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Third cumulant of the total transmission of diffuse waves

M. C. W. van Rossum, 3ohannes F. de Boer, and Th. M. Nieuwenhuizen
Van der TVaals —Zeeman Laboratorium, Universiteit van Amsterdam,

Valckenierstraat 6$, 2018XE Amsterdam, The ¹therLands
(Received 30 December 1994)

The probability distribution of the total transmission is studied for vraves multiply scattered from
a random, static configuration of scatterers. A theoretical study of the second and third cumulants
of this distribution is presented. Within a diagrammatic approach a theory is developed that relates
the third cumulant normalized to the average ((T )) to the normalized second cumulant ((T )). For
a broad Gaussian beam profile, it is found that ((T )) = —((T )) . This is in good agreement with
data of optical experiments.

PACS number(s): 42.25.Bs, 78.20.Dj, 72.15.—v

I. INTRODUCTION

Multiple scattering in disordered systems is a Geld of
wide interest; it is studied in electronic, microwave, and
optical systems. In the multiple scattering regime the
main transport in transmission is through diffusion. Yet
interference processes, possible by the underlying wave
character, play an important role. This interference leads
to interesting effects such as the enhanced backscatter
cone [1—3], short- and long-range correlations [4—8], and
strong localization. If interference occurs between dif-
fusion paths, it causes large fluctuations. Most famous
are the sample-to-sample fluctuations in the conductance
of electronic systems, the so-called universal conductance
fluctuations [9—11],but also other transmission quantities
are influenced by interference.

Recently, attention has been drawn not only to the
variance of the fluctuations, but to all the distribution
functions. Examples are the intensity distribution in
speckle patterns for classical waves [12,13] and the con-
ductance distribution for electronic systems [14]. The
size of the fluctuations and the shape of the distribution
are related to the "distance" from the localization transi-
tion. Far &om localization, diffusion channels are almost
uncorrelated and fluctuations are small (except for the
optical speckle pattern in the angular resolved transmis-
sion). The correlation between the channels increases if
the localization is approached. The relevant parameter
is the inverse dimensionless conductance 1/g, which can
be interpreted as the chance that two channels interfere.
The dimensionless conductance can be expressed in the
thickness of the sample L, the mean &ee path E, and the
number of channels N,

4me
g =

The number of channels is calculated in analogy with a
waveguide, where it is unambiguously deGned. In the dif-
fuse mesoscopic regime g will be a small parameter of
our perturbation theory (experimentally this proved to
be fully justified, as there g 10s [15]). Close to An-

derson localization g approaches unity and fluctuations
increase. The central question is how the distributions
change as the strong localization regime is approached
[14,16].

Let us briefly review some characteristics of optical
transmission distribution functions in the regime of mod-
erate g. In the study of mesoscopic systems using light
scattering, one takes a small sample with static scatter-
ers. In order to average, one needs to sum over a large
number of scatterer conGgurations. In practice this is
done by varying an external parameter such that the in-
terference pattern is completely changed. , whereas in elec-
tronic systems it is common to vary the Fermi energy or
apply a magnetic Geld; in optics one usually varies the
wavelength of the light. In contrast to electronic sys-
tems, not only the conductance but three different trans-
mission quantities can be measured in optical systems.
(An exception is the very recent observation of electron
speckle by Gao et aL [17].) First, the angular resolved
transmission can be considered. If a laser shines on the
sample, a speckle pattern is seen in the transmission. If
one measures the intensity in an outgoing direction 6,
this corresponds to measuring the angular transmission
coeKcient T g, where a denotes the incoming and 6 the
outgoing channel. The intensities in the speckle pattern
have in zeroth order in g an exponential distribution

(2)

which is also known as the Rayleigh law. Deviations from
this law occur if interference between the transmitted in-
tensities, the diffuson propagators, is taken into account:
the higher moments of the distribution function increase.
For large values of the transmission a stretched exponen-
tial was observed [12], which was recently predicted as

[16] P(T s) oc exp( —2/gT s/(T~b) ).
One obtains another transmission quantity if one col-

lects all the outgoing light and also all incoming direc-
tions are used, i.e. , using a diffuse incoming wave iristead
of a plane wave. In this case one sums over all incom-
ing and outgoing channels and the conductance of the
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sample g = P &
T g is measured. It corresponds to the

well known conductance measurement for electron sys-
tems. The conductance has roughly a Gaussian distri-
bution. The absolute variance is larger than expected
classically because of interference and it does not depend
on the sample parameters (hence the name universal con-
ductance fluctuations) [9—ll]. Equivalently, the relative
variance is proportional to g . The full distribution
function of the conductance was studied by Altshuler,
Kravtsov, and Lerner [14], who predict a log-normal tail
for the tail of the distribution function. For the lower
cumulants they predict that (g"),„oc (g "). Note,
however, that the prefactors maybe zero, as Macedo [18]
found that (gs).„oc (g)

We are, however, interested in yet another transmis-
sion quantity. It is obtained by spatially integrating the
speckle pattern on the outgoing side and taking an in-
coming plane wave. One thus obtains an intermediate
quantity between the angular transmission T b and the
conductance P &T b. It is termed the total transmis-
sion T = P&T b This .quantity is the subject of this
paper. The total transmission is a constant superposed
with fluctuations. In first order of g the fluctuations
have a Gaussian distribution [8,13]. The relative vari-
ance of this distribution is proportional to g; it is thus
a factor g larger than for the conductance fluctuations.
This sensitivity of the total transmission to interference
processes and its simple limiting behavior (as compared
to the angular resolved transmission) make it an ideal
quantity to study mesoscopic transmission. Its full dis-
tribution was studied numerically in two dimensions by
Edrei, Kaveh, and Shapiro, who recovered the Gaussian
distribution function, tending towards a log-normal dis-
tribution near the Anderson transition [19]. The full dis-
tribution function was recently derived [16]. It was shown
that it has a log-normal distribution growth and an ex-
ponential tail.

Recently the third cumulant of the distribution was
found experimentally by de Boer et al. [15]. In this paper
we present the theoretical details of that work. We fo-
cus on the Gaussian distribution and the deviation &om
the Gaussian due to the presence of the third cumulant.
The structure of this paper is as follows. The difFusion
in optical systems is described in Sec. II. In Sec. III the
character of the probability distribution is discussed. In
Sec. IV we calculate the second and in Secs. V and VI we
calculate the third. cumulant of the probability distribu-
tion. Next we calculate experimental corrections to our
result in Secs. VII and VIII, after which we compare our
results with the experimental data in Sec. IX. We close
with a discussion in Sec. X.

work in the scalar wave approximation. It is known that
the two independent polarization directions of light effec-
tively double the number of channels N in the problem
as compared to the scalar wave case [8]. Apart from a
small correction term, our final result does not depend
on the number of channels and the doubling.

We take the depth in the the slab as the z coordinate;
the slab thus corresponds to 0 & z & L. A plane scalar
wave with unit flux and area A impinges on the sample
&om direction a. It is given by

@,.„(r) = exp(iP R+ikp z),
Akp

z & 0, (3)

L
Z(z) = S(z) + dz'M(z, z')Z(z').

0
(4)

This is a self-consistent transport equation that gives the
diffuse intensity 8 resulting &om a source S. The ker-

0 0
0

C'
I

where k is the wave number, R = (x, y) is the transversal
coordinate, P is the transverse component of the mo-
mentum, and p = gl —P2/k2 = cos 0, where 0 is
the angle with respect to the z axis. The number of
channels depends on the area of the incoming beam. Di-
viding the total area of the beam with diameter p0 in
small coherence regions of area A, one obtains in anal-
ogy with waveguides N = 2k po/4, or the Weyl formula
N = 2k2A/4m. The factor it2 comes from the two in-
dependent polarization directions. For the case of scalar
wave scattering this doubling factor should be left out.
The main contribution to the average transmission is
given by the diffuse transport of intensity. This means
that the two amplitudes, which make up the intensity,
scatter on the same scatterers following the same path
through the sample. In diagrammatic language these
processes are known as diKuson propagators or ladder
diagrams. An example of such a scattering process is
drawn in Fig. 1; in the following we will depict the dif-
fuson propagators by close parallel lines and omit the
scatterers for clarity.

In the bulk the diffuse intensity obeys simply the dif-
fusion equation, but the precise prefactors Rom the cou-
pling to the outside have to be determined &om the
Schwarzschild-Milne equation [20]

II. DIFFUSE TRANSPORT
0

0 0

Consider the transport of light through a three-
dimensional slab with static scatterers in a random con-
6guration. The slab has a thickness L. The diffuse meso-
scopic regime is characterized by A « E « L. Here S de-
notes the mean &ee path and A denotes the wavelength
in the medium. Isotropic scattering is assumed. We also

FIG. 1. Left: an example of an actual scattering process; a
retarded (full line) and an advanced amplitude (dashed line)
come from the left and share the same path through the sam-
ple. Right: schematic representation of the average process,
the diffuson propagator (for clarity the scatterings are not
drawn).
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1 d

p 2p
(5)

The source term S is given by the single scattered incom-
ing intensity. Our incoming plane wave leads to a source
in the Milne equation

S(z) = ntt]@,„[2 = exp[ —z/(p E)],
Akp, 8

nel M describes the intensity decay between two scat-
terings. In the ladder approximation (without internal
reflections) it is

kz
out— (10)

(T )»(v )&'
3Ep.

Here we included the doubling from the two polarization
directions. Also integrating over all incoming directions
yields the conductance [22]

The total transmission is obtained by connecting the in-
coming to the outgoing diffuson propagator, as shown in
Refs. [21,22],

where n is scatterer density and t is the t matrix, giving
the mean free path / = 4'/(ntt). The transport equation
(4) now yields for an incoming diffuson propagator

g=) (T) =2 Zk2A
(12)

47r»(p ) L —z
with N = 2k A/4vr this equals our previous deflnition

(7) (1).

where wq describes the limit intensity of a semi-infinite
system; see Ref. [21].

Now that the prefactors are known, we continue with
the diffusion equation, which holds a few mean free paths
away &om the surface. We generalize to the case where
the amplitudes making up the diffuson propagator have
a nonzero momentum. For the corresponding diffusion
propagator propagating from point z to point z' it holds
that

—V' 8'"'(, z') = —o), 8'"'(z, z') + Q 8'"'(z, z')
12~

8(z —z'),

III. CUMULANTS OF THE PROBABILITY
DISTRIBUTION

In this section we introduce the probability distribu-
tion of the total transmission of scalar waves and we dis-
cuss some of its properties. The corrections for vector
waves will be made in Sec. VIII. We will link the mo-
ments of the distribution to diagrams. The moments of
the probability distribution P(T ) can be extracted as

(T") = jdT P(T )T

with approximate boundary conditions 8'" (0, z'; Q)
2'" (L, z', Q) = 0. Here Q is a two-dimensional vector,
defined as the difference of perpendicular momenta of the
two incoming amplitudes making up the diffuson propa-
gator. If coherent waves impinge with a different angle
on the sample, this net transverse momentum of diffuson
propagators need not be zero and the diffuson propaga-
tors decay exponentially with the inverse decay length
equal to lQl. The solution of the difFusion equation reads

12vr sinh(lQlz&) sinh[lQl(L —z&)]

IQI »nh(IQIL)

with z& ——min(z, z') and z& ——max(z, z'). Below we
also need incoming diffuson propagators with transverse
momenta, which are obtained by combining the prefactor
of Eq. (7) with the z& dependence of Eq. (9).

The total transmission is obtained by integrating over
the outgoing channels. In the experimental geometry
of Ref. [15], the outgoing radiation was collected in an
integrating sphere. Only outgoing diffuson propagators
where their amplitudes are exactly in phase (i.e., have
opposite phase) are leading after this integration. There-
fore the outgoing diffuson propagator can have no trans-
verse momentum. The transport equation (4) yields an
outgoing diffuson propagator from a unit source

In a diagrammatic approach the kth moment can be rep-
resented by a diagram with k diffuson propagators on
both the incoming and the outgoing side. The k = 1 term
is the average total transmission (T ), as given by the
Schwarzschild-Milne equation in Eq. (11). This quantity
is given by a single diffuson propagator and is thus inde-
pendent of channel-to-channel correlations. The second
moment can be decomposed in the first two cumulants

(T-') (T-)'+ P".)-- ((T.))
( -)' (T-)' (14)

The double angular brackets denote cumulants normal-
ized to the average. Diagrammatically the second mo-
ment is depicted in Fig. 2. The decomposition in cu-
mulants will prove useful as each cumulant corresponds
to a different number of interactions between the dif-
fuson propagators. In the first term [Fig. 2(a)] there
is no interference; it factorizes in the average transmis-
sion squared (apart &om a small correction discussed in
Sec. VIII). The second term [Fig. 2(b)] is the second
cumulant ((T2)). It gives the variance of the fluctu-
ations. Interactions between two diffuson propagators
are responsible for the presence of this second cumulant.
The interference process is, in diagrammatic language,
the so-called Hikami box, depicted as the shaded square
in Fig. 2(b). In the box two amplitudes of the incoming
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FIG. 2. Taro contributions to the second moInent of the
total transmission. In diagram (a) the transmission channels
are independent; this process is of order unity and is almost
completely reducible to the mean value squared. Diagram
(b) corresponds to two interfering channels. This is the sec-
ond cumulant; it is of order 1/g. The close parallel lines are
di6uson propagators; the shaded square denotes the Hikami
four-point vertex.

contribution stands for the third cumulant in the dis-
tribution and expresses the leading deviation from the
Gaussian distribution. This is the term we are mainly
interested in. It consists of two related diagrams: Figs.
3(c) and 3(d). The three intensities can interfere twice
two by two or the intensities can interact all three to-
gether with a so-called Hikami six-point vertex. Both
contributions will prove to be of the same order of mag-
nitude. The strength of the effect can be easily estimated
using the interpretation of 1/g as an interaction proba-
bility. By looking at the diagram, the third cumulant
is proportional to the chance of two diffuson propaga-
tors meeting twice, thus of order 1/g . We find the basic
result

diffuson propagators are interchanged, causing a corre-
lation between the outgoing ones. Precisely the same
process was studied in the more general context of the
long-range correlation functions [23—26]. In the work of
de Boer, van Albada, and Lagendijk [8] and Garcia et al.
[7] the correlation between two diffuson propagators with
different frequency was measured. This is the so-called
C2 correlation function C2(Bur) = ((T (w)T (u+ bw))).
For our case we find that ((T )) = C2(0), which thus cor-
responds to the peak value of this correlation function.
In Sec. IV we will calculate this cumulant in detail.

Similarly to the second moment, one can distinguish
three different contributions to the third moment

(15)

The corresponding leading diagrams are drawn in Fig. 3.
The first term [Fig. 3(a)] again corresponds to the trans-
inission without interference. The second term [Fig. 3(b)]
is reducible in a single diffuson propagator and a second
cumulant diagram. From the figure it is clear that this
decomposition can be done in three ways, which is re-
flected in the prefactor of ((T )) in Eq. (15). The third

(16)

The rest of the paper essentially consists of proving
this relation and determining the prefactor. Finally, we
will compare this relation to the experimental data of
Ref. [15].

Because only a limited number of channels is sampled
in an experiment, the law of large numbers predicts a dis-
tribution with some nonzero width even if we only con-
sider disconnected diagrams. However, we will show in
Sec. VIII that this effect brings only a negligible contribu-
tion to the measured cumulants. The large Huctuations
are due almost entirely to the interference.

Note that in our calculations diagrams with loops are
neglected. An example of a loop diagram is the Cs (or
universal conductance fluctuation) contribution to the
second cumulant [10,6,22]. One of the Cs diagrams is
a second cumulant diagram where the outgoing diffuson
propagators are again input for another Hikami box. (It
is like gluing two second cumulant diagrams one after the
other. ) This diagram contains two Hikami boxes; there-
fore it gives a contribution of order g to the second
cumulant. In general, one easily sees that in order to
create a loop, one needs a higher number of interference
vertices. Therefore, these diagrams are of higher order
in 1/g and we did not calculate them. The leading con-
tributions to the cumulants are by far sufBcient for the
description of the experiment of Ref. [15].

IV. THE SECGND CUMULANT

8~~ 4

d)

FIG. 3. Three contributions to the third moment of the
total transmission. Diagram (a) corresponds to independent
transmission channels; it is of order 1. In diagram (b) there
is correlation but it can be decomposed into the second cu-
mulant; this is of order g . Diagrams (c) and (d) are the
contributions to the third cumulant, O(g ).

In this section we recover the results for the second
cumulant. This quantity was often calculated in litera-
ture. In the work of the Boer, van Albada, and Iiagendijk
[8] the frequency correlation in the total transmission
was calculated using a I angevin approach introduced by
Spivak and Zyuzin [24]; see also the work of Pnini and
Shapiro [23]. Here we obtain the same results using a di-
agrammatic technique [6,4,27]. We calculate the diagram
of Fig. 2(b). The interaction vertex of the diKuson propa-
gators is the Hikami four-point vertex or Hikami box [28].
The Hikami box is depicted. in Fig. 4. Prom the figure it
is easily seen that the vertex interchanges two amplitudes
of the incoming diffuson propagators. As shown, the full
vertex is (in the second-order Born approximation) the
sum of one bare vertex and two vertices with an addi-
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b'

and the difFuson propagators are simple linear functions,
given by Eqs. (7) and (10). One obtains the known result
for the second cumulant [4]

FIG. 4. Hikami four-point vertex. It describes the ex-
change of amplitudes of two incoming diffuson propagators
a and a' into two outgoing diffuson propagators 6 and 6'. The
dots linked with the dashed line denote the dressing with an
extra scatterer.

((&.')) = 9'-) '/ f ~*~a

L
x dz H4Ci (z) l:3(z)l:3(z) l:4(z)

0
L

= 1
dz[z + (1 —z) ] = —g

2 2=2-1
gL3 3

(19)

g5
4 — q~ q~~ + qg qg

—
2 (q + q + qb + qb ) (17)

tional scatterer. (If the scatterers are near resonance,
the second-order Born approximation is no longer valid
and more diagrams are relevant. However, for the four-
point vertex it was explicitly proven in Ref. [29] that this
will only be refIected in the difFerent value of the mean
free path. ) The summation of the diagrams yields [28,30]

Taking only this second cumulant we find for the mo-
ment a Gaussian probability distribution in the plane
wave limit [13]

P(T ) = —exp ——(T —(T ))
3g 3g
4' 4

(20)

Let us now study the infIuence of the beam profile on
the correlation. If the spot of the incoming beam is fi-
nite, amplitudes with difFerent transverse momenta are
present. They can combine into incoming difFuson prop-
agators with a perpendicular momentum. We suppose
that the incoming beam has a Gaussian profile. It is
decomposed into plane waves defined in Eq. (3) (for con-
venience we assume perpendicular incidence)

To this vertex two incoming diffuson propagators a and
a' and two outgoing difFuson propagators b and b' are at-
tached. The q, denotes the three-dimensional momentum
of the corresponding difFuson. The momenta are point-
ing toward the vertex. For our second cumulant diagram
of Fig. 2(b) we have numbered a = 1, a' = 3, 6 = 2, and
b' =4.

As stated above, only the outgoing diffuson propaga-
tors where the amplitudes have exactly opposite phase
are leading in the total transmission measurements.
Therefore the transversal momenta of the outgoing diffu-
son propagators must be zero Qz ——Q4 ——0, but as am-
plitudes are exchanged in the Hikami box, the incoming
diffuson propagators can have a transversal component
in their momentum. Using momentum conservation one
has Qi ———Q3 = Q.

After Fourier transforming Eq. (17) in the z coordinate
we find

g5
4= z zg+z z

48vrkz (

4" = ~ ).4(Q )@;. &(Q) = " ' (»)
+27r

where p0 is the beam diameter. In order to have two
diffuson propagators with a momenta Q and —Q, we find
that the four incoming amplitudes combine to a weight
function

Pid P3 4'(Pl)4' (Pi + Q) 4'(P3)4' (P3 Q)

= e o~ . (22)

The second cumulant is now found by first calculating the
Q-dependent correlation. This is done similarly to the
calculation above, but now the Qi . Q3 terms in Eq. (18)
should be taken into account, as well as the Q dependence
of the incoming diffuson propagators; see Eq. (9). (The
outgoing diffuson propagators still have no such momen-
tum. ) The total cumulant is now found by integrating
over the momentum with the corresponding weight. For
a Gaussian beam profile one finds [8]

(18)
4vrg

Here 0 y
stands for differentiating toward the z coordi-

nate of the difFuson propagator with the same number, in
this case l:i(z). The terms inside the sum in Eq. (18) are
neglected. According to the diffuson propagator equa-
tion, they yield approximately a source term near the
boundary of the sample. In the integral these contribu-
tions are of the negligible order. In the plane wave limit
of the incoming bea~, all transverse momenta are absent

with E3(x) = [sinh(2x) —2x]/[2x sinh x]. If the incom-
ing beam is again very broad, p0 )) L, only the term
Fz(~Q~L = 0) = 2/3 contributes and one recovers the
plane wave behavior ((T )) = 2/3g. Note that this agree-
ment is found by identifying the area of a Gaussian profile
with A = vrp0. This definition is somewhat arbitrary and
other choices are also possible [16]. After fixing this def-
inition, no &eedom remains and we will see that for the



van RGSSUM, de BOER, AND NIEUWENHUIZEN 52

third cumulant a Gaussian profile leads to results other
than a plane wave.

The second cumulant decreases as 1/po at large po. In
a real space picture it is evident that the correlation in-
creases if the two incoming channels are closer to each
other, i.e. , if the beam diameter is smaller. In the exper-
iment of Ref. [15] the focus was kept small in order to
minimize the dimensionless conductance g and therefore
to maximize the fluctuations.

V. THE THIRD CU MU LANT

We now discuss the calculation of the third cumulant.
As mentioned, there are two processes contributing: one
with two four-point vertices, which we term ((Ts))„and
one with a six-point vertex. ((T ))g, where we have cho
sen the subscript according to Fig. 3. This process was,
to our knowledge, not studied before. Our calculation
follows the lines of the second cumulant calculation.

A. Interference via two four-point vertices

First consider the diagram in Fig. 3(c). We have
labeled incoming diffuson propagators with odd num-
bers, the outgoing ones with even numbers. Two in-
coming diffuson propagators Zq and 83 meet at a po-
sition z. In a Hikami box the diffuson propagator
interferes with Z3, forming 22 and. an internal diffuson
propagator Z78 . The C2 propagates out, whereas Z7g
interferes again at z with incoming diffuson propaga-
tor Z5 into two outgoing ones l.4 and Z6. Apart from
this process, three other sequences of interference are
also possible. This means that the diffuson propaga-
tors can also be permuted as (l:q, l 3) l.s) l 2) E4) l-s) -+
(l s l.5 l $ C4 JCs l 2) + (l 5 l"] l 3 l.s l-2 l.4). We
will denote the sum over these permutations as P
As the diagrams can also be complex conjugated, there
is also an combinatorial factor 2 for all diagrams. (Note
that complex conjugation for the second cumulant dia-
gram does not yield a different diagram and thus it should
not be taken into account. ) The expression for the dia
gram of Fig. 3(c) is now

It turns out that it is useful to rewrite the form of the
Hikami boxes as introduced in Eq. (17) into an equiva-
lent expression, using momentum conservation q +q +
qb + qp~

——0. In real space the use of momentum con-
servation corresponds to partial integration. The Hikami
box is again simplified using the fact that there are no
transversal momentum terms, or Q terms, for the outgo-
ing diÃuson propagators. Also the source terms q of in-
coming and outgoing diffuson propagators are neglected.
Using the numbering in Fig. 3, we obtain

H4(z) = [2l9„l9„+2l9„0„],
g5

48~I 2

H4(z') = [2B„B„—0, + Qs]. (25)

(., ') + Q.'~...'(...') = ' ~(.- ")

The contribution from the source term [i.e. , H4(z') oc
—l9,', + Q,', H4(z) oc B„B„+B„B„]is

( 4) A dz(0„0„+B„B„)g,&2gsq48vrk' )

dz'( —l92 + Q2s)l'„'"'l:, l'.,l',

87A

48Vrk4
dz[l9, , l9,2 + ci» 8» + B,~O,~ + B«l9~

+B,, l9 + l9 l9,,]l:]l:2l:sl:4l:5l.s. (27)

Source terms, i.e., q; terms of the incoming and outgoing
diffuson propagators were again neglected, but the source
term of the diffuson propagator between the vertices is
important. As seen with the diffusion equation (8), it
brings

dz' H4(z)H4(z')((T )), =(T) 2) A dz
per

xl-] (z)l-2(z)l 3(z)l-4(z )l.5(z )
xl-s(z')l-Ps'(z, z').

Although this corresponds to a local process (just one z
coordinate is involved), it is of leading order. Together
with the expression coming Rom H4(z') proportional to
8,8„,we find for the total contribution of the process
in Fig. 3(c)

I5 2

((T".))- = (T.)-'
~ -„„,I 8) dz l"~(z) l:2(z) l'„s(z) dz' l 4(z')l:s(z')l s(z')l9, l.'"'(z, z')

E7A

48.1.4 dz[0, 0, + O„B,+ 0,8„+B„B„+l9„l9, + l9„0„]

xl:q(z)82(z)ds(z) 24(z) Zs(z) Cs(z), (28)
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where 2'(z) denotes the derivative toward z of l:(z). Cal-
culated for a plane wave it gives

-e'
H6 —— qq q2 + q2. qq + g3 q496~k4

(29)
+q4-qs + q5 q6 + q6. qz + q-

which is indeed proportional to g, as predicted.

B. Contribution of the six-point vertex

There is another diagram contributing to the third cu-
mulant that is of the same order of magnitude as the
process calculated above; it is depicted in Fig. 3(d). It
can be thought of in the following way: The use of the
Hikami box in the preceding subsection assumes that the
outgoing legs scatter at least once before they propagate
out or interfere again. This is a reasonable assumption
for the outgoing difFuson propagators, but for the internal
difFuson propagator 8'"8 it also possible that coming &om
z it directly, i.e. , without scattering, interferes again at z .
This process is not included in the calculation of Sec. V A
but has to be studied separately. The unscattered inten-
sity decays exponentially over one mean &ee path; there-
fore this process is only important if z and z' are within
one mean &ee path. We denote the corresponding vertex
as H6, as six diffuson propagators are connected to this
diagram. This diagram was also already calculated by
Hikami [28]. Also, here, the dressings of the diagrams
have to be added to the bare diagrams. Taking rotations
of the depicted diagrams into account, there are 16 di-
agrams in the second-order Bern approximation. It is
not allowed to dress the bare six-point vertex (leftmost
right-hand side diagram in Fig. 5) with a scatterer that
connects two opposite propagators. This dressing gives
also a leading contribution even if the dressing is per-
formed with an arbitrary number of scatterers, but the
resulting diagram is the same as the composed diagram
with two four-point vertices [Fig. 3(c)] and thus should
not be counted. Yet this observation is useful to check
the combinatorial ratio between the six-point vertex and
the composed diagram: the forbidden dressing can be
performed in three ways. As the diagrams can also be
complex conjugated, there is also a factor 2 for all dia-
grams.

In the lowest order of (qI) we find for the six-point
vertex

Hikami's original expression can be recovered &om this
using momentum conservation. After a Fourier transfor-
mation in the z direction, the six-point vertex yields a
contribution to the third cumulant

ZVA
((T ))„=(T ) d [8„0„+B„B„+B„B„48ak4 0

+0„8„+0„8„+B„B„]
x Zi (z)C2 (z) Zs (z) l:4(z) l:5 (z) Zs (z). (31)

Here we use the fact that all outgoing diffuson propa-
gators have zero transversal momentum. Therefore all

Q;Q~ terms are absent. In the limit of an incoming plane
wave we find a contribution to the third cumulant

((T.'))~ = —5, .

= (T ) s, , ) dz Ci(z)82(z)ds(z)
per

x dz' 84(z')25(z')Cs(z')0, 2'"'(z, z'). (33)
0

The contribution from the source term, i.e. , Eq. (27) of
Sec. VA, exactly cancels the contribution &om the six-
point vertex. The cancellation seems plausible as one
does not expect short distance properties to be impor-
tant in the total process. Nevertheless, this cancellation
depends on the precise form of the Hikami four-point ver-
tex in Eq. (25). If we use other equivalent forms of the
Hikami box the contributions of the single and double
integral in Eq. (28) are shifted with respect to each other
and a full cancellation is not present. Of course, neither
the result for Eq. (28) nor the final result for ((Ts)) re-
lies on this choice. The precise mechanism behind this
is not clear to us. However, using the cancellation we

only need to consider the term in Eq. (28), which comes
from H4(z) oc O„B„+8,,0„,H4(z') oc B,,O„, and the
permutations. We thus obtain for the third cumulant

In the next section we calculate this expression for various
incoming beam profiles.

3 4

VI. INFLUENCE OF THE INCOMING.
BEAM PB.OFILE

FIG. 5. Diagrams contributing to the interaction of six dif-
fuson propagators: 06. To 1,3,5 the incoming diffuson prop-
agators are connected, to 2,4,6 the outgoing ones. Possible
rotations of the three rightmost diagrams are not drawn; in
total there are 16 diagrams.

Now that the leading interference processes are known,
inserting the diÃuson propagators gives the final value of
the third cumulant. We first consider the simple case of
incoming plane waves. As there can be no transversal
momentum difFerence in the incoming amplitudes, all Q;
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vanish. As a result, all diffuson propagators are simple
linear functions of z. We find from Eq. (33)

again in a Gaussian weight function. From the definition
(21) we derive

(( .)) —,5, —
5 (( .)) (plane wave), po » L.

(34)

Pid P3(PP5 f(Pi) Ijk (Pi + Ql) Q(P3)(jk (P3 + Q3)

In practice, however, we deal with a Gaussian beam
with limited spot size, in8uencing the cumulants in two
ways. First, if the spot size decreases to values compara-
ble to the sample thickness we have to convolute over a
range of incoming momenta, just like we did when calcu-
lating the second cumulant. Second, the Gaussian profile
brings an extra geometrical factor, as we will show below.

We need the expression when diffuson propagators
with an arbitrary momentum are connected to the
Hikami boxes. The outgoing diffuson propagators still
have no transverse momentum. Because of momentum
conservation, the transversal momentum Q7 of the difFu-

son propagator connecting the two four-boxes must equal
Q5. The integration over the possible momenta results

-~(P.)~ (P. +Q.) = —:":":"' (»)
Momentum conservation is used to eliminate also Q5 and
reduce the integration to two transversal momenta. The
final result for the third cumulant is obtained by insert-
ing the momentum-dependent diffuson propagators into
Eq. (33). This gives

((T.')) =
~6

', , f d'Qid*Q3

«» (-&o[Q'+ Q'+ (Qi+ Q3)'1/8)
x+3(IQilL, [Q3IL, IQi + Q3IL)

with

(zi + x3) x5 cosh(xi + x3) (xi —x3) x5 cosh(xi —x3)I'3 Xi, X3, X5
(zi + X3 + X5) (zi + X3 X5) (zi X3 + X5) (zi X3 X5)

(zi + x3)x5 sinh(xi + x3) (xi —x3)x5 sinh(xi —x3)+
(zi + X3+ X5)(zi + X3 —X5) (zi —X3 + X5)(zi —X3 —X5)

(xi + x3) cosll(xi + x3 + 2x5) (xi + x3) cosh(xi + X3 —2x5)+
4(xi + x3+ x5)' 4(xi + x3 —x5)3

(xi —x3) cosh(zi —x3 + 2x5) (xi —x3) cosh(xi —x3 —2x5)+
4(xi —x3+ x5)' 4(*.—*.—-.)'

x x5 sinh(xi) sinh(X3) sinh (x5) (37)

which is the main result in this paper. We study again
the behavior where the beam diameters are wide. In
the limit of large beam diameter (po » L) one finds

E3(0, 0, 0) = i5; this means for the third cumulant

((T )) = 4E (0, 0, 0)/3g or

(P )) =
5

((T".))' (Gaussian profile), po » L,

(38)

which differs by a factor 3 from the plane wave limit
Eq. (34). This is purely a geometrical efFect, depend-
ing on the profile of the incoming beam. This effect is
best understood in a real space picture. The correlation
depends on the distance: it is strongest if the incoming
intensities are close. Therefore it is not surprising to see
the influence of the overlap. In Ref. [16] this geometrical
factor has been calculated for higher orders also (the area
of a Gaussian beam is defined difFerently there). For the
experimentally relevant case that the beam diameter is
roughly equal to the thickness, we calculated Eqs. (36)

and (37) numerically. It then turns out that the behav-
ior of Eq. (38) is actually seen for a large range of beam
diameters. The increase of the correlation for smaller
beams turns out to be roughly the same for both the
third cumulant and the second cumulant squared. All
corrections to (38) turn out to be relatively small, as we
will discuss below. Apart &om this advantage, errors in
the sample thickness and the mean Bee path cancel by
presenting the results as the ratio between the second
cumulant squared and the third cumulant.

VII. INFLUENCE OF INTERNAL REFLECTION

In this section we calculate the inhuence of internal re-
Aection on our results and show that it is small. It was
seen in previous work [31,27] that surface reflection de-
creases the |3 correlation. In Eq. (38) corrections from
boundary reBection partly cancel. We did not calculate
the in8uence of internal reQections for the general case,
but only for the case of very broad beams (i.e. , only for
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Q-independent diffuson propagators). One expects that
this behavior may be extrapolated to the Q-dependent
case. At least for the second cumulant this is a good
approximation [27]. The Q-independent diffuson propa-
gators in the presence of internal refiections are [21]

4 Il 'ri (p ) L —z + zo

Iex„. I +2 . '
k z+zp

ozlt ( )

(4O)

Therefore, the central relation (38) has a correction

((T.')) 16 ( 3 zo~
((T2))2 5 ( 2 L) (41)

The experimental determination of the index of re&ac-
tion of the sample, which determines zo, is difficult [32].
Fortunately, the correction is rather small for the exper-
imental situation considered.

VIII. CONTRIBUTIONS FROM
DISCONNECTED DIAGRAMS

So far the leading contributions to the second and the
third cumulants have been calculated. They are given by
the connected diagrams in Fig. 2(b) and Figs. 3(c) and
3(d), respectively. Yet there are also contributions to the
second and the third cumulants &om disconnected di-
agrams. The diagram in Fig. 2(a) gives an additional
contribution to the second cumulant and likewise the
diagrams of Figs. 3(a) and 3(b) give a contribution to
the third cumulant. These disconnected diagrams cor-
respond to cumulant contributions that are not (fully)
due to interference. They describe eKects that have lit-
tle to do with the interference efFects we are after. Here
we calculate their contribution and show that they are
small.

where zp is the extrapolation length. In the definition of
g and T, we replace L by I + 2zp. If internal refm. ections
are absent, zp = 0.711 and the corrections, which are of
order zo/L, are often negligible. With internal reHection
present zp increases and should be taken into account
[21]. The correlations are known to decrease if internal
reflections are present [31,27]. In the first order of zo/L
the second and the third cumulant behave as

ferent outgoing modes are uncorrelated. The second mo-
ment (T2) is split into a connected part (T ), „[Fig.2(b)]
and a disconnected part (T )q;, [Fig. 2(a)]. The total
transmission is the summation over all outgoing modes
T = g& T s. The disconnected part of the second mo-
ment is

N, N

(T )s;. = ) (T b, T g, ) + ) (T i„T g, )
b1 gbg b1 =b2

= N(N —l)(T s)'+ N(T2„)
=- (T ) + N(T s), (42)

where N is the number of modes supported by the
waveguide. For the last equality the averaged second
moment of the intensity speckle is given by the speckle
distribution function Eq. (2), (T &)

= 2(T b) . From
Eq. (42) we see that the disconnected diagram (T )~;,
does not completely factorize into the average squared
(T )2. Therefore it contributes to the second curnulant.
As shown above, the connected part of the second mo-
ment of the total transmission (T ), „ is proportional to
L/N/. For the sum of the disconnected and the con-
nected contribution to the second cumulant one thus
finds

i'(~ )eiPzRz yz(~ )e zPzRz y—(~ )eiPsRz yz'(~ )
iP4Rz—

(44)

To get the contribution to the second moment of the total
transmission, one first integrates over the transversal co-
ordinates Bq and B2 to get the contribution of the whole
exit interface to the intensity in a certain direction and
then one integrates over all directions to get the total
transmission. To obtain intensities the amplitudes need
to be paired giving the following possibilities. The first
possible pairing of the amplitudes is Pi ——P2, P~ ——P4
[see Fig. 6(a)] and brings

((T.)) = ((T.'))--+ ((T.))~'. = 2N~+ N

which also holds for the plane wave case. After this we
turn to the situation of a difFusely scattering slab, with
a finite focus of the incoming beam. The incoming beam
will be broadened in the transverse direction by diÃu-
sion, changing the above result. To calculate the difFer-
ent contributions to the cumulants, for the moment the
intensity distribution at the exit interface at transversal
coordinates Bi and B2 is needed.

The amplitudes, making up each di8'uson propagator,
can propagate &om the outgoing surface in difFerent di-
rections Pi, P2, P3, and P4, respectively,

A. Extra contributions to the second cumulant
dB& dB2 0 B, O' B& 4 B2 @* B2 ——I' 0,

We first explain the contribution of Fig. 2(a) to the
second cumulant. As a start we use the model of a
waveguide. We assume that the disorder couples one in-
coming mode a to all outgoing modes. A waveguide has
discrete modes and for the moment we assume that dif-

(45)

where we have defined I(Q) as the transmission by a dif-
fuson propagator with transverse momentum Q. Includ-
ing the incoming Gaussian beam profile, it is proportional
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P)
P2

dent speckle spots in transmission at the exit interface
[33,is].

P3
P4

P2

P)
P3

I
P4

to [see Eqs. (9) and (21)]

IQIe QP /8—
»nhIQII.

(46)

Integrating over all outgoing directions results in

FIG. 6. Disconnected contribution to the second moment.
In (a) the two transmissions factorize into the average value
squared and do not contribute to the second cumulant. Di-
agram (b) is much smaller, but gives a contribution to the
second cumulant. The amplitudes making up the two diffu-
son propagators propagate out in different directions.

B. Extra contributions to the third cumulant

We apply the same method for contributions to the
third cumulant. Following the waveguide argument as
above, we And the contributions to the third cumulant
of the diagrams of Figs. 3(c) and 3(d), 3(b), and 3(a),
respectively,

3L' 6L
5N2P 2¹E N2

The first term on the right-hand side is the connected
diagram. It is clear that the second term, the diagram of
Fig. 3(b), gives a much larger contribution to the third
cumulant than the third term, the diagram of Fig. 3(a),
as the diagram Fig. 3(b) is already enhanced by some in-
terference. In the following we consider only the diagram
of Fig. 3(b).

As can be seen from Fig. 3(b), there are three pos-
sibilities to combine the three diffuson propagators into
two connected diffuson propagators and a single diffuson
propagator. Attaching outgoing directions to the ampli-
tudes at the exit interface gives (see Fig. 7),

~II(R, )e' '"'4*(R,)e ' ' '@(R,)e' '"'C*(R )

(T ) vr2k4I2(0)

(T )2 ~2k4I2(0) (47) xe ' ' '4'(Rs)e' ' 'ill*(Rs)e ' ' '. (s2)

This is just the factorizing contribution and hence does
not contribute to the second cumulant.

The second possible pairing of the amplitudes Pq ——P4,
P2 ——P3 does give a contribution to the second cumulant.
It is the diagram in Fig. 6(b),

dR, dR, (iII(R, )@*(R,)4 (R2) ilf*(R2))e'"'

~+2(+& &) —I(pi P2)I(p2 pi) (48)

Subsequent integration over the outgoing directions P~
and P2 yields

I, „(0)I,„(0)I(0),
I, „(Pi —Ps)I, „(Ps —Pi)I(0),
I, „(0)I,„(Pi —Ps)I(ps —Pi),
I, „(0)I,„(Ps —Ps)I(ps —Ps),

I, „(Pi —Ps)I, „(Ps —Pi)I(ps —Ps),
I, „(Pi —Ps) I„„(ps—Ps) I(PS —Pi), (s3)

It is clear that there are six possibilities to pair the out-
going directions into intensities. Integrating over the
transversal coordinates Bq, R2, and B3 gives six contri-
butions

(T ) = ark d Q I (Q).
ll&~

(49)

The integral can be extended to infinity since I(Q) is an
exponentially decaying function. The contribution of the
disconnected diagram Fig. 2(b) to the second cumulant
is thus

((T.') )~'

d QI (Q)

7r2k4I2 (0)

1
N

In analogy to the waveguide, this result describes irre-
ducible contributions &om disconnected diagrams. It can
be interpreted as the inverse of the number of indepen-

FIG. 7. Leading disconnected contribution to the third cu-
mulant; the box symbolizes again the Hikami vertex.
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where I, „denotes the transmitted intensity coming &om
the connected part of Fig. 3(b). The third cumulant is
in the discrete mode model given by

((T.')) = T, ) (T-bT-b T-b )
b, b', b"

—3) (T b) ) .(T bT b ) + 2) (T b) (54)
b b, b' b

((T~))g;. —— s d Qid Q2d Qs
a

[I--(0)I--(Q )I(—Q )
+~- (Qi) I--(Q2)1(Qs)]. (55)

The integrand is dominated by its 6rst term, which is
depicted in Fig. 7. We explicitly evaluate this term. The
calculation follows completely the line of the second cu-
mulant calculation, yet it is slightly more complicated as
it has a Q-dependent outgoing diKuson propagator. The
integration over Q2 and Qs gives a factor (mk ) . Com-
paring the result with the last two terms in the third
cumulant in the waveguide model Eq. (51), we define N'
as

Similarly to the second cumulant we insert all pairings of
Eq. (53) and find for the contribution from disconnected
diagrams

each outgoing direction effectively double the number of
independent speckle spots N. Thus, for an incoming
plane wave of unit intensity with fixed polarization the
total transmission and the conductance g are twice as
large as they would be in the scalar case. As we work
with normalized cumulants, this effect reduces only the
value of the second cumulant (oc 1/g) and the value of
the third cumulant (oc 1/g ). Therefore, it is immedi-
ately seen that the relation ((T )) oc ((T )) [Eq. (38)] is
not affected. The vector character does reduce the cor-
rection Eq. (50) by a factor 2. For the experimental data
of Ref. [15] the number of modes N as well as ¹ is listed
in Table I (including the doubling).

Summarizing the previous sections we have included
three corrections. We first obtained the result for very
broad Gaussian beams, in the large L// limit, Eq. (38).
The first correction was the influence of a finite beam
diameter, which changes the diffuse intensity from linear
into an exponentially decaying; see Eq. (9). This correc-
tion is contained in Eqs. (37) and (36). The presence of
internal re8ections also changes the spatial dependence
of the difFuse intensity resulting in a correction Eq. (41).
The third correction is of another nature; it is the only
process that does not come &om interference, but &om
disconnected diagrams. Only this term depends on the
number of modes, which in the vector case is twice as
large as in the scalar case.

IX. COMPARISON WITH EXPERIMENTS
((T.')).'. = 6((T.))--/N* (56)

The number ¹ is inversely proportional to the contri-
bution of disconnected diagrams to the third cumulant
for a Gaussian pro6le.

C. Polarization efFects

The vector character of the light has not been taken
into account yet. The two independent polarizations of

The data set found experimentally in Ref. [15] are re-
produced in Table I and Fig. 8. The experiments re-
ported there were performed with seven different sam-
ples. The experimental setup and measurement tech-
nique used is extensively described in Ref. [8]. Samples
consisted of 36 vol% rutile Ti02 pigment on a transpar-
ent substrate. The extrapolation length was estimated
&om the efFective index of re&action to be zo = 1.1 pm.
The absorption length E was determined to be 70 pm.

TABLE I. Sample thickness, beam width, second cumulant, and third cumulant for the different samples as taken from Ref.
[15]. Next are the beam diameter correction factor on the third cumulaut (see Sec. IX) and the number of modes N and K'.
Together they give the corrected (plotted) cumulants (last two columns).

Sample
thickness
L (~m)

30
12
22
30
53
30
45
53
170
78
30
30

Beam
diameter
Co (Vm)

77
26
32
33
35
26
33
26
27
28
17
10

Second
cumulant

(units of 10 )
0.36+0.01

0.97 +0.03
1.24 +0.04
1.57 +0.04
1.80 +0.03
1.90 +0.03
1.90 +0.05
2.18 +0.03
2.69 +0.06
2.74 +0.03
4.82 +0.10
8.01 +0.36

Third
cumulant

(units of 10 )
0.014 +0.035
—0.03 +0.25

0.68 +0.28
1.30 +0.46
0.91 +0.53
0.92 +0.56
1.33 +0.43
1.77 +0.59
2.02 +0.82
2.43 +0.62
9.1 +3.3
5.3 +6.4

Beam
diameter

correction
1.03
1.04
1.06
1.07
1.10
1.09
1.10
1.10
1.13
1.11
1.11
1.11

Number
of modes

N
388000
46800
88600

119000
241000

94900
187000
208000

1420000
396000

71900
60200

Number
of modes

N*
300000

36800
72100
99300

212000
81300

163000
189000

1430000
372000

64400
56400

Corrected
second

cumulant
(units of 10 )

0.33
0.75
1.13
1.49
1.76
1.79
1.84
2.13
2.68
2.71
4.68
7.84

Corrected
third

cumulant
(units of 10 )

0.007
—0.18

0.58
1.21
0.86
0.78
1.26
1.70
2.00
2.39
8.60
4.47
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'I .5x10—6— X. DISCUSSION

) x)0-6—

5x'I 0—~—

2x1 0—4 4x'I 0—4
I

6x'I 0—4
I

8xl 0—4

Second Cumulc]nt
FIG. 8. Third cumulant plotted against the second cu-

mulant. The points are the corrected experimental data
(see the text). The line is the theoretical prediction
((T )) = 3.2((T )); no free parameters were introduced.

DifFerent values of the conductance g were probed by tak-
ing various sample thicknesses and by varying the beam
diameter. The Huctuations in the total transmission were
measured by varying the wavelength of the light.

For a very broad beam we found the simple relation
(38) between the second and the third cumulant. A
weighted least-squares fit to

((T )) = const x ((T )) (57)

of the raw experimental data yields a prefactor 2.9 + 0.6.
However, as discussed above, there are three corrections
to be made. First, if the beam width becomes compara-
ble to sample thickness, the integrals (23) and (36) have
to be performed: If the beam width reduces, g decreases
accordingly and both cumulants increase in absolute size.
Yet the precise increase is somewhat difFerent, resulting
in a somewhat smaller prefactor in Eq. (38). We cor-
rected each data point individually for its finite focus,
mapping it to the infinite focus case. The third cumu-
lant was multiplied by a factor that ranged &om 1.03 to
1.13 as I/po ranged from 0.41 to 6.3; see Table I. This is
the largest correction, which changes the prefactor some
10%%uo. Second, we corrected for internal reflections ac-
cording to Eq. (41). The third correction comes from the
disconnected diagrams. The contributions &om the dis-
connected diagrams are substracted &om the measured
cumulants. After all these corrections the data should
again obey the law {(T )) = 3.2 ((T )) . The results
are plotted in Fig. 8, where the points are the corrected
data points and the line is the theoretical prediction. A
least-squares fit gives

((T )) = (3.3 + 0.6)((T )) .

Note that there is no adjustable parameter. We find that
there is good agreement between experiment and theory.
All corrections are minor as compared to the error in the
data; fitting the raw data is also in agreement with the
theoretical value of 3.2. We recall that the major shift
between fits of raw and corrected data comes from the
beam diameter correction. Inspecting Fig. 8 one might
be tempted to make a linear fit, but in Ref. [15] it was
shown that this fit is statistically improbable.

We have calculated the second and the third cumulants
of the distribution of the total transmission underlying
the conclusions of Ref. [15] and compared it to the ex-
perimental data. Both cumulants are a consequence of
interference between difFuse channels. They were calcu-
lated with a diagrammatic technique. The inverse dimen-
sionless conductance, interpreted as an interference prob-
ability, is a perturbation parameter in the theory. The
third cumulant is proportional to the second cumulant
squared. We also found a nontrivial dependence on the
profile of the incoming beam used. The cumulants were
calculated for arbitrary beam diameter, but the inHuence
of a finite focus on the ratio is rather weak. Also bound-
ary reQections were included. Our calculations confirm
that the main contributions come from diagrams with
interference processes, i.e. , connected diagrams, as we
have shown that the contributions &om disconnected di-
agrams is small. The experimentally found ratio of the
third cumulant versus the second cumulant squared is
well described by our theory.

The extension of the calculations to higher cumulants
is straightforward. The nth cumulant will contain (n —1)
Hikami four-point vertices. So the contribution is esti-
mated to be ((T )) oc g . Also corrections and can-
cellations from higher-order vertices are present, but it is
clear that the calculation becomes laborious at large n.
Recently two of the authors discovered that all the cumu-
lants of the distribution function can be mapped onto the
moments of the eigenvalue distribution of the transmis-
sion matrix [16]. The eigenvalue distribution is bimodal
and was first calculated using random matrix techniques
[34], but recently its validity beyond quasi-one-dimension
was proven [35]. As the eigenvalue distribution is known,
the entire distribution of the total transmission was cal-
culated in the limit of broad beams. These results agree
with calculations presented here for the first three cumu-
lants. The experimental data thus also prove the first
few moments of the eigenvalue distribution function. As
only three moments are known, it is impossible to recon-
struct the full eigenvalue distribution &om the experi-
mental data. The present calculation leads us to assume
that the eigenvalue distribution in a diagrammatic ap-
proach is also given by loopless connected diagrams. As
the ratio of first few cumulants does not depend sensi-
tively on the beam diameter, the results of Ref. [16] are
probably also valid in the regime where the beam diam-
eter becomes comparable to the sample thickness.
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