
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alternative activation of macrophages by filarial nematodes is
MyD88-independent

Citation for published version:
Mylonas, KJ, Hoeve, MA, Macdonald, AS & Allen, JE 2012, 'Alternative activation of macrophages by filarial
nematodes is MyD88-independent' Immunobiology, vol 218, no. 4, pp. 570–578.,
10.1016/j.imbio.2012.07.006

Digital Object Identifier (DOI):
10.1016/j.imbio.2012.07.006

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher final version (usually the publisher pdf)

Published In:
Immunobiology

Publisher Rights Statement:
Open Access. RoMEO Green.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28968948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.imbio.2012.07.006
http://www.research.ed.ac.uk/portal/en/publications/alternative-activation-of-macrophages-by-filarial-nematodes-is-myd88independent(ad4535c6-b98b-4b9e-8b48-0c669ced776d).html


Immunobiology 218 (2013) 570– 578

Contents lists available at SciVerse ScienceDirect

Immunobiology

j o ur nal homep ag e: www.elsev ier .com/ locate / imbio

Alternative  activation  of  macrophages  by  filarial  nematodes  is
MyD88-independent

Katie  J.  Mylonasb,1,  Marieke  A.  Hoevec,1,  Andrew  S.  MacDonalda,  Judith  E.  Allena,∗

a Institute of Immunology and Infection Research, Centre for Immunity, Infection & Evolution, School of Biological Sciences, The University of Edinburgh, West Mains Road, Edinburgh
EH9  3JT, United Kingdom
b The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
c MRC  Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom

a  r  t  i  c  l  e  i n  f  o

Article history:
Received 13 April 2012
Received in revised form 12 July 2012
Accepted 14 July 2012

Keywords:
MyD88
TLR
Macrophage
Th2
Filariasis

a  b  s  t  r  a  c  t

Alternative  macrophage  activation  is largely  defined  by  IL-4R�  stimulation  but  the  contribution  of  Toll-
like  receptor  (TLR)  signaling  to this  phenotype  is  not  currently  known.  We  have  investigated  macrophage
activation  status  under  Th2  conditions  in  the  absence  of  the  core  TLR  adaptor  molecule,  MyD88.  No
impairment  was  observed  in the  ability  of  MyD88-deficient  bone  marrow  derived  macrophages  to pro-
duce  or  express  alternative  activation  markers,  including  arginase,  RELM-˛  or  Ym1,  in response  to  IL-4
treatment  in  vitro.  Further,  we observed  no  difference  in  the  ability  of  peritoneal  exudate  cells  from  nema-
tode  implanted  wild  type  (WT)  or MyD88-deficient  mice  to produce  arginase  or express  the  alternative
activation  markers  RELM-�  or Ym1.  Therefore,  MyD88  is not  a  fundamental  requirement  for  Th2-driven
macrophage  alternative  activation,  either  in  vitro or in  vivo.

© 2012 Elsevier GmbH. All rights reserved.

Introduction

Pattern recognition receptors (PRRs) recognize molecules that
are broadly shared amongst pathogens and include the C-type
lectin receptors, NOD-like receptors and Toll-like receptors (TLRs).
TLRs expressed on antigen presenting cells such as macrophages
play a central role in the activation of innate and adaptive immune
responses (Iwasaki and Medzhitov 2004; Kawai and Akira 2011).
Myeloid Differentiation Factor 88 (MyD88) is a critical adaptor
molecule shared by many TLRs and signaling through most of these
receptors is completely dependent on MyD88. However, MyD88-
independent pathways also exist for some TLRs, e.g. TLR4 (Akira
and Hoshino 2003).

In the absence of MyD88, Th1 responses are greatly diminished,
revealing a key role for TLRs and MyD88-dependent signaling in
the control of adaptive Th1 immunity (Adachi et al. 1998). Th2
responses, on the other hand, have been shown in some studies
to be intact or even augmented in the absence of MyD88 (Schnare
et al. 2001; Kaisho et al. 2002; Muraille et al. 2003; Chen et al. 2010;
Gaddis et al. 2011), suggesting that Th2 induction does not require
MyD88. However, other work indicates that TLR signaling can play
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a role in promoting Th2 responses. For example, Eisenbarth et al.
(2002) found that low levels of LPS-induced signaling through
TLR4 is necessary to induce Th2 responses to inhaled antigens
in a mouse model of allergic sensitisation. Th2 induction was
later found to be MyD88-dependent but this was  reliant on the
initial route of antigen exposure (Piggott et al. 2005). Therefore,
whether signaling through MyD88 is required for a Th2 response
may  depend on the particular model under investigation. Beyond
initiation of immunity, MyD88 can regulate antigen presenting cell
effector function. Recognition of microbial products through TLRs,
along with interferon-� (IFN-�) exposure, is known to polarize
macrophages towards a classical activation state, defined by
the production of antimicrobial products and pro-inflammatory
mediators (Dalton et al. 1993; Aderem and Ulevitch 2000). In
contrast, macrophages found in Th2 settings such as helminth
infection, have been described as alternatively activated (Gordon
and Martinez 2010), and in mice display IL-4/IL-13-dependent
features, such as the expression of Arginase1, RELM-� and Ym1,
as well as the ability to suppress the proliferation of neighbouring
cells ex vivo (Loke et al. 2000, 2002; Mylonas et al. 2009; Jenkins and
Allen 2010). However, the contribution of MyD88 to alternative
macrophage activation is currently unclear.

Inflammatory pathology associated with filarial nematode
infection can lead to lymphedema and elephantiasis (lymphatic
filariasis) and ocular and skin damage (onchocerciasis) (Hoerauf
et al. 2011; Babu et al. 2011). It was  proposed originally that
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pathology may  relate to LPS activity from Wolbachia,  the endosym-
biotic bacteria contained within filarial nematodes, acting through
TLR-4 to cause production of the key pro-inflammatory cytokines
IL-1� and TNF-� by macrophages (Taylor et al. 2000). However,
Wolbachia was subsequently found to contain no LPS and fails
to signal through TLR-4 (Hise et al. 2007). The pro-inflammatory
activity of Wolbachia has more recently been attributed to MyD88-
dependent TLR-2 and TLR-6 signals (Hise et al. 2007), although the
ligands are not known. Filarial Wolbachia has been further impli-
cated in T helper cell polarisation (Turner et al. 2009) but, for the
most part, these studies have been performed in vitro or have uti-
lized parasite extracts. An investigation into a role for MyD88 in
macrophage activation or Th2 immunity during exposure to live
infection is lacking.

In light of this, we have investigated whether MyD88 signal-
ing impacts negatively or positively on macrophage phenotype
or numbers using the wolbachia-containing filarial nematode,
Brugia malayi.  We  first tested the in vitro capacity of MyD88
macrophages to become alternatively activated. Using wild type
(WT) or MyD88−/− bone marrow-derived macrophages (BMM�)
treated with IL-4, we found comparable levels of arginase activ-
ity and Arginase1,  RELM-  ̨ and Ym-1 mRNA expression. Somewhat
more surprisingly, we also found no evidence for MyD88 involve-
ment in vivo. Implantation of B. malayi adult worms into the
peritoneal cavity is a potent Th2 stimulus that induces large num-
bers of alternatively activated macrophages (Loke et al. 2007). No
significant differences between WT  or MyD88−/− mice were found
in terms of cell recruitment profiles or alternative activation mark-
ers. In agreement with this, the Th2 cytokines induced following
parasite implant were not altered. Together, this provides evidence
that the adaptor protein MyD88 is not essential for M�  alternative
activation, either directly by IL-4 in vitro, or through exposure to a
Th2 promoting parasitic helminth in vivo.

Materials and methods

Macrophage activation

BMM� were prepared as described previously (Mylonas
et al. 2009). Briefly, BM cells were seeded onto petri dishes at
7.5 × 106 cells/plate and cultured in DMEM,  supplemented with
25% foetal calf serum (FCS) (GIBCO), 25% L929 supernatant (as
a source of M-CSF), 2 mM l-glutamine, 0.25 U/ml penicillin and
100 �g/ml streptomycin. The medium was replaced after four and
six days and the macrophages collected on day 7. These BMM�
were transferred to 9 cm Petri dishes and left untreated in complete
medium (DMEM, 10% FCS, 2 mM l-glutamine, 0.25 U/ml penicillin
and 100 �g/ml streptomycin), or exposed for 18–24 h to recombi-
nant IL-4 (20 ng/ml; BD Pharmingen). The BMM� were then treated
with LPS (100 ng/ml; Escherichia coli 0111:B4 Sigma–Aldrich) and
IFN-� (10 U/ml; BD Pharmingen) together or separately for a further
18–24 h.

Mice and infection

All experiments used WT  C57BL/6 or MyD88−/− mice on a
C57BL/6 background that were bred in house. Original MyD88−/−

breeders were generously provided by Prof. R. Grencis (University
of Manchester) with the agreement of S. Akira (Osaka University).
Mice were 6–8 weeks old at the start of the experiment and all
animal work was conducted in accordance with the UK Animals
(Scientific Prodecures) Act 1986. Adult B. malayi nematodes were
removed from the peritoneal cavity of infected gerbils purchased
from TRS Laboratories (Athens, GA) or maintained in house. Mice
were surgically implanted intra-peritoneally (i.p.) with 5–6 live

adult female nematodes. The peritoneal exudate cells (PECs) were
harvested at peak cellular recruitment (Nair et al. 2005; Loke et al.
2007), 19d later, by thorough washing of the peritoneal cavity with
1 ml,  and then a further 9 ml,  ice-cold DMEM (Gibco). The first
1 ml  lavage fluid was saved for protein analysis, and the cells from
both lavage steps combined. As a control for non-Th2 polarised
inflammation, mice were injected i.p. with 0.8 ml of 4% brewer
modified thioglycollate medium (Becton Dickinson). Three days
later, PECs were harvested as above. Recovered PECs were cultured
in complete medium and the macrophages purified by adherence,
as previously described (Nair et al. 2003).

Flow cytometry

After blocking with 2% mouse serum cells were stained using
the following mAb: F4/80-biotin, CD4-APC, CD8-PE, B220-PCP and
SiglecF-PE, as well as the appropriate isotype control Abs. Sam-
ples were then acquired using BD LSRII, with data subsequently
analysed by FlowJo (Tree Star, Inc.).

Cytocentrifuge preparations

Cytocentrifuge preparations of 8 × 105 cells in complete
medium were made using a Shandon Cytospin. Slides were air-
dried overnight and fixed for 10 min  in cold methanol, followed
by staining with Diff-Quik (Dade) according to the manufacturer’s
instructions. The cell populations were determined by microscopic
examination (40× objective) of at least 100 cells per slide.

Proliferation assay

Macrophages purified by adherence were co-cultured
(1 × 105 cells/well) in 96-well flat-bottomed plates with EL-4
cells (1 × 104 cells/well) as previously described (Loke et al.
2000). Following a 48-h incubation, 1 �Ci of [3H]TdR in 10 �l
complete medium was added to each well, and plates were
incubated overnight before harvesting and counting using a liquid
scintillation counter (Microbeta 1450, Trilux). Quadruplicate
measurements per sample were performed. Results were plotted
in counts per minute (cpm).

Quantification of nitric oxide (NO) and arginase activity

NO production was  assessed by nitrite accumulation in the
culture media using the Greiss Reagent. In brief, 100 �l cul-
ture supernatant was  mixed with 100 �l of 5.8% phosphoric
acid, 1% sulphanilamide, 0.1% N-(1-naphthyl) ethylenediamine
dihydrochloride. Absorbance was  measured at 540 nm using a
microplate reader. Concentration was determined according to a
standard curve of sodium nitrite solution. Arginase activity was
measured according to previously published protocols (Munder
et al. 1998). Briefly, 1–2 × 105 cells were lysed with 100 �l 0.1%
Triton X-100. Following a 30 min  incubation with shaking, 100 �l
of 25 mM TrisHCL and 20 �l of 10 mM  MnCl2 were added and the
enzyme activated by heating to 56 ◦C for 10 min. l-Arginine hydrol-
ysis was  carried out by incubating 100 �l of this lysate with 100 �l
of 0.5 M l-arginine (pH 9.7) at 37 ◦C for 60 min. The reaction was
then stopped with 800 �l H2SO4 (96%)/H3PO4 (85%)/H2O (1/3/7,
v/v/v), and 40 �l of 9% isonitroso-propiophenone added, followed
by heating to 99 ◦C for 30 min  before reading on the microplate
reader at 540 nm.  A standard curve of urea solution was  used to
determine urea concentrations, as a readout of arginase enzyme
activity. Unless otherwise stated, all reagents were obtained from
Sigma–Aldrich.
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RNA extraction and real-time RT PCR

RNA was recovered from cells by re-suspension in TRizol reagent
(Invitrogen). Total RNA was extracted according to the manu-
facturer’s instructions. Following DNAse1 treatment (Ambion) to
remove contaminating genomic DNA, approximately 1 �g of RNA
was used for the synthesis of cDNA using MMLV  reverse transcrip-
tase (Stratagene). Relative quantification of the genes of interest
was measured by real-time PCR, using the Roche LightCycler. For
each gene, five serial 1:4 dilutions of a positive control sample of
cDNA (macrophages elicited at peak Th2 activation from B. malayi
implanted mice) were used as a standard curve in each reaction and
the expression levels were estimated from the curve. Amplification
was quantified and normalised using �-actin as a housekeep-
ing gene. PCR amplifications were performed in 10 �l, containing
1 �l cDNA, 4 mM MgCl2, 0.3 mM primers and the LightCycler-DNA
SYBR Green I mix  (Roche). The amplification of ˇ-Actin, RELM-˛
and Arginase1 was performed as previously described (Nair et al.
2005).

Western blotting

17 �l of the initial 1 ml  peritoneal wash was mixed with sample
buffer supplemented with denaturing buffer (NuPage, Invitro-
gen), heat denatured and resolved by SDS-PAGE using 4–12%
gradient Bis–Tris gels (NuPage, Invitrogen) followed by transfer
onto nitrocellulose membrane (Bio-Rad). The blot was  blocked
for 30 min  in Pierce StartingBlock. Primary Abs were diluted
in Pierce StartingBlock + 0.05% Tween-20: Anti-Ym1 (Nair et al.
2005) and Anti-RELM� (Peprotech) and incubated with the blots
overnight at 4 ◦C. Incubation with goat-anti-rabbit HRP: 1/2000
for 1 h was followed with detection by enhanced chemilumi-
nescence method according to the manufacturers instructions
(ECL kit; Amersham). Signal produced was detected using film
(Hyperfilm: Amersham ECL Hyperfilm) and MultiImage light cab-
inet along with the Fluorchem programme (Alpha Innotech)
were used to measure relative protein concentrations on each
blot.

Counting of microfilaria

10 �l PECs were added to 200 �l FACS lysing solution (BD-
Biosciences) to fix microfilariae. Following centrifugation for 5 min
at 3000 × g and removal of the supernatant, cells/microfilaria were
briefly resuspended and all the microfilariae in each sample were
counted by microscopic examination.

In vitro splenocyte cultures

Spleens were removed and single cell suspensions pre-
pared. These were cultured in 96-well round bottom plates
at 1 × 106 cells/well containing either 10 �g/ml parasite extract
(BmA) or 1 �g/ml Concanavalin A (ConA) or medium alone (com-
plete RPMI) at 37 ◦C. After 72 h culture, supernatants were removed
for cytokine assay. BmA  was prepared as previously described, by
homogenisation of mixed adult nematodes in PBS (Tawill et al.
2004).

Cytokine assay

IL-4, IL-5, IL-13, IFN� and IL-10 in culture supernatants were
measured using BD Cytometric Bead Array Flex sets. Samples were
acquired on FACSArray analyser (BD Biosciences) and the amount
of cytokine present calculated using FCAP analysis software (BD
Biosciences).

Data analysis

Graphs were prepared using PRISM (GraphPad software, Berke-
ley, CA). The Mann–Whitney test was used to test for significance
as indicated in the figure legends.

Results

WT  and MyD88−/− BMM� alternatively activate in response to
IL-4 in vitro

To determine whether MyD88 is necessary for the alternative
activation of macrophages, we  compared the ability of BMM� cul-
tured from WT  and MyD88−/− to respond to IL-4 in vitro. Both
Arginase 1 and iNOS activity were measured to represent the
competing arms of the arginine metabolism pathway associated
with alternative vs. classical macrophage activation, respectively
(Munder et al. 1998). To further characterise the macrophage phe-
notype, we assessed the mRNA expression of Arginase 1, RELM-˛
and Ym-1, as accepted markers of alternative activation (Jenkins
and Allen 2010).

Macrophages were cultured with or without IL-4 overnight
before treatment with LPS and IFN-�, either together or sepa-
rately, or with medium alone, for 20–24 h. After this time, arginase
and iNOS enzyme activities were measured in the cell lysates
and culture supernatants, respectively (Fig. 1A and B). mRNA
expression of Arginase 1, RELM-  ̨ and Ym-1 was measured in the
harvested cells (Fig. 1C). Both WT  and MyD88−/− macrophages
up-regulated arginase activity in response to IL-4 (Fig. 1A). As pre-
viously reported LPS also stimulated WT  macrophages to produce
arginase (Louis et al. 1998) and, as expected, this response was abol-
ished in MyD88−/− mice. There was  no impairment in the ability
of MyD88−/− BMM� treated with IL-4 to produce other mark-
ers of alternative activation, including RELM-˛ and Ym-1 (Fig. 1C).
Thus, there is no apparent deficiency in the fundamental ability
of macrophages to become alternatively activated in MyD88−/−

animals.
Nitrite in the supernatants of the cultured macrophages was

assessed using the Greiss reagent, as a measure of iNOS activity. As
expected, WT  BMM� produced nitrite when treated with LPS alone,
and with IFN-�. The two  stimuli together had a synergistic effect on
iNOS activity (additive with IL-4 pre-treatment; Fig. 1B). MyD88−/−

BMM� also produced NO synergistically when treated with LPS and
IFN-� together but could not produce NO upon treatment with LPS
alone, except following pre-treatment with IL-4.

Th2 cytokine production is not significantly altered in B.
malayi-implanted mice in the absence of MyD88

Before determining the impact of MyD88 deficiency on
macrophage activation status in vivo, it was  important to first ascer-
tain if there would be any impairment or enhancement in the
overall Th2 response in B. malayi implanted mice. For this, the Th2
cytokines IL-4, IL-5, IL-10 and IL-13, as well as IFN-� as a marker of
Th1 activation, were measured from the supernatants of cultured
splenocytes treated with medium alone, ConA or BmA (Fig. 2A–E).
As expected, all Th2 cytokines were increased in an Ag-specific
manner in response to BmA  in WT  implanted mice. Ag-specific pro-
duction of the Th2 cytokines IL-4, 5, 10 and 13 was further elevated
in the MyD88−/− implanted mice, but this did not reach statistical
significance (measured by Mann–Whitney; Fig. 2B–E). In agree-
ment with previous reports, the Th1 response was  significantly
impaired in MyD88−/− animals, as measured by IFN-� production
by cultured splenocytes (Fig. 2A). This was  true for both parasite
implanted and thioglycollate injected MyD88−/− mice, compared to
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Fig. 1. MyD88 deficiency had no effect on the alternative activation of M� in vitro. BMM� were preteated o/n with IL-4 and then stimulated with LPS and IFN-� together
or  separately for 16–20 h. Urea concentration is shown as a measure of arginase activity (a) and nitrite as a measure of iNOS activity (b). mRNA was  extracted and realtime
RT-PCR  for Arginase 1, RELM-  ̨ and YM-1 expression carried out. Black bars here represent IL-4 treatment (c). mRNA expression is shown as a % of a positive control sample
and  was normalised to �-actin. Results are shown as the mean of replicate samples (±SEM) and are representative of three experiments.

their WT  counterparts. The difference in IFN-� production between
WT and MyD88−/− implanted mice was found to be statistically
significant in response to both ConA and BmA. This trend was also
seen between the WT  and MyD88−/− thioglycollate-treated mice.
Overall, these results show that the Th2 response is not impaired
in MyD88−/− mice implanted with B. malayi.

The absence of MyD88 does not affect cellular accumulation after
B. malayi implant or thioglycollate injection

PECs were recovered from WT  and MyD88−/− mice surgically
implanted with B. malayi adult worms (d19) or injected i.p. with
thioglycollate for three days. All animals exhibited large increases
in cell number (5–20 × 106 PECs/mouse) but there was no signifi-
cant difference in total cell numbers between the four experimental
groups. As reported previously macrophages, eosinophils and lym-
phocytes make up the majority of cells in the peritoneal cavity of B.
malayi implanted mice (MacDonald et al. 2003). To address whether
a lack of MyD88 affected the cellular profile in response to these
stimuli, we examined the proportions of F4/80 + macrophages,
SiglecF + eosinophils as well as lymphocyte subsets (Fig. 3) present
in the PEC by flow cytometry. No significant differences in the pro-
portion of macrophages or eosinophils were observed between
WT and MyD88−/− animals (Fig. 3A and B). This was  confirmed
by microscopic examination of cytocentrifuge preparations for
macrophages, eosinophils and lymphocytes (data not shown). Flow
cytometric analysis of lymphocyte subsets showed equivalent pro-
portions of CD4 + and CD8 + T cells in the PECs of both WT  and

MyD88−/− implanted mice (Fig. 3D and E). B220 was used as a
marker of B cells and although there appear to be fewer B cells
in implanted MyD88−/− animals, this was  not significant (Fig. 3F).

Absence of MyD88 does not affect arginase production or
suppressive ability of macrophages generated following B. malayi
implant

To assess macrophage phenotype following nematode implant,
PECs were purified by adherence, and the levels of arginase
activity measured (Fig. 4A). As expected, nematode elicited
macrophages (NeM�) produced more arginase than thioglycollate
elicted macrophages (ThioM�). However, there was no significant
difference in the levels of arginase produced when comparing WT
and MyD88−/− NeM�. Notably, there was a small but significant
reduction in arginase activity in MyD88−/− relative to WT ThioM�
(Fig. 4A).

We  assessed proliferative suppression ex vivo by NeM� (Loke
et al. 2000; Mylonas et al. 2009) to investigate whether the absence
of MyD88 would influence this feature of alternative activation.
As expected, responder (EL-4) cell proliferation was reduced on
co-culture with NeM�, in comparison to control ThioM�,  and this
was  still the case for NeM� generated in MyD88−/− animals. We
have previously observed that ThioM� are also able to inhibit
proliferation of co-cultured cells (Mylonas et al. 2009) but unlike
NeM�-mediated suppression this occurs in an IL-4 independent
manner (unpublished). Here we demonstrate that the suppressive
ability of WT  ThioM� is entirely dependent on MyD88 (Fig. 4B).
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Absence of MyD88 does not affect microfilarial numbers, or
expression of the alternative activation markers Ym1 or RELM-˛,
in the peritoneal fluid of implanted mice

We  next wanted to address whether absence of MyD88 affected
worm viability. Assessment of the first larval stage of a B. malayi,
the microfilariae produced by the implanted female worms, pro-
vides an indication of worm viability (Rao and Well 2002). After 19
days of B. malayi infection, the peritoneal lavage fluid was  extracted
and the numbers of microfilariae were counted from both WT  and
MyD88−/− animals (Fig. 5A). No difference was detected, suggest-
ing that MyD88 deficiency had neither a positive nor negative effect
on worm survival and fecundity in this model of filarial nematode
infection.

Since the alternative activation markers Ym1  and RELM-� are
secreted proteins, Western blots were carried out in order to mea-
sure the levels of these mediators in the peritoneal lavage fluid
of nematode-implanted mice (Fig. 5B and C). Once again no signifi-
cant difference was found between the WT  and MyD88−/− animals.
However, there was a trend towards higher RELM-� expressed by
the MyD88−/− mice (Fig. 5B), consistent with the trend towards
slightly higher Th2 induction seen in these experiments (Fig. 2B–E).

RNA was also extracted from purified peritoneal macrophages
and quantitative RT-PCR carried out to assess levels of Arginase1,
RELM-˛  and Ym-1 mRNA expression (Fig. 5D–F) to see whether
these levels would correlate with Ym-1 and RELM-� protein

production (Fig. 5B and C) and arginase activity (Fig. 4A). Measure-
ments of Arginase1,  RELM-  ̨ and Ym-1 (Fig. 5D–F) mRNA showed a
close correlation between mRNA and protein expression for these
alternative activation markers, as previously observed (Nair et al.
2005).

Discussion

We have shown that macrophages isolated from a chronic in vivo
Th2 setting do not require the adaptor protein MyD88 for the induc-
tion of alternative activation markers. Additionally, we found no
impairment in the Ag specific Th2 response to B. malayi in the
absence of MyD88 (Fig. 2). Previous studies of microbial infec-
tion using MyD88−/− mice have shown evidence of significantly
enhanced Th2 responses (Muraille et al. 2003; Chen et al. 2010;
Gaddis et al. 2011). MyD88−/− mice infected with the gastrointesti-
nal nematode Trichuris muris also display elevated Th2 responses
relative to their WT  counterparts resulting in enhanced resistance
to infection (Helmby and Grencis 2003). This augmentation of type
2 cytokines is far greater than the trend we  observed in our cur-
rent study. This is likely explained by the fact that T. muris worms
burrow within the cecal epithelium, exposing these cells to com-
mensal bacteria (Cliffe and Grencis 2004), which would act as
a powerful stimulus of the Th1 response via MyD88-dependent
pathways. The increase in the Th2 response in MyD88−/− animals
infected with T. muris can thus be explained by an inability to mount
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Fig. 3. Similar numbers of M�,  eosinophils, and lymphocytes, are found in wild type (WT) and MyD88−/− mice. 19 days after implant (3 days after thioglycollate injection;
thio)  PECs from mice on the C57BL/6 background were recovered and double-stained for F4/80 (a) and SiglecF (b). Sample plots are shown in (c). PECs were also stained for
CD4  (d), CD8 (e) and B220 (f). Results are representative of three experiments.
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an effective Th1 response against the bacteria to which they are
exposed (deSchoolmeester et al. 2006). This is supported by reports
showing that, in the absence of MyD88, MyD88-independent sig-
naling through TLR4 can confer the ability to support Th2 responses
(Kaisho et al. 2002).

Relative to T. muris, the peritoneal environment of the B. malayi
implant model is essentially ‘sterile’, with no commensal bacteria.
Thus the limited impact of MyD88 deficiency on Th2 immunity may
not be surprising. However, as previously mentioned, B. malayi con-
tains endosymbiotic bacteria which might be expected to influence
the immune response (Turner et al. 2009). Nonetheless, despite
strong in vitro evidence that Wolbachia ligands can signal through
TLRs in a MyD88-dependent fashion (Hise et al. 2007) we saw
little effect of MyD88 deficiency on Th2 or AAM� development.
In this implant model, live adult female B. malayi produce large
numbers of larval offspring and some microfilarial death would
be expected across the 19 day period, which should expose the
host to Wolbachia.  Our data thus suggest that in the context of live
filarial nematode infection, the influence of Wolbachia on the host
response may  not be as great as previously presumed. This does
not diminish, and indeed may  enhance, the role of Wolbachia as
target for filarial chemotherapy (Hoerauf 2008). The lack of a sig-
nificant increase in the Th2 response in the absence of MyD88 in our
work would be consistent with studies showing no role for MyD88
in dendritic cell (DC) induction of Th2 cells against helminth Ag
(Kane et al. 2008). A limited role for MyD88 would also support
the importance of DCs rather than basophils, in helminth induced

Th2 responses (Ohnmacht and Voehringer 2009; Kim et al. 2010;
Phythian-Adams et al. 2010), as MyD88 is implicated in the ability
of basophils to produce IL-4 (Kroeger et al. 2009).

Although we found no significant difference in the magnitude
or character of the T cell response between WT  and MyD88−/−

implanted mice, MyD88 deficiency could still have had cell intrinsic
effects on the ability of M�  to respond to in vivo signals. However,
this did not seem to be the case as MyD88 deficiency had no effect
on the ability of NeM� to suppress the proliferation of co-cultured
EL-4 cells or on the expression of any alternative activation mark-
ers that we  assessed. Not surprisingly, the absence of any change
in effector cell function or numbers translated into no effect on
B. malayi worm viability, as we found similar numbers of microfi-
lariae in the peritoneal cavity of both WT  and MyD88−/− animals.
Significantly, we also found no impact on macrophage activation
state or Th2 response in B. malayi implanted C3H/HeJ mice, which
cannot signal through TLR4 (unpublished report from the Marine
Biological Laboratory Biology of Parasitism course – 2006). Thus,
MyD88-independent TLR4 signaling is unlikely to contribute to the
NeM� phenotype.

Although MyD88 deficiency had a limited impact on parasite-
implanted mice, it did influence the response to thioglycollate
treatment. This indicates that a TLR stimulus may  be at least par-
tially required for cell recruitment and macrophage phenotype
induced by thioglycollate. There was a decrease in arginase activ-
ity in MyD88-deficient ThioM� (Fig. 4A) and also a decrease in the
suppressive ability of these macrophages compared to WT (Fig. 4B).
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These facts are likely to be linked, as arginase can play a major role
in macrophage-mediated suppression (Pesce et al. 2009). However,
this effect of arginase may  reflect only part of the story, given the
relatively large difference in suppressive ability of WT  ThioM�,  in
relation to MyD88−/− ThioM� (WT  approx. 10× more suppressive;
Fig. 4B), compared to the differences in arginase enzyme activity
(WT  display approx. 2× more arginase activity than MyD88−/−;
Fig. 4A).

Our in vitro work using BMM� provided direct evidence that
there is no deficiency in the ability of IL-4 to generate AAM� in
the absence of MyD88. In agreement with Louis et al. 1998, in vitro
treatment of WT  BMM� with LPS increased arginase production
(Fig. 1A, left). The complete absence of arginase activity in LPS-
treated MyD88−/− BMM� are consistent with findings highlighting
the importance of TLR-mediated arginase production by micro-
bial pathogens (Kasmi et al. 2008). Another interesting aspect of
the in vitro studies was  the finding that while WT  BMM� pro-
duced nitric oxide in response to LPS, the response in MyD88−/−

BMM� was minimal unless LPS was combined with IFN-� (Fig. 1B).
A possible interpretation of these results is that, in the absence
of MyD88, LPS signals through TLR4 via a MyD88-independent
pathway, for example through interferon regulatory factor (IRF)-3,
which causes the upregulation of IFN-�, but not iNOS. IFN-� might
in turn upregulate the transcription factor IRF-1 (Fujita et al. 1989)
which, when coupled with IFN-�, would lead to the production of
NO. This hypothesis is supported by previous reports showing that
LPS augmentation of iNOS mRNA expression by IFN-� is due to IRF-1
upregulation by LPS (Koide et al. 2007).

In summary, we have found using both in vivo and in vitro
approaches that MyD88 signaling is not an essential requirement
for alternative activation of M�.  Further, we have shown that in the
context of a Wolbachia-containing filarial nematode, MyD88 does
not significantly contribute to the overall character of the immune
response. Importantly, we are not ruling out the contribution of
TLRs to immune profiles in other nematode infection settings.
Indeed, TLR activation by helminth molecules has important known
roles in the modulation of innate immunity (reviewed in Perrigoue
et al. 2008) and as discussed above, TLR-signaling influences the
response to gut dwelling nematodes. We  would further expect that
helminths involved in tissue migration and damage would trigger
damage associated molecular pattern molecules (DAMPs) that bind
TLRs (Liu et al. 2012). This is particular relevant to evolutionary
associations of Th2 immunity with wound repair (Allen and Wynn
2011). Importantly, this study has not addressed the contribution
of many other PRRs such as the NOD-like or C-type lectin receptors
to Th2 activation or alternative macrophage activation. In particu-
lar, Schistosoma mansoni and Toxocara canis glycans have both been
demonstrated to have parasite-specific ligands that bind the C-type
lectin, DC-SIGN, with potential for the modulation of dendritic cell
responses (Meyer et al. 2005; Schabussova et al. 2007). Indeed,
such interactions may  act co-operatively with TLR ligands to modu-
late the host immune response as shown for S. mansoni glycolipids
(van Stijn et al. 2010). Thus, despite our finding that the absence
of TLR signaling does not significantly alter the host response to B.
malayi, the interaction of parasite-specific ligands with host innate
receptors remains a fruitful area of investigation.
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