate-and-fire neuron with a time
constant of 50 ms. The stimulus is a gaussian distributed variable with zero
mean and 10 ms temporal correlation. Its variance is adjusted to give an
average spike frequency of 20 Hz. To compare spike trains, this stimulus is
repeated across trials, and nonrepeating gaussian noise is added.

The standard deviation of the noise, σadd, was up to 10% of the standard
deviation of the stimulus. In Figure 4 we plot the distance as tc is varied. As
expected, the distance initially drops as spike time differences due to slightly
displaced spikes are smoothed out. However, for large tc, the distance in-
creases again. This contrasts with the distance between two Poisson spike
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Figure 4: Distance between a spike train and the spike train with noise added to
the input. The different lines correspond to different amounts of noise: standard
deviation 2%, 4%, 6%, 8%, and 10% of stimulus standard deviation (lower to
upper curve). The crosses indicate the limits tc → 0 and tc → ∞. Note the
minimum of the distance at intermediate tc.

trains where the average distance was constant across tc. For the integrate-
and-fire neuron, noise will both shift as well as insert and delete spikes.
The membrane time constant introduces temporal correlations, leading to
a minimal distance when tc is roughly of the order of the integration time
constant. Why the precise value is larger than the membrane time constant
is not clear.

The dependence of the distance on the amount of added noise varies
for different values of tc (see Figure 5). Unfortunately, there is no obvious
analytical approach to determine the distance as a function of the noise
for the integrate-and-fire model; instead we rely on simulations. We found
approximately a power law relation between distance and noise, with the
exponent depending on tc. For small tc, it holds that D2 ∝ √σadd, whereas
for large tc, one has D2 ∝ σ 2,...,4

add . However, for a large region of intermediate
tc, roughly corresponding to the valley region in Figure 4, one has D2 ∝ σadd.

3.1 Estimating Intrinsic Noise. The smooth dependence of the distance
on the noise can be used to measure the intrinsic noise of a neuron. To this
end, we assume that there is an intrinsic noise source in the neuron that
is additive to the input (Tuckwell, 1988; Gerstein & Mandelbrot, 1964). By
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Figure 5: Same data as Figure 4, but here the distance is plotted versus the noise
added to the stimulus. For different tc there are different power laws between
the distance and the noise. The standard deviation of the noise is denoted as a
fraction of the stimulus standard deviation. Because of the different y-scaling,
the plots were split for different tc values: (top) tc = 0, 1, 10; (middle) tc =
100, 1000, 10,000 (linear regime); (bottom) tc = 105, 106,∞.

mixing additional nonrepeating noise with the input and extrapolating the
distance, the intrinsic noise can be estimated (see Figure 6). The standard

deviation at the input of the spike generator is σtotal =
√
σ 2

add + σ 2
intrinsic;

therefore, the distance is best considered as a function of σ 2
add. In practice,

one plots D4 versus σ 2
add and fits a straight line. The intrinsic noise is recon-

structed from the intercept of the line with the x-axis (see Figure 6B).
This method is borrowed from electrical engineering and psychophysical

studies. There one measures, for instance, the detection threshold of a visual
stimulus as noise is added to the stimulus (Pelli, 1990; Lu & Dosher, 1999).
This detection threshold is commonly proportional to the signal-to-noise
ratio of the stimulus, which then allows determination of the intrinsic noise.
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Figure 6: Using the distance to estimate the intrinsic noise of a cell. (A) Model
of the cell. The intrinsic noise in the cell is assumed to be additive to the input.
(B) The distance is plotted versus the variance of noise added to the stimulus. By
adding noise, the distance to the original response increases (circles). Note that at
zero added noise, the distance is nonzero because the cell will not reproduce the
exact same spike train due to the presence of the intrinsic noise. Extrapolation
yields an estimate for the intrinsic noise.

To test the approach, we simulated an integrate-and-fire neuron with an
intrinsic noise source and tried to estimate the amount of intrinsic noise
by extrapolation. Because the linear regression is not a good fit for all tc
(see Figure 5), the quality of the fit was measured with χ2, and the result
with minimal χ2 was selected. The method works well for small amounts
of intrinsic noise. An intrinsic noise with a standard deviation of 1% (as
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compared to the stimulus standard deviation) was estimated as 1.25% (tc =
600 ms, shown in Figure 6B); an actual value of 5% was estimated as 6%,
10% was estimated as 12.6%, and 20% was estimated as 33%. Thus, the
method slightly overestimates the intrinsic noise. At higher levels of added
or intrinsic noise, the fitting deteriorates as the linear relation between σ 2

and D4 gets higher-order corrections. Nevertheless, we obtain a reasonable
estimate for the intrinsic noise, which is otherwise hard to access.

4 Conclusion

We have introduced a distance measure that computes the dissimilarity be-
tween two spike trains. To calculate the distance, filter both spikes trains,
and calculate the integrated squared difference of the two trains. The sim-
plicity of the distance allows for an analytical treatment of simple cases.
Numerical implementation is straightforward and fast.

The distance interpolates between counting noncoincident spikes and
counting the squared difference in total spike count. In order to compare
spike trains with different rates, total spike count can be used (large tc).
However, for spike trains with similar rates, the difference in total spike
number is not useful, and coincidence detection is sensitive to noise. In-
stead, intermediate values of tc, somewhat longer than the membrane time
constant, are optimal.

The distance uses a convolution with the exponential function. This has
an interpretation in physiological terms. Indeed, among other distances
(see section 1), our distance does not seem the most unlikely one to be
implemented physiologically. For short and medium tc, the convolution
can be interpreted as postsynaptic potentials in a higher-order neuron. For
longer tc, slower second messenger or calcium-induced currents seem more
appropriate. It would be interesting to see if such detection schemes are
implemented biologically.

As an alternative measure, one could convolve the spikes with a square
window. In that case, the situation becomes somewhat similar to binning fol-
lowed by calculating the Euclidean distance between the number of spikes
in the bins. But in standard binning, the bins are fixed on the time axis; there-
fore, two different spike trains yield identical binning patterns as long as
spikes fall in the same bin. However, with the proposed distance (convolv-
ing with either square or exponential), this does not happen; the distance is
zero only if the two spike trains are fully identical (assuming tc is finite).

The distance squared is related to the distance measure introduced by
Victor and Purpura (1996, 1997). One difference with this work is that their
displacement distance was linear in the time difference, although they did
suggest the use of an exponential displacement distance (see equation 2.8).
Another difference is that the distance introduced here is explicitly embed-
ded in Euclidean space, which makes it less general but easier to analyze
than the Victor and Purpura distance.
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Interestingly, the distance is related to stimulus reconstruction techniques,
where convolving the spike train with the spike-triggered average yields a
first-order reconstruction of the stimulus (Rieke et al., 1996). Here the expo-
nential corresponds roughly to the spike-triggered average, and the filtered
spike trains correspond to the stimulus (the exponentials are now attached
to the other side of the spikes, but that does not change the distance). The
distance thus approximately measures the difference in the reconstructed
stimuli (see equation 2.3). This might well explain the linearity of the mea-
sure for intermediate tc. It also suggests that the distance measure might be
refined by using the actual spike-triggered average instead of an exponen-
tial.

A possible application for the distance measure is the insect olfactory
system, which uses a timing-based code to distinguish odors (MacLeod
et al., 1998). There it was shown, using the Victor and Purpura distance,
that information was encoded in the temporal structure of the spike train
but not in the mean rate. Another application is the measurement of the
intrinsic noise of a neuron or network, which is possible because the dis-
tance varies smoothly as noise is added to the input. For sensory systems,
stimulation with “natural” noisy stimuli has become quite common. Al-
though natural stimuli are relevant in determining the system’s response,
the characterization of the noise in the system is less straightforward (Re-
ich, Victor, Knight, Ozaki, & Kaplan, 1997). Measuring the intrinsic noise
could be helpful. We stress that the intrinsic noise is a quantity that is oth-
erwise difficult to measure experimentally. For instance, measurements of
subthreshold fluctuations in the membrane potential fail to detect noise in
the spike generator itself. By adding noise to the stimulus, one can deter-
mine this intrinsic noise, which gives an effective description of the neuron’s
variability.
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