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Abstract 

Expansion of a Schiff-base polypyrrolic macrocycle allows the formation of a binuclear uranyl complex with 

co-linear uranyl ions and a very short oxo-oxo distance. 

 

Introduction 

The actinyl ions, [AnO2]
n+

, (An = U, Np, Pu, n = 1,2) have metal dioxo motifs in which linear MO2 

geometries are dominant due to strong covalent multiple M-O bonding and relativistic effects.
1
 Of these, the 

hexavalent uranyl is the best-known and arguably the most important, due to its natural occurrence in the 

environment and the fact that it makes up approximately 95% of the dissolved metal ions in standard civil 

nuclear waste.
2, 3

 The uranyl dication has the least basic oxo groups compared to the other actinyl ions, 

including the reduced, pentavalent uranyl mono-cation, and exhibits little chemistry.
4
 This is a significant 

property as the interaction of actinyl ions through oxo-bridge formation to other cations, known as cation-

cation interactions (CCIs),
5
 is important to nuclear waste processing since it can lead to undesirable 

precipitation of clusters. Furthermore, proton and oxo group exchange reactions that occur during the 

reductive precipitation of uranyl under anaerobic conditions are facilitated by oxo-bridging between the 

actinyl centres.
6-9

 Well-understood cluster formation reactions have also been used in recent years to direct the 

formation of actinide dimers and oligomers that display interesting electronic coupling, and that help elucidate 

the fundamental bonding behaviour of f-electrons.
10

 This is still a poorly-understood area, and one made 

difficult for theoretical studies by relativistic effects.  

We have been studying uranyl [UO2]
2+

 oxo-group hydrogen-bonding,
11

 transition-metal coordination,
12

 , and 

reduction through the formation of covalent O-Si and O-H bonds,
13-15

 or lanthanide metallation,
16

 in a 

Pacman-shaped, polypyrrolic macrocyclic framework, which both equatorially coordinates, and 

desymmetrises the uranyl ion (Chart 1, A). While under normal conditions only one uranyl cation can fit into 

the cavity of H4L, we have shown recently that a new binuclear diuranium dioxo geometry can occur in which 

both reductive silylation and the migration of one oxo group to a mutually cis position are apparent (Chart 1, 

B).
17

 In related work we have shown that binuclear transition metal complexes of the expanded Pacman ligand 

H4L
A
 exhibit greater metal-metal separation and afford superior performance in oxygen reduction catalysis 

(Chart 1, C).
18-20

 Computational studies by us suggested that this latter ligand should allow the coordination of 

two actinyl ions, albeit with close oxo-oxo distances.
21

 Herein, we report experimental evidence for the 

formation of binuclear uranyl complexes of H4L
A
 and confirm the theoretical predictions. 
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Chart 1. The desymmetrisation of the uranyl ion upon coordination in the Pacman macrocycle (H4L) A, the 

oxo-rearranged product B that allows two uranyl ions to coordinate, and the dicobalt catalyst for O2 reduction 

of the expanded polypyrrolic macrocycle with anthracenyl (H4L
A
) hinge C. S = donor solvent molecule. 

 

The reaction between the free base anthracenyl macrocycle H4L
A
 and one equivalent of the uranyl 

bis(silylamido) complex [UO2{N(SiMe3)2}2(py)2] (py = pyridine) in pyridine solution was not as 

straightforward as that of the analogous ligand H4L, affording a mixture of the brown mono and binuclear 

uranyl complexes [UO2(py)(H2L
A
)] 1 and [{UO2(py)}2(L

A
)] 2 in addition to unreacted ligand in 70:15:15 ratio 

respectively, even at elevated temperatures. Although the reaction between H4L
A
 and two equivalents of 

[UO2{N(SiMe3)2}2(py)2] also yields a mixture of 1 and 2, the latter is formed in much greater yield of 50 %, 

alongside nearly the same amount (46 %) of compound 1. Both 1 and 2 have similar solubilities, being 

insoluble in non-polar organic solvents and poorly soluble in pyridine, a property which causes unwanted 

precipitation of both products over the course of the reaction inhibiting the formation of 2 as a single product. 

Despite this, fractional crystallisation from the crude mixture did allow isolation of pure samples of 2, albeit in 

low yields. The binuclear complex 2 represents the first example of a simple bis-uranyl Pacman molecular 

compound and incorporates a highly unusual co-facial coordination environment for two uranyl ions (see 

later). In the 
1
H NMR spectrum of 1, an asymmetric ligand arrangement is seen, consistent with only one of 

the two N4 donor sets being occupied by the uranyl cation. This is evidenced by the presence of two sets of 

four resonances each for the CH2 (2.71, 2.54, 2.17 and 1.60 ppm) and CH3 protons (1.47, 1.05, 0.97 and 0.54 

ppm) of the ethyl meso-groups. The magnetic non-equivalence of all four alkyl groups reinforces the 
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assignment of an asymmetric Pacman geometry to the molecule in solution, with the four sets of resonances 

due to distinct inner- and outer-cleft ethyl groups. In contrast, the 
1
H NMR spectrum of 2 displays a 

symmetrical set of ligand resonances consistent with both N4 donor sets being occupied, with four, as opposed 

to eight, meso-ethyl resonances at 0.90, 1.09, (CH3) and 2.48 (two overlapping CH2 resonances) ppm (see SI). 

 

 

Scheme 1. Synthesis of mono and di(uranyl) Pacman complexes of L
A 

 

The difficulty experienced in the synthesis and isolation of 1 and 2 contrasts with the calculated relative 

thermodynamic stabilities of the products. In the gas-phase calculations, the mono(actinyl) complexes 

[AnO2(H2L
A
)] An = U, Np, Pu were found to be more stable than the binuclear complexes [{AnO2}2(L

A
)] by 

40-50 kcal mol
-1

, a considerable margin presumably arising from the steric clash between the oxo-groups 

resulting upon complexation of a second uranyl cation. However, the calculated structures omitted the donor 

solvent molecule in the fifth equatorial site, and calculations that incorporated a continuum solvent model 

were found to stabilise the formation energy of the binuclear complex by 11 kcal mol
-1

, so reducing the barrier 

to its formation.
21

  

Single crystals suitable for an X-ray structure determination of 2 were grown from pyridine and the solid state 
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structure is shown in Figure 1, along with selected distances and angles. Both uranyl cations display 

pentagonal bipyramidal geometries with the macrocyclic N4-donor set and the pyridine N-donor atom 

comprising the equatorial donor ligands and the two oxo atoms, which are mutually trans (O-U-O angles 

174.0(2) and 176.0(2)
o
) comprising the axial ligands. The U-O bond distances are short (range = 1.747(4) to 

1.779(4) Å) and support the presence of the U(VI) oxidation state; the absorption at 912 cm
-1

 in the IR 

spectrum of 2 is also consistent with [UO2]
2+

. The most notable feature is the short separation of the two oxo 

groups, O1···O3 2.709(6) Å within the molecular cleft. The two uranyl cations are evidently coordinated with 

ease in the macrocyclic cavity generated by the anthracenyl groups of L
A
; the N4-donor sets remain 

approximately coplanar, subtending an angle of 16.8
o
 due to the steric demand of the meso-ethyl groups. 

However, the two N4 donor planes are slipped laterally relative to the meso-carbons, by rotation around all 

four N-C anthracenyl bonds. Thus, the perpendicular distance between U1 and the plane described by U2, O3, 

O4, and the pyridine nitrogen N10 is 1.957 Å. This lateral twist also allows for favourable -stacking 

interactions between the pyridine molecules located in the fifth equatorial coordination site and anthracenyl 

hinge groups. This contrasts to the complexes of the parent phenylenediamine-derived macrocycle L, in which 

the inhibition of lateral twisting does not allow favourable aromatic -stacking interactions. 

 

  

Figure 1. Solid state structure of 2. For clarity, all hydrogen atoms are omitted (displacement ellipsoids are 

drawn at 50% probability). Selected distances (Å) and angles (°):U1-O1 1.747(4), U1-O2 1.779(4), U1-O3 

1.764(4), U1-O4 1.778(4), U1-N1 2.558(6), U1-N2 2.417(6), U1-N3 2.430(6), U1-N4 2.595(6), O1-U1-O2 

174.0(2), 176.0(2). 

 

Attempts to crystallise the mono-uranyl complex 1 from mixtures of 1 and 2 were unsuccessful. However, its 

structure was verified by analysis of the crude mixture by MALDI-MS in which the ion at 1128 amu was 
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attributed to [UO2(H2L
A
)]

+
, a fragment resulting from desolvation of 1 upon ionisation. Also, a peak at 1528 

amu was ascribed to the loss of a single ethyl group from the binuclear complex 2, with further ions at 1452 

and 1370 corresponding to mono- and unsolvated fragments.   

Examples of complexes which contain a similarly close uranyl oxo contact in the solid state are relatively rare. 

The uranyl oxalates [NH4]2[(U
VI

O2)2(μ4-C2O4)3],
22

 [Rb]2[(U
VI

O2)2(μ4-C2O4)3],
23

 and [alkyl-

imidazolium]2[(U
VI

O2)2(μ4-C2O4)(NO3)4],
24

 have similarly short oxo-oxo distances of 2.434, 2.702, and 2.703 

Å, respectively; all other close O···O separations are > 2.8 Å and result from crystal packing in the solid state 

(39 examples up to 3.0 Å).
25

 To our knowledge, none of these contacts persist in solution, whereas a solution 

of 2 survives unchanged in boiling pyridine over 24 h. 

The proximity of the two hexavalent uranyl oxo groups suggests that (electro)chemical reduction by one or 

more electrons might yield a bimetallic complex with an interesting electronic structure. We have shown 

previously that magnetic superexchange is facilitated in the binuclear uranium dioxo complex B,
17

 and single-

electron reduction has been shown to enhance significantly the magnetic properties of lanthanide dinitrogen 

complexes.
26

 Preliminary cyclic voltammetry of 2 in THF (0.2 M Bu4NBF4, Fc
+
/Fc)† displayed only an 

irreversible reduction at Ep
c
 −2.46 V. If this is assigned to a reduction of the two non-communicating U

VI
 

centres, it represents a significantly more difficult reduction than that of the mononuclear complex 

[UO2(THF)(H2L)] A which shows a clear, quasi-reversible U
VI

/U
V
 couple at –1.17 V and an irreversible 

feature, presumed to be U
V
 to U

IV
 at −2.88 V.

27
 On first inspection, it is a surprise that the redox chemistry of 

these complexes should be so different, as each uranyl centre contains the same macrocyclic donor set in the 

equatorial plane. However, the proximity of the oxo atoms within the macrocyclic cleft may be destabilising 

the reduced states as the Lewis basicity of the oxo groups would be expected to increase considerably on 

reduction from [UO2]
2+

 to [UO2]
+
. Also, the parallel orientation of the uranyl groups within the macrocyclic 

cleft hinders the formation of diamond or T-shaped CCIs. In support of this, the CV of the mixture of 1 and 2 

(since 1 cannot be isolated pure) showed extra, irreversible reductions at Ep
c
 –1.45 and –2.6 V, potentials 

similar to those seen for the U
VI

/U
V
 and U

V
/U

IV 
couples respectively in A, indicating that the pentavalent 

oxidation state should be almost as readily accessible for mononuclear 1 as it is for A. Furthermore, binuclear 

complexes of L
A
 without ancillary ligands in the molecular cleft such as the Co complex [Co2(L

A
)] display 

more straightforward reduction chemistry, with a quasi-reversible reduction at Ep
c
 −2.32 V (Fc

+
/Fc, PhCN, 

PT WE) for the Co
II
/Co

I
 couple.

18
  

We have shown that the computationally-predicted binuclear uranyl complex of L
A
, 2, can be synthesised, 

albeit in low yield due to the difficulties in its isolation from the mononuclear complex 1. The structure of 2 

reveals a close oxo-oxo distance within the molecular cleft which considerably affects the reduction chemistry 

exhibited by these complexes. The computational work also predicted the existence and stability of mixed 

uranyl-transition metal complexes, so it will be of interest to determine whether these mixed-metal 

compounds can be prepared and their oxo group chemistry evaluated.  
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