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Abstract

This paper presents an investigation into predicting the movement of a speaker’s mouth from text input using hidden Markov
models (HMM). A corpus of human articulatory movements, recorded by electromagnetic articulography (EMA), is used to train
HMMs. To predict articulatory movements for input text, a suitable model sequence is selected and a maximum-likelihood pa-
rameter generation (MLPG) algorithm is used to generate output articulatory trajectories. Unified acoustic-articulatory HMMs are
introduced to integrate acoustic features when an acoustic signal is also provided with the input text. Several aspects of this method
are analyzed in this paper, including the effectiveness of context-dependent modeling, the role of supplementary acoustic input, and
the appropriateness of certain model structures for the unified acoustic-articulatory models. When text is the sole input, we find
that fully context-dependent models significantly outperform monophone and quinphone models, achieving an average root mean
square (RMS) error of 1.945mm and an average correlation coefficient of 0.600. When both text and acoustic features are given as
input to the system, the difference between the performance of quinphone models and fully-context dependent models is no longer
significant. The best performance overall is achieved using unified acoustic-articulatory quinphone HMMs with separate clustering
of acoustic and articulatory model parameters, a synchronous-state sequence, and a dependent-feature model structure, with an
RMS error of 0.900mm and a correlation coefficient of 0.855 on average. Finally, we also apply the same quinphone HMMs to the
acoustic-articulatory, or inversion, mapping problem, where only acoustic input is available. An average root mean square (RMS)
error of 1.076mm and an average correlation coefficient of 0.812 are achieved. Taken together, our results demonstrate how text
and acoustic inputs both contribute to the prediction of articulatory movements in the method used.

Keywords:
Hidden Markov model, articulatory features, parameter generation

1. Introduction which to predict articulatory movements, HMMs are trained
using the recorded articulatory features and linguistic context
labeling of a speech corpus recorded with a human articulog-
raphy technique, here electromagnetic articulography (EMA).
When acoustic features are provided to supplement the text,
it is necessary to train unified acoustic-articulatory HMMs to
capture the relationship between the acoustic and articulatory
features. To perform synthesis, optimal trajectories of articula-
tory movements are generated from the trained models using a
maximum-likelihood criterion with dynamic feature constraints
(Tokuda et al., 2000).

In human speech production it is the movements of artic-
ulators, such as the tongue, jaw, lips and velum, that gener-
ate and shape the acoustic signal. Hence, articulatory fea-
tures which may be recorded by human articulography (Schénle
et al., 1987; Kiritani, 1986; Baer et al., 1987), provide an effec-
tive and important description of speech as an alternative to an
acoustic representation. Similar to the generation of an acoustic
representation of speech in standard text-to-speech (TTS) syn-
thesis, the generation of articulatory movements from text has
many potential applications. For example, it could help users
of a language tutoring system to learn correct pronunciation, or
for the analysis of pronunciation defects; it could be employed
in an animated talking-head system; or it could feature in an
articulation-based speech synthesis system.

This paper presents an approach to predicting articulatory
movements from text that adopts a similar framework to hid-
den Markov model (HMM) based parametric speech synthe-
sis (Tokuda et al., 2004). When text is the only input from

Related research on predicting or estimating articulatory
movements has previously been presented in the literature, and
we consider here a few of the most relevant examples. In
Blackburn and Young (2000), articulator movements were pre-
dicted from time-aligned phone strings using Gaussian distri-
bution models at phone midpoints together with an explicit
coarticulation model. In contrast, we use an HMM here to
achieve temporal modeling of articulatory movements. In
Tamura et al. (1999), lip shapes (derived from video) were
predicted alongside synchronous acoustic speech synthesis
parameters from textual input using an HMM-based parameter
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generation method. Here, we predict not only lip movements,
but also movements of articulators inside the mouth, with
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EMA providing the articulatory training and testing data. In
addition, we investigate optionally using an acoustic speech
signal to supplement the input text in order to guide prediction
of articulatory movements.

The focus of Toda et al. (2008); Richmond (2007, 2009);
Hiroya and Honda (2004) and Zhang and Renals (2008) was
the inversion mapping (also known as the acoustic-articulatory
mapping), where the aim is to estimate the articulatory move-
ments underlying a given acoustic speech signal. In Toda et al.
(2008), a Gaussian mixture model for the joint distribution of
acoustic and articulatory features was adopted to achieve the
mapping from acoustic features to articulatory movements. In
Richmond (2007, 2009), an artificial neural network (ANN) and
MLPG algorithm were combined to form a statistical trajectory
model to estimate articulation from an acoustic speech signal.
The work described in Hiroya and Honda (2004) and Zhang
and Renals (2008) was based on the HMM, which is similar
to the approach presented in this paper. However, since their
focus was on the inversion mapping, they were limited to us-
ing only very simple context information to define the set of
HMMs. Our aim here, in contrast, is primarily to predict ar-
ticulatory movements from text. Therefore, we can readily use
much more fine-grained linguistic features to define our model
set, as is common in acoustic speech synthesis, since we do not
face the problem of a decoding search with a huge model set.

Finally, a similar HMM-based approach was also used in Hi-
roya and Mochida (2006). Their aim was to use speaker adap-
tive training (SAT) to train a speaker-independent model to pre-
dict articulatory movements from text. The work presented here
has three key differences. First, unlike Hiroya and Mochida
(2006), we evaluate using a large set of models defined in terms
of a fine-grained set of linguistic context features. This can the-
oretically improve accuracy by modeling the characteristics of
articulatory movements in differing environments. Second, in
Hiroya and Mochida (2006), the state durations for the articula-
tory movement generation from HMMs were not predicted, but
derived from the measured articulatory data by Viterbi align-
ment. In contrast, we use a statistical model to predict state
durations from text and the influence of state duration predic-
tion is studied in our experiments for the articulatory HMMs us-
ing different forms of context information. Third, we augment
our system to model the dependence of the acoustic features
on the associated articulatory features. This provides a unified
acoustic-articulatory model which may be trained to predict ar-
ticulatory features that are synchronized with an input acoustic
signal.

In summary, several important aspects of HMM-based pre-
diction of articulatory movements are studied in this paper:

1) The effectiveness of context-dependent modeling. As
mentioned above, fine-grained linguistic features can be
used here to define our model set because the text from
which these are derived is given. It is necessary to eval-
uate the effect of introducing rich context features into
the model definition, both when text is the only input and
when acoustic input is also available.

2) The role of supplementary acoustic input. Due to the

mechanism of speech production the acoustic signal is
strongly correlated with articulatory movements. In this
paper we analyze how acoustic input complements text
in the prediction of articulatory movements. We compare
prediction performance using: a) text input alone; b) audio
input alone (i.e. the inversion mapping); and c) both text
and audio input together.

3) Appropriate model structures for unified acoustic-
articulatory modeling. In previous work, we have ex-
plored various model structures for an articulatorily con-
trollable HMM-based speech synthesis system (Ling et al.,
2009). However, the purpose of the current paper is to pre-
dict articulatory movements, and not to generate acoustic
synthesis parameters as in our previous work. Hence, sim-
ilar investigations into model structure are conducted in
this paper.

In the remainder of the paper, Section 2 describes the HMM-
based articulatory-movement prediction method in detail, Sec-
tion 3 presents the results of our experiments, and Section 4
gives the conclusions we draw on the basis of these.

2. Method

2.1. Articulatory Movement Prediction from Text

The framework of the HMM-based method used to pre-
dict articulatory movements is shown in Fig. 1. To begin
with, we consider the case of predicting articulation from text
alone. To construct the training data set, articulatory move-
ments of dimensionality Dy are recorded by human articulog-
raphy. During training, a set of context-dependent HMMs A are
estimated to maximize the likelihood function P(X|1). Here
X = [xI,Jg, ...,xI,]T is the observed articulatory feature se-
quence, (-)' denotes the matrix transpose and N is the length
of the sequence. The observation feature vector x, € R*Px for
each frame consists of static articulatory parameters xs, € RPx
and their velocity and acceleration components as

x, = [x§,, Ax{ , A’xg 1T (1)

where
Axs, = O.SXSH] - O.stkl (2)
N’xs, = Xs,, — 25, +Xs,_,. (3)

After initial context-dependent HMM training, a decision tree is
trained using the minimum description length (MDL) criterion
(Shinoda and Watanabe, 2000) to cluster the probability den-
sity functions of all HMM states. This is to mitigate problems
of data sparsity and to formulate estimates for the parameters
of models whose context description is missing in the training
set. Next, a state alignment is derived using the trained HMMs.
This is then used to train context-dependent state duration prob-
abilities (Yoshimura et al., 1998) for state duration prediction.
To generate articulatory movements, the results of front-end
linguistic analysis on the input text are used to determine the
sentence HMM by consulting the clustering decision tree built
during training. The MLPG algorithm (Tokuda et al., 2000)
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Fig. 1. Flowchart of the HMM-based text-to-articulatory movement prediction
method. The dashed lines are used for the condition that acoustic waveforms
are input with the text to guide prediction.

is then applied to generate the optimal articulatory trajectories
using dynamic features, such that

X =arg n}(ax P(X|1) = arg n}(ax P(WxXs|) (@3]
N S

= arg max P(WxXs,q|d). 5

gma %} (WxXs. gl 5)

where X = WxXg; Xs = [x{ ,x{ ,...,
ticulatory feature sequence; Wy € R3VPxNDx ig determined
by the velocity and acceleration calculation functions in (1)-
(3); and q = {q1, 92, .--,gn} denotes the state sequence for the
articulatory features. We solve (5) by keeping only the optimal
state sequence in the accumulation and approximating it as a
two-step optimization

x;N]T is the static ar-

[X5.q"] ~ arg max P(WxXs,ql1) (6)
el

= argmax P(WxX;s|4, )P(ql1) @)
S

where the optimal state sequence

q" =arg max P(ql) €))

is determined from the trained state duration probabilities
(Yoshimura et al.,, 1998) and Xj is calculated by setting
dlog P(WxXs|A,q%)/0Xs= 0, as introduced in Tokuda et al.
(2000).

2.2. Articulatory Movement Prediction with Acoustic Inputs

When acoustic waveforms are available with the input
text, the predicted articulatory movements are required to be
synchronized with the reference acoustic signal. A unified
acoustic-articulatory model is necessary to represent the rela-
tionship between these two parameter streams. During training,
HMMs A for the combined acoustic and articulatory features
are estimated to maximize the likelihood function of their joint
distribution P(X, Y|1), where X and Y = [y],y], ..., y\]" denote

the parallel articulatory and acoustic observation sequences of
length N respectively. At each frame the acoustic feature vector
¥y, € R3Pr is similarly composed of static features yg, € RP* and
their velocity and acceleration components as

v, =i Ayg  AyE 1T )

where Dy is the dimensionality of the static acoustic features.

Various structures may be adopted to model the joint distri-
bution P(X, Y|1). In previous work on an articulatorily control-
lable HMM-based speech synthesis system (Ling et al., 2009),
we investigated three aspects of model structure:

1) Model clustering. Model-clustering, using decision trees,
is an important step in the training of context-dependent
HMMs. We can choose either to cluster the acoustic model
components and articulatory model components indepen-
dently (“separate clustering”) or to build a shared decision
tree to cluster the models for both feature types simultane-
ously (“shared clustering”).

2) Cross-stream synchrony. The acoustic and articulatory
feature sequences can be assumed to be generated from
different state sequences (“asynchronous-state”) or from a
single state sequence (“synchronous-state’).

3) Cross-stream dependency. The generation of acoustic
features can be assumed to depend only upon the current
state (“independent-feature”) or also depend upon the cur-
rent articulatory features (“dependent-feature”).

In this paper, the synchronous-state model structure is as-
sumed. However, the other two aspects pertaining to model
structure are investigated in our experiments below.

We model the dependency between the acoustic and artic-
ulatory features using a piecewise linear transform within the
HMM states (Ling et al., 2009). Mathematically, we can write
the joint distribution as

P(X. Y1) = ) P(X, Y,ql) (10)
Vq

N
= D 7 | | dacia by (an

Vq t=1
bjx,y,) = bj(x)bj(y ;) (12
bj(x:) = N py » Xx,) 13)
b)) = NOA X +py, Ex) (14)

where ¢ = {q1, q2, ..., qn} denotes the state sequence shared by
the two feature streams; 7r; and a;; represent initial state proba-
bility and state transition probability respectively; b;(-) denotes
the state observation probability density function (PDF) for
state j; N(;u,X) denotes a Gaussian distribution with a mean
vector p and a covariance matrix X; and A; € R3Pr3Px ig the
linear transform matrix for state j to model the dependency of
acoustic features on articulatory features. As the transform ma-
trix is state-dependent, a piecewise linear transform is achieved
globally. An Expectation-Maximization (EM) algorithm can be
used to estimate the model parameters; the re-estimation for-
mulae may be found in Ling et al. (2009).



To predict articulatory movements from text with supple-
mentary acoustic inputs the same maximum-likelihood crite-
rion as in Section 2.1 is followed, though (4) is modified so that

X; :argn}(axP(WXXsl/l,Y) (15)
N

= arg max P(WxXs,q|A,Y). 16

gma VZ,, (WxXs.ql4.7) (16)

Again, we simplify the optimization for (16) by considering
only the optimal state sequence. Therefore, we have

(X5,q7°] ~ arg max P(WxXs,q|4,Y). (17)
N

An iterative update method that alternately optimizes the state
sequence is adopted here to solve (17). Each iteration consists
of two steps.

1) Optimize articulatory features Xs given Y and ¢

X5, = argmax P(WxXs14, 4,1, Y) (18)
N

= arg max P(WxXs,YI|A,q,_)) (19)
N

where i € {1,2, ...} denotes the i-th iteration and g, is cal-
culated by Viterbi alignment on Y using an isolated acous-
tic model. If X and Y are assumed to be independent given
the state sequence, (18) can be solved using the conven-
tional MLPG algorithm (Tokuda et al., 2000), and Y can-
not affect the prediction of X at all (other than through the
shared state-sequence in 2) below). Once the dependent-
feature model structure is adopted, as in (14), the joint dis-
tribution in (19) can be rewritten as

log P(WxXs.,Y|A,q,_;) = Y U, AWxX;
1
—EYTU;' Y + YUy My
1

2
+XiWy(Ux'My —ATU'My) + K (20)

XIWLUR' + ATU A) WX

where
Uy' = diag[Zy) Xy .. By ] 1)
My = [y, oy, oo by, T (22)
Uy' = diag[Zy . Zy ... Iy ] (23)
My = [y, .y, by, T (24)
A = diag[A,,,A,,, ... Ay, ] (25)

and K is a constant value. Therefore, by setting
0P(WxXs,Y|A,q;_)/0Xs= 0, we have

X5, =(Wy(Uy' + ATU' A)Wy) ™!
SWH(Uy'My + AU (Y - My)).  (26)

2) Optimize state sequence ¢ given X5 and Y

q; = argmax P(q|d, WxX5,, Y). (27
q

This can be solved with a Viterbi alignment using the
trained HMMs on the feature sequence pair (WxXj,,Y).
The updated optimal state sequence ¢} is then used to
generate articulatory features according to (21)-(26) in the
next iteration.

3. Experiments

3.1. Database

In our experiments, we have used a data set comprised of
articulatory movements recorded concurrently with the corre-
sponding acoustic waveforms. A Carstens AG500 electromag-
netic articulograph was used to record 1,263 phonetically bal-
anced sentences, which were read by a male British English
speaker. The waveforms were in 16kHz PCM format with
16 bit precision. Six EMA sensors were used, located at the
tongue dorsum (T3), tongue body (T2), tongue tip (T1), lower
incisor (LI), upper lip (UL), and lower lip (LL) of the speaker.
This is illustrated in Fig. 8(a). Each sensor recorded spatial lo-
cation in 3 dimensions at a 200Hz sample rate: coordinates on
the x- (front to back), y- (bottom to top) and z- (left to right)
axes (relative to viewing the speaker’s face from the front).
All six sensors were placed in the midsagittal plane, and their
movements in the z-axis were very small. Therefore, only the
x- and y-coordinates of the six sensors were used in our exper-
iments, making a total of 12 static articulatory features at each
sample instant.

3.2. System Construction

To create context-dependent HMMs, we first labeled the
database using tools from Unilex (Fitt and Isard, 1999) and Fes-
tival (Taylor et al., 1998). Phone boundaries were determined
automatically using HTK (Young et al., 2002). 1,200 sentences
were selected for training and the remaining 63 sentences were
used as a test set. A 5-state, left-to-right model structure with
no skips was adopted to train phone HMMs. A single Gaussian
distribution with diagonal covariance was used for each HMM
state. Our training and prediction implementation was based
upon the HTS toolkits (Zen et al., 2007). In addition to simple
monophone models, two forms of context-dependent HMMs
were trained and evaluated in our experiments:

1) Quinphone model. The context features for each model
comprised the identity of the current phone, together
with those of the preceding and follow two neighbouring
phones.

2) Fully context-dependent model. In addition to the phone
identities used in the quinphone models, a broad set of
linguistic and prosodic features were adopted, similar to
those used in HMM-based TTS systems (Tokuda et al.,
2004). A full list of the specific context features used is
given in Table 1.



Table 1
The linguistic context features used for fully context-dependent model training.

the identity of the current and neighbouring 4 phones (phone before the
previous, previous, current, next, phone after the next);

the position of the current phone in the current syllable;

the number of phones in the {previous, current, next} syllable;

whether the {previous, current, next} syllable is stressed or not;

whether the {previous, current, next} syllable is accented or not;

the position of the current syllable in the current word;

the number of syllables in the {previous, current, next} word;

the number of {stressed, accented} syllables in the current {word, phrase};

the distance between the current syllable and the neighbouring {stressed,
accented} syllable;

the part-of-speech of the {previous, current, next} word,

the position of the current {syllable, word} in the current phrase;

the number of {syllables, words} in the {previous, current, next} phrase;
the number of content words in the current phrase;

the distance between the current word and the neighbouring content word;
the boundary tone of the current phrase;

the position of the current phrase in the utterance;

the number of {syllables, words, phrases} in the utterance.

3.3. Articulatory Movement Prediction from Text

In this experiment, only articulatory features and linguis-
tic context labels were used for training, and no acoustic sig-
nals were used during articulatory movement prediction (as
in Section 2.1). Three systems were trained, one with mono-
phone models, one with quinphone models, and one with fully
context-dependent models. RMS error calculated for the 63 test
sentences (with silence segments excluded) and averaged over
all 12 EMA features was used as an objective measure to eval-
uate the accuracy of articulatory movement prediction. To fa-
cilitate the calculation of the error for each utterance, the state
duration prediction in (8) was solved under the constraint of set-
ting the total length of generated articulatory frames to be the
same as the duration of the natural utterance (Yoshimura et al.,
1998).

Results for the three systems are shown in Fig. 2. A t-
test informs us that the differences among these three systems
are significant (p < 0.05). From these results, we see the
context-dependent modeling approach which is commonly used
in HMM-based speech synthesis is also an effective method
to predict articulatory movements from text. Compared with
monophone models, using quinphone models improves the ac-
curacy of articulatory feature prediction significantly, as it can
account for the coarticulatory effects of nearby phones on the
movement of articulators when producing a given phone.

The rich linguistic context features that were used in addi-
tion to the neighbouring phone identities (see Table 1) when
training the fully context-dependent models are commonly be-

2.2
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Fig. 2. RMS error of EMA features predicted from text using monophone
(MONO), quinphone (QUIN), and fully context-dependent (FULL) models. “*”
indicates the difference between two systems is significant.

lieved to be correlated with the suprasegmental characteristics
of speech, such as pitch and duration. However, Fig. 2 shows
that the fully context-dependent models are also significantly
better than quinphone models for the prediction of articula-
tory movements. We conducted a further experiment to ex-
plore the reasons for this difference. Similar to Hiroya and
Mochida (2006), the result of Viterbi alignment on the natu-
ral articulatory recordings by the monophone, quinphone, and
fully context-dependent models was adopted to replace the du-
ration prediction in (8) when generating the articulatory move-
ments using the three models respectively. The average RMS
error of predicted articulatory movements for the 63 test sen-
tences was then calculated, as shown in Fig. 3. Compared
with the results in Fig. 2, we see that RMS error is greatly
reduced for all three systems when natural state durations are
provided. Furthermore, the difference between the quinphone
models and the fully context-dependent models is not signifi-
cant any more. This implies the superiority of the fully context-
dependent models over the quinphone models in Fig. 2 lies
in better duration prediction. This is reasonable since the
fully context-dependent models take context features related to
prosody into account to train the duration probabilities.

Although we have used a different data set here, which
inhibits direct comparison, we nevertheless note these RMSE
results for the same task of predicting articulation from text
compare very well with other methods and results previously
reported, such as Blackburn and Young (2000) and Hiroya and
Mochida (2006), especially when context-dependent models
are used.

3.4. Articulatory Movement Prediction with Acoustic Inputs
3.4.1. Without Cross-stream Dependency Modeling

Unified acoustic-articulatory HMMs were trained to predict
articulatory movements, using acoustic features as input to sup-
plement the text. Frequency-warped LSFs of order 40 plus an
extra gain dimension were derived with a Sms frame shift from
the spectral envelope provided by STRAIGHT (Kawahara et al.,
1999) analysis on the acoustic waveforms. These spectral pa-
rameters and the logarithmized FO of each frame were used as
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Fig. 3. RMS error of EMA features predicted from text using monophone
(MONO), quinphone (QUIN), and fully context-dependent (FULL) models
when the natural state segmentations are given. “*” indicates the difference

between two systems is significant and “x” indicates the difference is insignifi-
cant.
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&
©
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Fig. 4. RMS error of EMA features predicted from text with acoustic inputs for
monophone model (“MONO”). The x-axis refers to the number of iterations in
the articulatory feature generation.

two separate acoustic feature streams and were combined with
the articulatory features to train the unified acoustic-articulatory
HMMs. A multi-space probability distribution (MSD) (Tokuda
et al., 1999) was used to model the FO stream.

First, five models were compared to evaluate the effective-
ness of context-dependent modeling and different model clus-
tering strategies:

e Monophone models with independent-feature model
structure (MONO);

e Quinphone models with separate clustering and
independent-feature model structure (QUIN);

e Quinphone models with shared clustering and
independent-feature model structure (QUIN-SC);

e Fully context-dependent models with separate clustering
and independent-feature model structure (FULL);

e Fully context-dependent models with shared clustering
and independent-feature model structure (FULL-SC).

1.4
E 13 [
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< 11 X *
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09 1E|1 lljl

MONO  QUIN  QUIN-SC  FULL  FULL-SC
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Fig. 5. RMS error of EMA features predicted from text with acoustic in-
puts for monophone model (“MONQO”), quinphone model with separate clus-
tering (“QUIN”), quinphone model with shared clustering (“QUIN-SC”), fully
context-dependent model with separate clustering (“FULL”), and fully context-
dependent model with shared clustering (“FULL-SC”). All systems adopt
independent-feature model structures. “*” indicates the difference between two

[7amt)

systems is significant and “x” indicates the difference is insignificant.

A fully context-dependent acoustic model was trained using the
same acoustic features as for the unified acoustic-articulatory
HMMs to get the initial state sequence g, in (19) by Viterbi
force-alignment on the acoustic inputs for all the five systems.
Then iterative optimization on the predicted articulatory move-
ments was conducted. The results of the iterative optimization
using monophone models are shown in Fig. 4. Although the
iterative updates do not guarantee to find the global optimum
for (17), depending on the calculation of initial state sequence
gy, we see that prediction error decreases as a result of optimiz-
ing the state sequence, with convergence after approximately 3
iterations. Thus, the number of iterations was set to 3 for all
systems in the following experiments.

The performance of systems MONO, QUIN, QUIN-SC,
FULL, and FULL-SC is compared in Fig. 5. A t-test at 95%
confidence level was applied to analyze the significance of the
difference between two systems. Comparing Fig. 2 with Fig. 5,
we note that the supplementary audio features reduce the pre-
diction error significantly. Table 2 shows RMS error for phone
duration prediction for system FULL when only text input is
used and system QUIN when both text and audio inputs are
available. The reference phone durations are calculated by
Viterbi alignment on the natural articulatory movements us-
ing corresponding models. Comparing the second row with
the first row in this table, we can see that the phone durations
obtained by Viterbi alignment on input acoustic features are
far more accurate than those predicted from text using fully
context-dependent distributions. This is due to the synchronous
relationship between acoustic and articulatory features incor-
porated in the unified HMMs. We also see that the error in
predicted durations for system QUIN with text and audio input
are reduced further when the optimization of the state sequence
is conducted iteratively. The advantage of context-dependent
modeling is reaffirmed by comparing MONO (1.373mm) with
QUIN (0.978mm) and FULL (0.987mm) in Fig. 5. However,




Table 2

RMS error of predicted phone duration for system FULL when only text in-
put is used and system QUIN when both text and audio inputs are available.
For Text & Audio input, the values in the brackets indicate the numbers of it-
erations in the articulatory feature generation and the phone durations of the
generated articulatory movements after the 1-st iteration is determined by the
Viterbi alignment on the input acoustic features.

Phone duration RMSE (ms)

Input System
Consonants Vowels All
Text FULL 35.19 40.49 37.38
Text & Audio QUIN (1) 16.66 14.32 15.77
QUIN (3) 12.22 8.80 10.99

in contrast to the results in Fig. 2, we find there are no signif-
icant differences between the systems using quinphone mod-
els and fully context-dependent models irrespective of whether
separate or shared clustering is applied. In Section 3.3, we con-
cluded that it is the better duration prediction that leads to the
superiority of the fully context-dependent model over the quin-
phone model when only text inputs are available. However,
when acoustic inputs are given and a synchronous-state model
structure is used for the unified acoustic-articulatory HMMs,
the state durations are not predicted using trained duration prob-
abilities, but are decided by Viterbi alignment according to (27).
Therefore, it is reasonable that the fully context-dependent
models cannot outperform the quinphone models here. This
is consistent with the results shown in Fig. 3.

Finally, Fig. 5 also makes clear that separate clustering is sig-
nificantly better than shared clustering when either quinphone
models or fully context-dependent models are used. Table 3
lists the sizes of trained decision trees for the EMA and LSF
model clustering for different systems when the same MDL cri-
terion is followed. In this table, we see that performing cluster-
ing separately results in a larger decision tree for the articula-
tory features and a smaller decision tree for the acoustic features
than when models for both these features are clustered jointly
(“shared”). This confirms our previous observation (Ling et al.,
2009) that articulatory features provide better discrimination in
terms of pronunciation variation than acoustic features. Shared
clustering can improve the model tying topology for the acous-
tic features, but impairs that for the articulatory features. There-
fore, separate clustering should be adopted when predicting ar-
ticulatory movements.

3.4.2. With Cross-stream Dependency Modeling
The effect of cross-stream dependency modeling is evaluated
next. Two more systems were trained:

e Quinphone models with separate clustering and a
dependent-feature model structure, where a single global
transform matrix A ; (see (14)) was used (QUIN-GLB).

e Quinphone models with separate clustering and
dependent-feature model structure where the trans-

Table 3
A comparison of the number of leaf nodes contained in model-clustering deci-
sion trees for EMA and LSF features. (see Fig. 5 for a key to the labels)

System EMA LSF

QUIN 5926 2159
QUIN-SC 3300 3300
FULL 6358 2265
FULL-SC 3548 3548

0.98
096 —
0.94 —
092 —

0.9 —
0.88 — —
0.86

Ave. EMA RMSE (mm)

QUIN QUIN-GLB QUIN-REG
| X | | * |

Fig. 6. RMS error of EMA features predicted from text with acoustic inputs for
quinphone model (QUIN), quinphone model with global cross-stream depen-
dency modeling (QUIN-GLB), and quinphone model with cross-stream depen-
dency modeling using regression classes (QUIN-REG). All systems adopt the
separate clustering model structure. “*” indicates the difference between two

framt)

systems is significant and “x” indicates the difference is insignificant.

form matrix A; was tied for each leaf node of the
model clustering decision tree for the acoustic features
(QUIN-REG).

To train models QUIN-GLB and QUIN-REG, A ; was defined as
a three-block matrix corresponding to static, velocity and accel-
eration components of the feature vector in order to reduce the
number of parameters to be estimated. Only the dependency
between the articulatory features and the spectral features was
considered (i.e. any potential dependency between the articula-
tory features and the FO stream was ignored). The results for
systems QUIN, QUIN-GLB, and QUIN-REG are presented in
Fig. 6. These results show that the addition of cross-stream
dependency modeling does not reduce the prediction error if
a single, global transform is applied. However, when A; is
set to be state-dependent using regression classes, the RMS
error decreases from 0.978mm for system QUIN to 0.900mm
for system QUIN-REG, which is statistically significant. This
means using a piecewise linear transform is a more reasonable
model for the dependency between LSFs and EMA movements
than the global linear transform. This coincides with our previ-
ous study on integrating articulatory features into HMM-based
speech synthesis (Ling et al., 2009).

Previously, it has been noted that certain articulators may
be more key to the production of a given phone than others.
Papcun et al. (1992) presented evidence for what they termed
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Table 4
Definition of phone types. The phone symbols used here are in Unilex format
(Fitt and Isard, 1999).

aa uu i ei @ ii ai a ou iy eir uw

Vowel . ,
@reoiooowouhui@ ur

Labial pbmm!
Labiodental  fv
Labial-velar — w

Dental dh th

Alveolar tdsznn! lll'lwr
Consonant

Postalveolar  sh ch jh zh

Palatal y

Velar k g ng

Glottal h

critical articulators. They demonstrated, for example, that the
variance of trajectories of a point at the back of the tongue
is significantly lower for phones for which this articulatory
location is critical (i.e. for velar oral stops [k,g]) than for phones
for which it is not (i.e. alveolar and bilabial stops [t,d,p,b]).
In short, the implication is that the movements of articulators
which are critical to the production of a given phone are
inherently more constrained, and may thus be estimated with
lower error, than those which are non-critical. With this in
mind, we have further analyzed RMS error for specific EMA
sensor coordinates according to phone type. Fig. 7 shows
normalized RMS error for the y-coordinates of the LL, T1, T2
and T3 sensors as predicted by system QUIN-REG according
to the phone types listed in Table 4. Interestingly, we indeed
find that the movements of critical articulators can be predicted
more accurately than the average performance. Specifically, we
note:

e For vowels, the position of the tongue body is important
for defining the shape of vocal tract. Fig. 7 shows that T2_y
has the lowest prediction error (0.282) among the four

EMA dimensions for type “Vowel”, which is lower than
the average T2_y prediction error of all phones (0.299).

e For consonants, the critical articulators depend upon a
phone’s place of articulation, e.g. the point where an
obstruction occurs in the vocal tract. Fig. 8 illustrates
the place of articulation for several consonant types,
together with the placement of EMA sensors used in
our experiments. It shows that the critical articulators
for “Labiodental”, “Alveolar”, ‘“Palatal” and ‘“Velar”
correspond to the LL, T1, T2 and T3 sensors respectively.
The clear pattern which emerges is that, for each
consonant type, the critical articulator has the lowest
prediction error among the four EMA dimensions.
Furthermore, Fig. 7 shows that these EMA dimensions
can be predicted more accurately for the corresponding
consonant types than for the others.

3.5. Inversion Mapping

In this section, we compare the prediction of articulatory
movements using concurrent text and audio inputs with the
condition where only audio input is available, which is com-
monly known as the inversion mapping. An inversion mapping
method using HMMs with cross-stream dependency modeling
has been previously proposed (Hiroya and Honda, 2004), where
the formula for articulatory movement prediction is the same as
(26), with a state sequence g decoded from the acoustic feature
stream using automatic speech recognition (ASR). In the ex-
periment here, the iterative optimization approach introduced in
Section 2.2 was applied to achieve the inversion mapping. The
key difference is that, whereas in Section 2.2 the initial state se-
quence g, was calculated by Viterbi alignment when both text
and acoustic features are given, here ASR decoding becomes
necessary because only acoustic inputs are available.

Two acoustic HMMs, a monophone model and a triphone
model, were trained to provide a phone recognizer. To facilitate
training, the acoustic features were the same as those used in
Section 3.4, which were composed of spectral and FO streams.
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Fig. 8. Illustrations for (a) the placement of the six EMA sensors used in our
experiments and (b) the place of articulation and the normalized RMS error of
four EMA dimensions for varying consonant types. The normalized RMS error
values are copied from Fig. 7. We have underlined the EMA dimension which
has the lowest prediction error among the four dimensions for each consonant

type.

Table 5
Phone recognition accuracy using monophone and triphone acoustic models.

ASR Model Monophone  Triphone

Phone Accuracy (%) 59.12 71.49

As part of the training of the triphone models, decision tree-
based model clustering was applied. The HVite tool in the HTS
toolkit (Zen et al., 2007) was used to perform the decoding of
acoustic features to give a phone sequence. A simple phone-
loop grammar was used and no language model was applied.
The phone recognition accuracy of the two models on the 63
test sentences is shown in Table 5.

Because ASR was performed using only a phone-loop gram-
mar, and the recognition accuracy was not sufficiently high,
the decoded phone sequence could not be reliably subjected
to further analysis to extract further linguistic context features.
Therefore, only the identities of neighbouring phones were
available as context features, and the fully context-dependent
models in Section 3.4 were not appropriate for the inversion
mapping. Therefore, the systems MONO, QUIN, and QUIN-
REG were compared in this experiment. The results of these
three models are shown in Fig. 9.

From this figure, we see that

1) The performance of the phone recognizer plays an impor-
tant role. The phone recognition accuracy obtained using

O ASR-Mono B ASR-Tri O Text ‘
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Fig. 9. RMS error for inversion mapping using monophone models (MONO),
quinphone models (QUIN), and quinphone models with cross-stream depen-
dency modeling (QUIN-REG). Labels “ASR-Mono” and “ASR-Tri” mean the
initial state sequence is decoded using monophone and triphone acoustic mod-
els respectively; label “Text” indicates the initial state sequence is given by text
analysis when text input is also available. “*” indicates the difference between
two systems is significant.

triphone models is higher than with monophone models,
which in turn results in lower RMS error for all MONO,
QUIN, and QUIN-REG systems. Once both text and au-
dio inputs are given, the correct phone sequences can be
ascertained and the RMS error of predicted articulatory
movements is lower than when using recognized phone
sequences. This implies that the performance of this in-
version mapping could be improved further should a better
acoustic recognizer be available.

2) Because the identity of quinphone models depends on a
greater number of phones, phone recognition errors can
exert a greater adverse effect on the QUIN system in com-
parison to the MONO system. As shown in Fig. 9, the
RMS error gap between the phone sequence from the
triphone recognizer and the correct phone sequence is
0.049mm for system MONQO, and 0.165/0.177mm for sys-
tems QUIN/QUIN-REG.

3) The benefit of cross-stream dependency modeling is reaf-
firmed by comparing the QUIN system with the QUIN-
REG system in Fig. 9. When the triphone ASR model is
used with the QUIN-REG system, an average RMS error
of 1.076mm is achieved, which is the best result in our
experiments for the inversion mapping. Compared with
previously reported results, using both the same and dif-
ferent databases, such as Toda et al. (2008); Richmond
(2007, 2009); Hiroya and Honda (2004); Zhang and Re-
nals (2008), this result is strong.

3.6. A Summary of Articulatory Movement Prediction

The results of the above experiments on articulatory move-
ment prediction with different inputs are summarized in Tables
6 and 7, where the RMS errors and the correlation coeflicients
of the predicted movements for the 12 EMA channels are listed.
For each kind of input feature in the tables, the best results
of the corresponding experiments are chosen, i.e. the system



Table 6

RMS error of EMA feature prediction using different inputs. The “_x” and
“_y” indicate the x- and y-coordinates of each EMA sensor respectively. The
two values in each column indicate the absolute RMS error (mm) and RMS
error normalized by the standard deviation of each EMA feature dimension
respectively.

Text Audio Text & Audio

T3x 2.061/0.876  1.352/0.575 1.229/0.523
T3y 3.091/0.858 1.798/0.499  1.307/0.363
T2 x 2.269/0.866 1.478/0.564 1.264/0.482
T2.y 3.011/0.831 1.314/0.363  1.082/0.299
T1x 2.488/0.820 1.321/0435 1.095/0.361
Tly 2.966/0.853 1.335/0.384 1.178/0.339
LI x 0.916/0.885 0.633/0.611  0.600/0.580
LLy 1.636/0.905 0.835/0.462 0.730/0.404
ULx 0.517/0.853  0.358/0.591  0.331/0.546
UL.y 0.731/0.868 0.482/0.573  0.385/0.457
LLx 1.167/0.875 0.742/0.557 0.614/0.461
LLy 2.519/0.980 1.270/0.494  0.989/0.385
Average 1.948/0.873  1.076/0.509  0.900/0.433

FULL shown in Fig. 2 for text input, the system QUIN-REG
using the triphone-based phone recognizer in Fig. 9 for audio
input, and the system QUIN-REG in Fig. 6 for concurrent text
and audio inputs. In these tables, we see that both the linguistic
information and the supplementary audio features contribute to
the prediction of all EMA channels.

Fig. 10 compares the prediction of EMA trajectories using
different inputs in the form of scatter plots. An example of pre-
dicted EMA trajectories is given in Fig. 11. From these figures,
we see that when both the text and acoustic features are input,
the predicted articulatory features achieve the highest consis-
tency with the natural ones in both static positions and dynamic
movements. The text input is useful because it provides the cor-
rect phone transcription and context information to determine
the sentence HMM for articulatory movement prediction. The
importance of acoustic features lies in its synchronous and de-
pendent relationship with the articulatory movements, which is
dictated by the human speech production mechanism. Compar-
ing system QUIN-REG in Fig. 6 with system QUIN and FULL
in Fig. 3, we can see that if both text and audio inputs are avail-
able, the accuracy of EMA feature prediction is very close to the
condition where only text input is used and state durations are
given by Viterbi alignment to natural EMA trajectories. This
also confirms the effectiveness of acoustic features for the task
of estimating articulatory movements.

Finally, we have calculated the average RMS error when
different input combinations are used for the same phone types
as in Table 4. These results are shown in Fig. 12. We see
that both text and acoustic inputs help the prediction of EMA
features for all classes of phone. The errors for “Labial”,
“Labial-velar”, “Velar”, and “Glottal” are larger than that
for the “Vowel” class when both text and acoustic features
are provided as input. Comparing the Audio input with the
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Table 7

Correlation coefficients between the natural and predicted EMA features using
different inputs. The “_x” and “_y” indicate the x- and y-coordinates of each
EMA sensor respectively.

Text Audio  Text & Audio
T3 x 0.608  0.786 0.822
T3y 0.661  0.837 0.908
T2 x 0.581  0.747 0.792
T2y 0.668  0.906 0.932
Tl x 0.580  0.781 0.819
Tl.y 0.602  0.874 0.899
LIx 0.599  0.766 0.791
LLy 0.582  0.858 0.883
ULx 0.568  0.761 0.812
ULy 0.627  0.787 0.864
LL x 0.608  0.818 0.867
LL.y 0.514  0.825 0.875
Average 0.600 0.812 0.855
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Fig. 10. Scatter plots for the x-coordinate of the T3 EMA sensor predicted using
a) text, b) audio, and c) text and audio inputs. The x- and y-axes in these plots
represent the natural and predicted T3_x positions respectively. Each circle in
the plots corresponds to one frame in the test set.
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Fig. 11. Comparison between the natural and predicted x-coordinate move-
ments of the T3 EMA sensor using a) text, b) audio, and c) text and audio
inputs. The sentence is taken from the test set and the text is “For services to
Lothian and Edinburgh Enterprise”. Silence segments are excluded from the
illustration.

Text & Audio input, we see that the consonants benefit more
from the correct phone sequence than the vowels, especially
for the “Postalveolar”, ‘Palatal”, and “Velar” phone types.

4. Conclusion

In this paper, we have investigated several aspects of us-
ing an HMM-based method for predicting articulatory move-
ments. When text is the sole input, articulatory movements are
generated using an MLPG algorithm from context-dependent
HMMs, which have been trained on the articulatory features.
Fully context-dependent models, using rich context specifica-
tions similar to that used in TTS, outperform quinphone mod-
els, due to better modeling and prediction of state duration. For
cases where an acoustic signal is available, we have introduced
a unified acoustic-articulatory model and iterative optimization
on state sequence to predict the articulatory movements. Our
experiments have shown that quinphone models perform as
well as fully context-dependent models when the acoustic sig-
nal is input with text. Furthermore, we observed the best perfor-
mance using unified acoustic-articulatory HMMs with separate
clustering, synchronous-state and a dependent-feature model
structure. Supplementary acoustic input plays an important role
in the prediction of articulatory movements. By Viterbi align-
ment with the input acoustic features, the predicted state dura-
tions for the articulatory movement generation are much more
accurate than those predicted from the context-dependent dura-
tion probabilities for text input alone. If the acoustic features
are input without text, we have found that the performance of
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the acoustic phone recognizer affects the inversion mapping sig-
nificantly.

Finally, in terms of our intended future work in this area, we
aim to look at reducing the amount of training data required for
a specific speaker by applying speaker-independent modeling
and model adaptation techniques. Among other benefits,
this will reduce the impact of the inconvenience and cost of
recording articulatory movements for any given speaker by
EMA.
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