

Edinburgh Research Explorer

A Model of Cooperative Threads

Citation for published version:
Abadi, M & Plotkin, GD 2010, 'A Model of Cooperative Threads' Logical Methods in Computer Science, vol
6, no. 4, 2, pp. 1-39. DOI: 10.2168/LMCS-6(4:2)2010

Digital Object Identifier (DOI):
10.2168/LMCS-6(4:2)2010

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Logical Methods in Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28968817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.2168/LMCS-6(4:2)2010
http://www.research.ed.ac.uk/portal/en/publications/a-model-of-cooperative-threads(1c610ded-9f43-44d2-926e-089965d46907).html

Logical Methods in Computer Science
Vol. 6 (4:2) 2010, pp. 1–39
www.lmcs-online.org

Submitted Sep. 17, 2010
Published Oct. 20, 2010

A MODEL OF COOPERATIVE THREADS ∗

MARTÍN ABADI a AND GORDON D. PLOTKIN b

a Microsoft Research, Silicon Valley; University of California, Santa Cruz
e-mail address: abadi@microsoft.com

b Microsoft Research, Silicon Valley; LFCS, University of Edinburgh
e-mail address: gdp@inf.ed.ac.uk

Abstract. We develop a model of concurrent imperative programming with threads. We
focus on a small imperative language with cooperative threads which execute without inter-
ruption until they terminate or explicitly yield control. We define and study a trace-based
denotational semantics for this language; this semantics is fully abstract but mathemat-
ically elementary. We also give an equational theory for the computational effects that
underlie the language, including thread spawning. We then analyze threads in terms of
the free algebra monad for this theory.

1. Introduction

In the realm of sequential programming, semantics, whether operational or denota-
tional, provides a rich understanding of programming constructs and languages, and serves
a broad range of purposes. These include, for instance, the study of verification techniques
and the reconciliation of effects with functional programming via monads. With notorious
difficulties, these two styles of semantics have been explored for concurrent programming,
and, by now, a substantial body of work provides various semantic accounts of concurrency.
Typically, that work develops semantics for languages with parallel-composition constructs
and various communication mechanisms.

Surprisingly, however, that work provides only a limited understanding of threads. It
includes several operational semantics of languages with threads, sometimes with opera-
tional notions of equivalence, e.g., [BMT92, PR97, Jef97, JR05]; denotational semantics of
those languages seem to be much rarer, and to address message passing rather than shared-
memory concurrency, e.g., [FH99, Jef95]. Yet threads are in widespread use, often in the
context of elaborate shared-memory systems and languages for which a clear semantics
would be beneficial.

In this paper, we investigate a model of concurrent imperative programming with
threads. We focus on cooperative threads which execute, without interruption, until they
either terminate or else explicitly yield control. Non-cooperative threads, that is, threads

1998 ACM Subject Classification: D.1.3, F.3.2.
Key words and phrases: denotational semantics, monad, operational semantics, transaction.

∗ A conference version of this paper has appeared as [AP09].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (4:2) 2010
c© M. Abadi and G. D. Plotkin
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. ABADI AND G. D. PLOTKIN

with preemptive scheduling, can be seen as threads that yield control at every step. In this
sense, they are a special case of the cooperative threads that we study.

Cooperative threads appear in several systems, programming models, and languages.
Often without much linguistic support, they have a long history in operating systems and
databases, e.g., [SQL07]. Cooperative threads also arise in other contexts, such as Inter-
net services and synchronous programming [AHT02, BCZ03, Bou06, Bou07, AZ06]. Most
recently, cooperative threads are central in two models for programming with transac-
tions, Automatic Mutual Exclusion (AME) and Transactions with Isolation and Coopera-
tion (TIC) [IB07, SKB07]. AME is one of the main starting points for our research. The
intended implementations of AME rely on software transactional memory [ST95] for execut-
ing multiple cooperative threads simultaneously. However, concurrent transactions do not
appear in the high-level operational semantics of the AME constructs [ABH08]. Thus, co-
operative threads and their semantics are of interest independently of the details of possible
transactional implementations.

We define and study three semantics for an imperative language with primitives for
spawning threads, yielding control, and blocking execution.

• We obtain an operational semantics by a straightforward adaptation of previous work.
In this semantics, we describe the meaning of a whole program in terms of small-step
transitions between states in which spawned threads are kept in a thread pool. This
semantics serves as a reference point.

• We also define a more challenging compositional denotational semantics. The meaning
of a command is a prefix-closed set of traces. Prefix-closure arises because we are pri-
marily interested in safety properties, that is, in “may” semantics. Each trace is roughly
a sequence of transitions, where each transition is a pair of stores, and a store is a map-
ping from variables to values. We establish adequacy and full-abstraction theorems with
respect to the operational semantics. These results require several non-trivial choices in
the definition of the denotational semantics.

• Finally, we define a semantics based on the algebraic theory of effects. More precisely, we
give an equational theory for the computational effects that underlie the language, and
analyze threads in terms of the free algebra monad for this theory. This definition is more
principled and systematic; it explains threads with standard semantic structures, in the
context of functional programming. As we show, furthermore, we obtain our denotational
semantics as a special case.

Section 2 introduces our language and Section 3 defines its operational semantics. Section 4
develops its denotational semantics. Section 5 presents our adequacy and full-abstraction
theorems (Theorems 5.10 and 5.15). Section 6 concerns the algebraic theory of effects and
the analysis of the denotational semantics in this monadic setting (Theorem 6.4). Section 7
concludes.

2. The Language

Our language is an extension of a basic imperative language with assignments, sequenc-
ing, conditionals, and while loops (IMP [Win93]). Programs are written in terms of a finite
set of variables Vars, whose values are natural numbers. In addition to those standard
constructs, our language includes:

A MODEL OF COOPERATIVE THREADS 3

b ∈ BExp = . . .
e ∈ NExp = . . .

C,D ∈ Com = skip

| x := e (x ∈ Vars)
| C;D
| if b then C else D
| while b do C
| async C
| yield

| block

Figure 1: Syntax.

• A construct for executing a command in an asynchronous thread. Informally, async C
forks off the execution of C. This execution is asynchronous, and will not happen if the
present thread keeps running without ever yielding control, or if the present thread blocks
without first yielding control.

• A construct for yielding control. Informally, yield indicates that any pending thread
may execute next, as may the current thread.

• A construct for blocking. Informally, block halts the execution of the entire program,
even if there are pending threads that could otherwise make progress.

We define the syntax of the language in Figure 1. We do not detail the constructs on
numerical and boolean expressions, which are as usual.

Figure 2 gives an illustrative example. It shows a piece of code that spawns the asyn-
chronous execution of x := 0, then executes x := 1 and yields, then resumes but blocks
unless the predicate x = 0 holds, then executes x := 2. The execution of x := 0 may hap-

async x := 0;
x := 1;
yield;
if x = 0 then skip else block;
x := 2

Figure 2: Example command.

pen once the yield statement is reached. With respect to safety properties, the conditional
blocking amounts to waiting for x = 0 to hold. More generally, AME’s blockUntil b can
be written if b then skip else block.

More elaborate uses of blocking are possible too, and supported by lower-level seman-
tics and actual transactional implementations [IB07, ABH08]. In those implementations,
blocking may cause a roll-back and a later retry at an appropriate time. We regard roll-back
as an interesting aspect of some possible implementations, but not as part of the high-level
semantics of our language, which is the subject of this work.

4 M. ABADI AND G. D. PLOTKIN

Γ ∈ State = Store× ComSeq× Com
σ ∈ Store = Vars → Value
n ∈ Value = N

T ∈ ComSeq = Com∗

Figure 3: State space.

Thus, our language is basically a fragment of the AME calculus [ABH08]. It omits
higher-order functions and references. It also omits “unprotected sections” for non-cooper-
ative code, particularly legacy code. Non-cooperative code can however be modeled as code
with pervasive calls to yield (at least with respect to the simple, strong memory models
that we use throughout this paper; cf. [GMP06]). See Section 7 for further discussion of
possible extensions to our language.

3. Operational Semantics

We give an operational semantics for our language. Despite some subtleties, this se-
mantics is not meant to be challenging. It is given in terms of small-step transitions between
states. Accordingly, we define states, evaluation contexts, and the transition relation.

3.1. States. As described in Figure 3, a state Γ = 〈σ, T,C〉 consists of the following com-
ponents:

• a store σ which is a mapping of the given finite set Vars of variables to a set Value of
values, which we take to be the set of natural numbers;

• a finite sequence of commands T which we call the thread pool ;
• a distinguished active command C.

We write σ[x 7→ n] for the store that agrees with σ except at x, which is mapped to n. We
write σ(b) for the boolean denoted by b in σ, and σ(e) for the natural number denoted by
e in σ, similarly. We write T.T ′ for the concatenation of two thread pools T and T ′.

3.2. Evaluation Contexts. As usual, a context is an expression with a hole [], and an
evaluation context is a context of a particular kind. Given a context C and an expression
C, we write C[C] for the result of placing C in the hole in C. We use the evaluation contexts
defined by the grammar:

E = [] | E ;C

A MODEL OF COOPERATIVE THREADS 5

〈σ, T, E [x := e]〉 −→ 〈σ[x 7→ n], T, E [skip]〉 (if σ(e) = n)

〈σ, T, E [skip;C]〉 −→ 〈σ, T, E [C]〉

〈σ, T, E [if b then C else D]〉 −→ 〈σ, T, E [C]〉 (if σ(b) = true)

〈σ, T, E [if b then C else D]〉 −→ 〈σ, T, E [D]〉 (if σ(b) = false)

〈σ, T, E [while b do C]〉 −→ 〈σ, T, E [if b then (C; while b do C) else skip]〉

〈σ, T, E [async C]〉 −→ 〈σ, T.C, E [skip]〉

〈σ, T, E [yield]〉 −→ 〈σ, T.E [skip], skip〉

〈σ, T.C.T ′, skip〉 −→ 〈σ, T.T ′, C〉

Figure 4: Transition rules of the abstract machine.

3.3. Steps. A transition Γ−→ Γ′ takes an execution from one state to the next. Figure 4
gives rules that specify the transition relation. According to these rules, when the active
command is skip, a command from the pool becomes the active command. It is then eval-
uated as such until it produces skip, yields, or blocks. No other computation is interleaved
with this evaluation. Each evaluation step produces a new state, determined by decompos-
ing the active command into an evaluation context and a subexpression that describes a
computation step (for instance, a yield or a conditional).

In all cases at most one rule applies. In two cases, no rule applies. The first is when
the active command is skip and the pool is empty; this situation corresponds to normal
termination. The second is when the active command is blocked, in the sense that it has
the form E [block]; this situation is an abnormal termination.

We write Γ−→c Γ
′ when Γ−→Γ′ via the last rule, and call this a choice transition. We

write Γ−→a Γ
′ when Γ−→ Γ′ via the other rules, and call this an active transition. Active

transitions are deterministic, i.e., if Γ−→a Γ
′ and Γ−→a Γ

′′ then Γ′ = Γ′′.

4. Denotational Semantics

Next we give a compositional denotational semantics for the same language. Here, the
meaning of a command is a prefix-closed set of traces, where each trace is roughly a sequence
of transitions, and each transition is a pair of stores.

The use of sequences of transitions goes back at least to Abrahamson’s work [Abr79]
and appears in various studies of parallel composition [AP93, HdeBR94, Bro96, Bro02].
However, the treatment of threads requires some new non-trivial choices. For instance,
transition sequences, as we define them, include markers to indicate not only normal termi-
nation but also the return of the main thread of control. Moreover, although these markers
are similar, they are attached to traces in different ways, one inside pairs of stores, the other
not. Such details are crucial for adequacy and full abstraction.

6 M. ABADI AND G. D. PLOTKIN

Also crucial to full abstraction is minimizing the information that the semantics records.
More explicit semantics will typically be more transparent, for instance, in detailing that
a particular step in a computation causes the spawning of a thread, but will consequently
fail to be fully abstract.

Section 4.1 is an informal introduction to some of the details of the semantics. Sec-
tion 4.2 defines transition sequences and establishes some notation. Sections 4.3 and 4.4
define the interpretations of commands and thread pools, respectively. Section 4.5 discusses
semantic equivalences.

4.1. Informal Introduction. As indicated above, the meaning of a command will be a
prefix-closed set of traces, where each trace is roughly a sequence of transitions, and each
transition is a pair of stores. Safety properties—which pertain to what “may” happen—are
closed under prefixing, hence the prefix-closure condition. Intuitively, when the meaning
of a command includes a trace (σ1, σ

′
1)(σ2, σ

′
2) . . ., we intend that the command may start

executing with store σ1, transform it to σ′
1, yield, then resume with store σ2, transform it

to σ′
2, yield again, and so on.
In particular, the meaning of block will consist of the empty sequence ε. The meaning

of yield; block will consist of the empty sequence ε plus every sequence of the form (σ, σ),
where σ is any store. Here, the pair (σ, σ) is a “stutter” that represents immediate yielding.

If the meaning of a command C includes (σ1, σ
′
1) . . . (σn, σ

′
n) and the meaning of a

command D includes (σ′
n, σ

′′
n) . . . (σm, σ′

m), one might naively expect that the meaning of
C;D would contain (σ1, σ

′
1) . . . (σn, σ

′′
n) . . . (σm, σ′

m), which is obtained by concatenation
plus a simple local composition between (σn, σ

′
n) and (σ′

n, σ
′′
n). Unfortunately, this naive

expectation is incorrect. In a trace (σ1, σ
′
1)(σ2, σ

′
2) . . ., some of the pairs may represent steps

taken by commands to be executed asynchronously. Those steps need not take place before
any further command D starts to execute.

Accordingly, computing the meaning of C;D requires shuffling suffixes of traces in C
with traces in D. The shuffling represents the interleaving of C’s asynchronous work with
D’s work. We introduce a special return marker “Ret” in order to indicate how the traces in
C should be parsed for this composition. In particular, when C is of the form C1; async (C2),
any occurrence of “Ret” in the meaning of C2 will not appear in the meaning of C. The
application of async erases any occurrence of “Ret” from the meaning of C2—intuitively,
because C2 does not return control to its sequential context.

For example, the meaning of the command

x := n; yield;x := n′

will contain the trace
(σ, σ[x 7→ n])(σ′, σ′[x 7→ n′] Ret)

for every σ and σ′. On the other hand, the meaning of the command

x := n; async (x := n′); yield

will contain the trace
(σ, σ[x 7→ n] Ret)(σ′, σ′[x 7→ n′])

for every σ and σ′. The different positions of the marker Ret correspond to different junction
points for any commands to be executed next.

If the meaning of C contains u(σn, σ
′
n Ret)u′ and the meaning of D contains (σ′

n, σ
′′
n)v,

then the meaning of C;D contains u(σn, σ
′′
n)w, where w is a shuffle of u′ and v. Notice that

A MODEL OF COOPERATIVE THREADS 7

the marker from u(σn, σ
′
n Ret)u′ disappears in this combination. The marker in u(σn, σ

′′
n)w,

if present, comes from (σ′
n, σ

′′
n)v. An analogous combination applies when the meaning of C

contains u(σn, σ
′
n Ret)u′ and the meaning of D contains (σ′

n, σ
′′
n Ret)v (a trace that starts

with a transition with a marker). Moreover, if the meaning of C contains a trace without
any occurrence of the marker Ret, then this trace is also in the meaning of C;D: the absence
of a marker makes it impossible to combine this trace with traces from D.

An additional marker, “Done”, ends traces that represent complete normally terminat-
ing executions. Thus, the meaning of skip will consist of the empty sequence ε and every
sequence of the form (σ, σ Ret) plus every sequence of the form (σ, σ Ret)Done. Contrast
this with the meaning of yield; block given above.

It is possible for a trace to contain a Ret marker but not a Done marker. Thus, the
meaning of async (block) will contain the empty sequence ε plus every sequence of the
form (σ, σ Ret), but not (σ, σ Ret)Done.

More elaborately, the meaning of the code of Figure 2 will contain all traces of the form

(σ, σ[1])(σ[1], σ[0])(σ[0], σ[2] Ret)Done

where we write σ[n] as an abbreviation for σ[x 7→ n]. These traces model normal termination
after taking the true branch of the conditional if x = 0 then x := 2 else block. The
meaning will also contain all prefixes of those traces, which model partial executions—
including those that take the false branch of the conditional and terminate abnormally.

The two markers are somewhat similar. However, note that (σ, σ′ Ret) is a prefix of
(σ, σ′ Ret)Done, but (σ, σ′) is not a prefix of (σ, σ′ Ret). Such differences are essential.

4.2. Transitions and Transition Sequences. A plain transition is a pair of stores (σ, σ′).
A return transition is a pair of stores (σ, σ′ Ret) in which the second is adorned with the
marker Ret. A transition is a plain transition or a return transition.

A main-thread transition sequence (hereunder simply: transition sequence) is a finite
(possibly empty) sequence, beginning with a sequence of transitions, of which at most one
(not necessarily the last) is a return transition, and optionally followed by the marker Done
if one of the transitions is a return transition. We write TSeq for the set of transition
sequences.

A pure transition sequence is a finite sequence of plain transitions, possibly followed by
a marker Done. Note that such a sequence need not be a transition sequence. It is proper if
it is not equal to Done. We write PSeq for the set of pure transition sequences, and PPSeq
for the subset of the proper ones.

We use the following notation:

• We typically let u, v, and w range over transition sequences or pure transition sequences,
and let t range over non-empty ones.

• We write u ≤p v for the prefix relation between sequences u and v (for both kinds of
sequences, pure or not). For example, as mentioned above, we have that (σ, σ′ Ret) ≤p

(σ, σ′ Ret)Done, but (σ, σ′)6≤p(σ, σ
′ Ret).

• A set P is prefix-closed if whenever u ≤p v ∈ P then u ∈ P . We write P↓ for the least
prefix-closed set that contains P .

• For a non-empty sequence of transitions t, we write fst(t) for the first store of the first
transition of t.

• For a transition sequence u, we write uc for the pure transition sequence obtained by
cleaning u, which means removing the Ret marker, if present, from u.

8 M. ABADI AND G. D. PLOTKIN

• We let τ range over stores and stores with return markers.

4.3. Interpretation of Commands.

Preliminaries. We let Proc be the collection of the non-empty prefix-closed sets of transi-
tion sequences, and let Pool be the collection of the non-empty prefix-closed sets of pure
transition sequences. Under the subset partial ordering, Proc and Pool are both ω-cpos
(i.e., partial orders with sups of increasing sequences) with least element {ε}. We interpret
commands as elements of Proc. We use Pool as an auxiliary ω-cpo; below it also serves for
the semantics of thread pools. We also let AProc be the sub-ω-cpo of Pool of all non-empty
prefix-closed sets of proper pure transition sequences. We think of such sets as modeling
asynchronous threads, spawned by an active thread; the difference from Pool is that the
latter also contains an element that models the empty thread pool.

We define a continuous cleaning function

−c :Proc → AProc

by:
P c = {uc | u ∈ P}

(Continuous functions are those preserving all sups of increasing sequences.)
We define the set u ⊲⊳ v of shuffles of a pure transition sequence u with a sequence v,

whether a transition sequence or a pure transition sequence, as follows:

• If neither finishes with Done, their set of shuffles is defined as usual for finite sequences.
• If u does not finish with Done, then a shuffle of u and vDone is a shuffle of u and v.
Similarly, if v does not finish with Done, then a shuffle of uDone and v is a shuffle of u
and v.

• A shuffle of uDone and vDone is a shuffle of u and v followed by Done.

If both u and v are pure transition sequences then so is every element of u ⊲⊳ v; if u is a
pure transition sequence and v is a transition sequence, then every element of u ⊲⊳ v is a
transition sequence.

Lemma 4.1. For any u,v, and w where either:

• all three are pure transition sequences, or
• u and v are pure transition sequences, and w is a transition sequence

we have:
⋃

{v′ ⊲⊳ w | v′ ∈ u ⊲⊳ v} =
⋃

{u ⊲⊳ v′ | v′ ∈ v ⊲⊳ w}

We define a continuous composition function

◦ : Proc2 → Proc

by:
P ◦Q = {u(σ, τ)v | ∃σ′, w,w′. u(σ, σ′ Ret)w ∈ P,

(σ′, τ)w′ ∈ Q, v ∈ w ⊲⊳ w′}
∪ {u | u ∈ P with no return transition}

Composition is associative with two-sided unit, given by:

∗ = {(σ, σ Ret)Done | σ ∈ Store}↓

A MODEL OF COOPERATIVE THREADS 9

[[skip]] = ∗
[[x := e]] = {(σ, σ[x 7→ n] Ret)Done | σ ∈ Store, σ(e) = n}↓
[[C;D]] = [[C]] ◦ [[D]]

[[if b then C else D]] = {t | t ∈ [[C]],non-empty, fst(t)(b) = true}↓
∪{t | t ∈ [[D]],non-empty, fst(t)(b) = false}↓

[[while b do C]] = ∪i[[(while b do C)i]]
[[async C]] = async([[C]]c)

[[yield]] = d(∗)
[[block]] = {ε}

Figure 5: Denotational semantics.

We also define a continuous delay function

d : Proc → Proc

by:
d(P) = {(σ, σ)u | σ ∈ Store, u ∈ P}↓

Thus, d(P) is P preceded by all possible stutters (plus ε). Similarly, we define a continuous
function

async : AProc → Proc

by:
async(Q) = {(σ, σ Ret)u | σ ∈ Store, u ∈ Q}↓

Thus, for P ∈ Proc, async(P c) differs from d(P) only in the placement of the marker Ret.

4.3.1. Interpretation. The denotational semantics

[[·]] :Com −→ Proc

maps a command to a non-empty prefix-closed set of transition sequences. We define it in
Figure 5. There, the interpretation of loops relies on the following approximations:

(while b do C)0 = block

(while b do C)i+1 = if b then (C; (while b do C)i) else skip

The 0-th approximant corresponds to divergence, which here we identify with blocking.
We straightforwardly extend the semantics to contexts, so that

[[C]] : Proc → Proc

is a continuous function on Proc. This function is defined by induction on the form of C,
with the usual clauses of the definition of [[·]] plus [[[]]](P) = P .

Proposition 4.2. [[C[C]]] = [[C]]([[C]]). Therefore, if [[C]] ⊆ [[D]] then [[C[C]]] ⊆ [[C[D]]].

10 M. ABADI AND G. D. PLOTKIN

4.4. Interpretation of Thread Pools. As an auxiliary definition, it is important to have
also an interpretation of thread pools as elements of Pool. We develop one in this section.

4.4.1. Preliminaries. We define a continuous shuffle operation

⊲⊳ : (Pool)2 → Pool

at this level by:

P ⊲⊳ Q =
⋃

u∈P,v∈Q

u ⊲⊳ v

The shuffle operation is commutative and associative, with unit I =def {ε,Done}; associa-
tivity follows from Lemma 4.1.

We define the set of right shuffles u⊲v of a pure transition sequence u with a transition
sequence v by setting

u⊲ (σ, τ)v = {(σ, τ)w | w ∈ u ⊲⊳ v}

and
u⊲ ε = {ε}

We then define
async:Pool × Proc −→ Proc

by:

async(P,Q) =
⋃

u∈P,v∈Q

u⊲ v

The use of the notation async for both a unary and a binary operation is a slight abuse,
though in line with the algebraic theory of effects: see the discussion in Section 6. In this
regard note the equality async(P) ◦Q = async(P,Q) (and the equality [[yield]] ◦ P = d(P)
points to the corresponding relationship between d and [[yield]]).

4.4.2. Interpretation. We define the semantics of thread pools by:

[[C1, . . . , Cn]] = [[C1]]
c ⊲⊳ . . . ⊲⊳ [[Cn]]

c (n ≥ 0)

intending that [[ε]] = I. For any thread pool T , Done ∈ [[T]] iff T = ε (because, for all C,
Done /∈ [[C]]c and, for all P and Q, I ⊆ P ⊲⊳ Q iff I ⊆ P and I ⊆ Q). Further, we set
[[T,C]] = async([[T]], [[C]]).

Lemma 4.3. For all P,Q ∈ Pool and R ∈ Proc we have:

(1) async(P ⊲⊳ Q,R) = async(P, async(Q,R))
(2) async(I,R) = R

Proof. For the first part, one shows for all pure transition sequences u and v and transition
sequences w that:

⋃

{v′ ⊲ w | v′ ∈ u ⊲⊳ v} =
⋃

{u⊲ v′ | v′ ∈ v ⊲ w}

To this end, one proceeds by cases on w, using Lemma 4.1. The second part is obvious.

A MODEL OF COOPERATIVE THREADS 11

4.5. Equivalences. An attractive application of denotational semantics is in proving equiv-
alences and implementation relations between commands. Such denotational proofs tend to
be simple calculations. Via adequacy and full-abstraction results (of the kind established
in Section 5), one then obtains operational results that would typically be much harder to
obtain directly by operational arguments.

As an example, we note that we have the following equivalence:

[[async (C; yield;D)]] = [[(async (C; async (D))]]

This equivalence follows from three facts:

• We have:
[[yield;D]]c = [[async (D)]]c

= {(σ, σ)uc | σ ∈ Store, u ∈ [[D]]}↓;

• whenever [[D1]]
c = [[D2]]

c, [[C;D1]]
c = [[C;D2]]

c;
• whenever [[D1]]

c = [[D2]]
c, [[async (D1)]] = [[async (D2)]].

This particular equivalence is interesting for two reasons:

• It models an implementation strategy (in use in AME) where, when executing C; yield;D,
the yield causes a new asynchronous thread for D to be added to the thread pool.

• It illustrates one possible, significant pitfall in more explicit semantics. As discussed
above, such a semantics might detail that a particular step in a computation causes the
spawning of a thread. More specifically, it might extend transitions with an extra trace
component: a triple (σ, u, τ) might represent a step from σ to τ that spawns a thread that
contains the trace u. With such a semantics, the meanings of async (C; yield;D) and
async (C; async (D)) would be different, since they have different spawning behavior.

Many other useful equivalences hold. For instance, we have:

[[x := n;x := n′]] = [[x := n′]]

trivially. For every C, we also have:

[[async (C);x := n]] = [[x := n; async (C)]]

and, for every C and D, we have:

[[async (C); async (D)]] = [[async (D); async (C)]]

Another important equivalence is:

[[while (0 = 0) do skip]] = [[block]]

Thus, the semantics does not distinguish an infinite loop which never yields from immediate
blocking. On the other hand, we have:

[[while (0 = 0) do yield]] 6= [[block]]

The command while (0 = 0) do yield generates unbounded sequences of stutters (σ, σ).
Similarly, we have:

[[yield; yield]] 6= [[yield]]

Alternative semantics that would distinguish while (0 = 0) do skip from block or that
would identify while (0 = 0) do yield with block and yield; yield with yield are
viable, however. We briefly discuss those variants and others in Section 7.

We leave as subjects for further research the problems of axiomatizing and of deciding
equivalence and implementation relations, and the related problem of program verification,
perhaps restricted to subsets of the language—even, for example, to the subset with just

12 M. ABADI AND G. D. PLOTKIN

composition, spawning, and yielding. There is a large literature on axiomatization and
decidability in concurrency theory; see, e.g., [AI07] for discussion and further references.
Also, recent results on the automatic verification of asynchronous programs appear rather
encouraging [JM07, GMR09]; some of their ideas might be applicable in our setting.

4.6. Two Extensions. Trace-based semantics can also be given for variants and enhance-
ments of our basic imperative language. Here we illustrate this point by considering two
such enhancements, which illustrate the use of Ret and Done. Section 7 briefly considers
other possible language features.

4.6.1. finish. While cleaning maps a transition sequence sequence to a proper pure tran-
sition sequence, a marking function maps a proper pure transition sequence to a transition
sequence. For a proper pure transition sequence u, we define um by:

v(σ, σ′)Donem = v(σ, σ′ Ret)Done
vm = v (if v does not contain Done)

Thus, um includes a marker Ret only if u contains a marker Done (that is, if u corresponds
to a terminating execution); the marker Ret is on the last transition of um, intuitively
indicating that control is returned to the sequential context when execution terminates.

Much as for cleaning, we extend marking to non-empty prefix-closed sets of proper pure
transition sequences:

−m :AProc → Proc

Using this extension, we can define the meaning of a construct finish, inspired by that of
the X10 language [CGA05, SJ05]. We set:

[[finish C]] = ([[C]]c)m

The intent is that finish C executes C and returns control when all activities spawned
by C terminate. For instance, in finish (async (x := 0));x := 1, the assignment x := 1
will execute only after x := 0 is done. In contrast, in async (x := 0);x := 1, the assignments
have the opposite ordering. However, finish (async (x := 0)) is not equivalent to x := 0,
but rather to yield;x := 0. Beyond this simple example, finish can be applied to more
complex commands, possibly with nested forks, and ensures that all the activities forked
terminate before returning control.

4.6.2. Parallel Composition. The definition of parallel composition relies on familiar themes:
the use of shuffling, and the decomposition of parallel composition into two cases. The cases
correspond to whether the left or the right argument of parallel composition takes the first
step.

We define parallel composition at the level of transition sequences by letting u || u′ and
u ||l u

′ be the least sets that satisfy prefix-closure and the following clauses:

• w ∈ (ε || w) and w ∈ (w || ε),
• (t ||l t

′) ∪ (t′ ||l t) ⊆ (t || t′),
• if v ∈ (w || t′), then (σ, σ′)v ∈ (σ, σ′)w ||l t

′,
• if v ∈ w ⊲⊳ w′ then (σ, τ)v ∈ (σ, σ′ Ret)w ||l (σ

′, τ)w′.

A MODEL OF COOPERATIVE THREADS 13

Extending this function to
− || − :Proc × Proc → Proc

we can define the meaning of a parallel-composition construct:

[[C || D]] = [[C]] || [[D]]

The reader may verify that parallel composition, as defined here, has the expected prop-
erties, for instance that it is commutative and associative with unit skip. It is also worth
noting that (under mild assumptions on the available expressions) the binary nondetermin-
istic choice operator ∪ considered in Section 6.1 is definable from parallel composition. The
converse also holds, under restricted circumstances: if all occurrences of yield in C and D
occur inside an async then we have:

[[C || D]] = [[C;D]] ∪ [[D;C]]

5. Adequacy and Full Abstraction

In this section we establish that the denotational semantics of Section 4 coincides with
the operational semantics of Section 3, and is fully abstract.

The adequacy theorem (Theorem 5.10), which expresses the coincidence, says that the
traces that the denotational semantics predicts are exactly those that can happen opera-
tionally. These traces may in general represent the behavior of a command in a context. As
a special case, the adequacy theorem applies to runs, which are essentially traces that the
command can produce on its own, i.e., with an empty context. This special case is spelled
out in Corollary 5.11 which states that the runs that the denotational semantics predicts
are exactly those that can happen operationally

The full-abstraction theorem (Theorem 5.15) states that two commands C and D have
the same set of traces denotationally if, and only if, they produce the same runs in combi-
nation with every context. In particular, observing runs, we cannot distinguish C and D
in any context. Note that, given Corollary 5.11, we may equivalently speak of runs deno-
tationally or operationally. We comment on other possible notions of observation, and the
corresponding full-abstraction results, below.

Section 5.1 defines runs precisely. Sections 5.2 and 5.3 present our adequacy and full-
abstraction results, respectively.

5.1. Runs. A pure transition sequence generates a run if, however it can be written as
u(σ, σ′)(σ′′, σ′′′)v, we have σ′ = σ′′. If w = (σ1, σ2) . . . (σn−1, σn) is such a pure transi-
tion sequence, we set run(w) = σ1 . . . σn and run(wDone) = σ1 . . . σnDone. A transition
sequence u generates a run if uc does, and then we set run(u) = run(uc).

If a pure transition sequence u generates a run, then it can be easily be recovered from
run(u): the run σ1 . . . σn maps back to

(σ1, σ2) . . . (σn−1, σn)

and the run σ1 . . . σnDone maps back to

(σ1, σ2) . . . (σn−1, σn)Done

14 M. ABADI AND G. D. PLOTKIN

Since each non-empty run contains at least two elements, this definition applies when n = 0
and n ≥ 2. We write runs(P) for the set of runs generated by (pure) transition sequences
in P .

5.2. Adequacy.

Lemma 5.1. The following equalities hold:

(1) [[E [block]]] = [[block]]
(2) [[skip;C]] = [[C]]
(3) [[E [async D]]] = async([[D]]c, [[E [skip]]])
(4) [[E [yield]]]c = async([[E [skip]]]c, [[skip]])c

(5) For all T 6= ε (equivalently Done 6∈ [[T]]),

[[T]] =
⋃

{[[T ′.T ′′, C]]
c
| T = T ′.C.T ′′}

Proof. The first part is immediate from the semantics of block and the definition of com-
position. The second part holds as ∗ is a unit for composition. The third part follows from
the facts that async(P) ◦Q = async(P,Q) and that composition is associative with unit ∗.

For the fourth part, using the third part one sees that it is enough to show that for
every E we have:

[[E [yield]]]c = [[async E [skip]]]c

As composition is associative with unit ∗, this is equivalent to showing that, for every C we
have:

[[yield;C]]c = async([[C]]c)c

which follows immediately, expanding the definitions. The proof of the fifth part is a
straightforward verification.

Lemma 5.2. If C is blocked then, for all T , [[T,C]] = {ε}.

Proof. We calculate:

[[T, E [block]]] = async([[T]], [[E [block]]])
= async([[T]], [[block]]) (by Lemma 5.1)
= {ε}

Lemma 5.3. [[T, skip]] = {(σ, σ Ret)v | v ∈ [[T]]}↓.

Proof. Immediate from the definition of async.

The next lemma applies when C is neither skip nor blocked.

Lemma 5.4. Suppose that 〈σ, T,C〉 −→a 〈σ
′, T ′, C ′〉. Then, for any σ′′, (σ, σ′′)v ∈ [[T,C]]c

iff (σ′, σ′′)v ∈ [[T ′, C ′]]c.

Proof. We divide into cases according to the form of C. In the case where C has the
form E [skip;D] we have σ′ = σ, T ′ = T and C ′ = E [D]. So, by Lemma 5.1, we have
[[T ′, C ′]] = [[T,C]], and we are done.

A MODEL OF COOPERATIVE THREADS 15

In the case where C instead has the form E [async D], we have σ′ = σ, T ′ = T.D and
C ′ = E [skip] and we calculate:

[[T ′, C ′]] = [[T.D, E [skip]]]
= async([[T]], async([[D]]c, [[E [skip]]]))
= [[T, E [async D]]] (by Lemma 5.1)
= [[T,C]]

and we are done.
In the case where C instead has the form E [yield], we have σ′ = σ, T ′ = T.E [skip],

C ′ = skip and, again using Lemma 5.1, we calculate:

[[T ′, C ′]]c = [[T.E [skip], skip]]c

= async([[T]], async([[E [skip]]]c, [[skip]]))c

= [[T, E [yield]]]c

= [[T,C]]c

and we are done.
In the next case, C has the form E [x := e], and we have σ′ = σ[x 7→ σ(e)], T ′ = T and

C ′ = E [skip]. Here [[T,C]] = [[T, x := e; E [skip]]]. So we have that: (σ, τ)v ∈ [[T,C]] holds
iff (σ′, τ) ∈ [[T, E [skip]]]

Otherwise, C has one of the forms E [if b then C else D] or E [while b do C] and
we proceed much as in the previous case.

Lemma 5.5. Suppose that 〈σ, T,C〉−→a
∗ some 〈σ′, T ′, skip〉 with u ∈ [[T ′]]c. Then (σ, σ′)u ∈

[[T,C]]c.

Proof. This follows from Lemmas 5.3 and 5.4.

For the proof of the converse of this lemma, we proceed by an induction on the size of
loop-free commands. We then extend to general commands by expressing their semantics
in terms of the semantics of their approximations by loop-free commands. The size of a
loop-free command is defined by structural recursion:

|skip| = |block| = 1 |x := e| = |async C| = |yield| = 2

|if b then C else D| = |C;D| = |C|+ |D|

Note that if 〈σ, T,C〉−→a〈σ
′, T ′, C ′〉 and C is loop-free, then so is C ′ and, further, |C ′| < |C|.

The approximation relation C � D between loop-free commands C and general com-
mands D is defined to be the least such relation closed under all non-looping program
constructs and such that, for any b, C, D, and i ≥ 0:

block � D
C � D

(while b do C)i � (while b do D)

This relation is extended to thread pools and contexts in the obvious way: we write T � T ′

and C � C′ for these extensions.

Lemma 5.6. Suppose that T � U , C � D, and, further, that 〈σ, T,C〉 −→a 〈σ′, T ′, C ′〉.
Then, for some U ′,D′ with T ′ � U ′ and C ′ � D′, 〈σ,U,D〉 −→a

∗ 〈σ′, U ′,D′〉.

Proof. One first notes that, for any C, D, if E [C] � D then D has the form E ′[D′] where
E � E ′ and C � D′. The proof then divides into cases according to the rule used to show
that 〈σ, T,C〉 −→a 〈σ

′, T ′, C ′〉.

16 M. ABADI AND G. D. PLOTKIN

For example, suppose we have C = E [if b then C1 else C2] and σ(b) = true. We
know that D must have the form E ′[D′] where E � E ′ and (if b then C1 else C2) � D′.
Suppose now that D′ has the form while b do D′′. Then we must have, for some i ≥ 0
that C1 = C ′′; (while b do C ′′)i where C ′′ � D′′. But then we observe that

〈σ,U,D〉 −→a 〈σ,U, E
′[if b then D′′;D′ else skip]〉 −→a 〈σ,U, E

′[D′′;D]〉

and the conclusion follows. The other cases are straightforward.

Next we define the approximants C(i) of a command C by induction on i and structural
recursion on C, beginning with the case where C has one of the forms skip, block, x := e,
or yield, when C(i) = C, and continuing with:

(async C)(i) = async C(i)

(if b then C else D)(i) = if b then C(i) else D(i)

(C;D)(i) = C(i);D(i)

(while b do C)(i) = (while b do C(i))i

For any C one shows that C(i) � C(i+1) � C.

Lemma 5.7.

(1) If C � D then [[C]] ⊆ [[D]].
(2) For any command D:

[[D]] =
⋃

i

[[D(i)]]

Proof. The first part is evident using the monotonicity of the semantics of the program con-
structors and the semantic of loops. For the second part, we proceed by structural induction
onD. All cases are straightforward, using the continuity of the program constructors, except
for loops where we calculate:

[[while b do D]] =
⋃

i[[(while b do D)i]]
=

⋃

i[[(while b do [])i]]([[D]])

=
⋃

i[[(while b do [])i]](
⋃

i[[D
(i)]])

=
⋃

i[[(while b do D(i))i]]

=
⋃

i[[(while b do D)(i)]]

We can now establish the converse of Lemma 5.5.

Lemma 5.8. Suppose that (σ, σ′)u ∈ [[T,C]]c. Then 〈σ, T,C〉 −→a
∗ 〈σ′, T ′, skip〉 for some

T ′ with u ∈ [[T ′]]c.

Proof. We begin by proving this for loop-free commands C. The proof is by induction
on the size of C. If C is skip we have 〈σ, T, skip〉 −→a

∗ 〈σ, T, skip〉 and the conclusion
follows, as, by Lemma 5.3, (σ, σ′)u ∈ [[T, skip]]c iff σ′ = σ and u ∈ [[T]]c. If C is blocked,
the conclusion holds trivially, by Lemma 5.2.

If C is neither skip nor blocked we have 〈σ, T,C〉 −→a 〈σ′′, T ′′, C ′′〉 (and then C ′′ is
loop-free and |C ′′| < |C|). Then, by Lemma 5.4, (σ, σ′)u ∈ [[T,C]]c iff (σ′′, σ′)u ∈ [[T ′′, C ′′]]c

which latter, by the induction hypothesis, implies 〈σ′′, T ′′, C ′′〉 −→a
∗ some 〈σ′, T ′, skip〉

with u ∈ [[T ′]]c which, in turn, implies 〈σ, T,C〉 −→a
∗ some 〈σ′, T ′, skip〉 with u ∈ [[T ′]]c, as

desired.
Next suppose that (σ, σ′)u ∈ [[T,D]]c, where now D is not loop-free. By Lemma 5.7

(σ, σ′)u ∈ [[T,C]]c for some C � D. So, by the above, 〈σ, T,C〉 −→a
∗ some 〈σ′, T ′, skip〉

with u ∈ [[T ′]]c. The desired conclusion follows immediately, using Lemma 5.6.

A MODEL OF COOPERATIVE THREADS 17

Lemma 5.9.

(1) For any proper non-empty pure transition sequence u, (σ, σ′)u ∈ [[T,C]]c iff for some
T ′, C ′, 〈σ, T,C〉 −→a

∗ −→c〈σ
′, T ′, C ′〉 with u ∈ [[T ′, C ′]]c.

(2) For any σ, σ′, T , C, (σ, σ′)Done ∈ [[T,C]]c iff 〈σ, T,C〉 −→a
∗ 〈σ′, ε, skip〉.

Proof. By Lemma 5.8, (σ, σ′)u ∈ [[T,C]]c holds iff 〈σ, T,C〉 −→a
∗ some 〈σ′, T ′, skip〉 does,

with u ∈ [[T ′]]. In the case where u is proper the conclusion follows from Lemma 5.1. In the
case where u is Done we see from the definition of [[T ′]] that Done ∈ [[T ′]] iff T ′ = ε.

The following Adequacy Theorem for pure transition sequences is an immediate conse-
quence of Lemmas 5.8 and 5.9:

Theorem 5.10.

(1) For n > 0, (σ1, σ
′
1) . . . (σn, σ

′
n) ∈ [[T,C]]c iff there are Ti, Ci, (i = 1, n) such that

T1 = T , C1 = C, and 〈σi, Ti, Ci〉 −→a
∗ −→c〈σ

′
i, Ti+1, Ci+1〉, for 1 ≤ i ≤ n − 1, and

〈σn, Tn, Cn〉 −→a
∗ some 〈σ′

n, T
′, skip〉.

(2) For n > 0, (σ1, σ
′
1) . . . (σn, σ

′
n)Done ∈ [[T,C]]c iff there are Ti, Ci, (i = 1, n) such that

T1 = T , C1 = C, and 〈σi, Ti, Ci〉 −→a
∗ −→c〈σ

′
i, Ti+1, Ci+1〉, for 1 ≤ i ≤ n − 1, and

〈σn, Tn, Cn〉 −→a
∗ 〈σ′

n, ε, skip〉.

As a corollary we obtain an adequacy theorem for runs:

Corollary 5.11.

(1) For n ≥ 2, σ1 . . . σn ∈ runs([[T,C]]) iff there are Ti, Ci, (i = 1, n − 1) such that
T1 = T , C1 = C, 〈σi, Ti, Ci〉 −→a

∗ −→c〈σi+1, Ti+1, Ci+1〉 (1 ≤ i ≤ n − 2), and
〈σn−1, Tn−1, Cn−1〉 −→a

∗ some 〈σn, T
′, skip〉.

(2) For n ≥ 2, σ1 . . . σnDone ∈ runs([[T,C]]) iff there are Ti, Ci, (i = 1, n − 1) such that
T1 = T , C1 = C, and 〈σi, Ti, Ci〉 −→a

∗ −→c〈σi+1Ti+1, Ci+1〉 (1 ≤ i ≤ n − 2), and
〈σn−1, Tn−1, Cn−1〉 −→a

∗ 〈σn, ε, skip〉.

5.3. Full Abstraction. The first lemma in the proof of full abstraction bounds the non-
determinism of commands in semantic terms.

Lemma 5.12. For all C, u, and σ, the set {τ | u(σ, τ) ∈ [[C]]} is finite.

Proof. More generally, we prove that for all T , C, u = (σ1, τ1) . . . (σn−1, τn−1), and σn, the
set {τ | u(σn, τ) ∈ [[T,C]]} is finite, and similarly that the set {τ | u(σn, τ) ∈ [[T]]} is finite.
The proof is by induction on n. The proof relies on adequacy; a purely semantic proof
might be possible but seems harder.

• If C is skip, then Lemma 5.3 implies that τ1 is σ1 Ret, and (σ2, τ2) . . . (σn, τ) ∈ [[T1]]. In
case n = 1, we are done, with a unique choice for τ1. Otherwise, we conclude by induction
hypothesis.

• if C is blocked, then n = 0, by Lemma 5.2, so this case is vacuous.
• If C is neither skip nor blocked, then Lemma 5.8 implies that τ1 is unique. In case
n = 1, we are done, with a unique choice for τ1. Otherwise, Lemma 5.8 also implies that
(σ2, τ2) . . . (σn, τ) ∈ [[T ′]] for a unique T ′. As in the case of skip, the desired conclusion
follows by induction hypothesis.

18 M. ABADI AND G. D. PLOTKIN

• Finally, having established the claim for sequences of length n for sets of the form [[T,C]],
we consider sequences of length n in a set of the form [[T]]. Suppose that T consists
of C1, . . . , Ck. A transition sequence v in [[T]] is a shuffle of transition sequences in
[[C1]],. . . ,[[Ck]], each of length at most n. The finiteness property for [[T]] follows from the
fact that there are only finitely many possible ways of decomposing v as a shuffle.

Intuitively, Lemma 5.12 is useful because it implies that, at any point, there are certain
steps that a command cannot take, and in proofs those steps can be used as unambiguous,
visible markers of activity by the context. This lemma is somewhat fragile—it does not
hold once one adds to the language either the nondeterministic choice operator considered
in Section 6.1 or the parallel composition operator of Section 4.6.2. It follows that neither of
these operators is definable in the language. An alternative argument that does not use the
lemma relies on fresh variables instead. The fresh variables permit an alternative definition
of the desired markers.

Full-abstraction results invariably require some notion of observation. Let us write
obs(P) for the observations that we make on P ∈ Proc. Equational full abstraction is
that [[C]] = [[D]] if and only if, for every context C, we have obs([[C[C]]]) = obs([[C[D]]]).
In other words, two commands have the same meaning if and only if they yield the same
observations in every context of the language. The stronger inequational full abstraction
is that [[C]] ⊆ [[D]] if and only if, for every context C, we have obs([[C[C]]]) ⊆ obs([[C[D]]]).
The difficult part of this equivalence is usually the implication from right to left: that if,
for every context C, obs([[C[C]]]) ⊆ obs([[C[D]]]), then [[C]] ⊆ [[D]].

One possible candidate for obs(P) is P c. This notion of observation can be criticized
as too fine-grained. Nevertheless, we find it useful to prove full abstraction for this notion
of observation, with the following lemma. We first need some auxiliary definitions for its
proof, and the lemma that follows. Given two stores σ and σ′, we define:

• a boolean expression check(σ) as the conjunction of the formulas x = n for every variable
x, where n is the natural number σ(x) (so check(σ) is true in σ and false elsewhere);

• a command goto(σ) as the sequence of assignments x := n for every variable x, where n
is the natural number σ(x);

• a command (σ σ′) as if check(σ) then goto(σ′) else block;
• a command (σ σ′

 σ′′) as (σ σ′); yield; (σ′
 σ′′); yield.

These definitions exploit the fact that the set of variables is finite. However, with more care,
analogous definitions could be given otherwise, by focusing on the set of variables relevant
to the programs under observation.

Lemma 5.13. If [[C[C]]]c ⊆ [[C[D]]]c for every context C, then [[C]] ⊆ [[D]].

Proof. Letting P = [[C]] and Q = [[D]], we assume that P 6⊆ Q and prove that there exists C
such that [[C]](P)c 6⊆ [[C]](Q)c. For this, choose a sequence w in P but not in Q. If w = wc,
then we can take C to be []. Therefore, for the rest of the proof, we consider the case
w 6= wc.

If w 6= wc, then w is of the form u(σ, σ′ Ret)v. We let C = []; (σ′
 σ′′) where σ′′ does

not appear in u or v and u(σ, σ′′) 6∈ Q (so, by prefix-closure, u(σ, σ′′)v 6∈ Q). Such a choice
of σ′′ is always possible by Lemma 5.12. Thus, [[C]](P) contains u(σ, σ′′ Ret)v, and [[C]](P)c

contains u(σ, σ′′)v.
Suppose that u(σ, σ′′)v is also in [[C]](Q)c, and that this is because some sequence w′ is

in [[C]](Q) and w′c = u(σ, σ′′)v. By the definition of the semantics of sequential composition,
this could arise in one of the following ways:

A MODEL OF COOPERATIVE THREADS 19

• w′ = u(σ, σ′′ Ret)v, with w ∈ Q. This contradicts w 6∈ Q.
• w′ = u′(σ, σ′′)v′, and σ′′ occurs as the second store of a return transition in either u′ or
v′. This contradicts the requirement that σ′′ does not appear in u or v.

• w′ = u(σ, σ′′)v, w′ ∈ Q, and w′ does not have a return transition. This contradicts the
requirement that u(σ, σ′′) 6∈ Q.

Another possible candidate for obs(P) is runs(P). Runs record more than mere input-
output behavior, but much less than entire execution histories. We therefore find them
attractive for our purposes. The following lemma connects runs to cleaning.

Lemma 5.14. If runs([[C[C]]]) ⊆ runs([[C[D]]]) for every context C, then [[C]]c ⊆ [[D]]c.

Proof. Letting P = [[C]] and Q = [[D]], we assume that P c 6⊆ Qc and prove that there exists
C such that runs([[C]](P)) 6⊆ runs([[C]](Q)).

For this, choose a sequence w ∈ P c but w 6∈ Qc, in order to derive a contradiction.
First, suppose that w is of the form (σ1, σ

′
1) . . . (σn, σ

′
n), with n > 0. We let C be

async [];mesh(w), where mesh(w) is the command

yield; (σ′
1 σ′′

1 σ2); . . . ; (σ
′
n−1 σ′′

n−1 σn); (σ
′
n σ′′

n)

where the stores σ′′
i are all different from one another and from all other stores in w, and

are such that
(σ1, σ

′
1) . . . (σi, σ

′
i)(σ

′
i, σ

′′
i) 6∈ Qc

and
(σ1, σ

′
1) . . . (σi−1, σ

′
i−1)(σ

′′
i−1, σi)(σi, σ

′
i)(σ

′
i, σ

′′
i) 6∈ Qc

Such a choice of stores σ′′
i is always possible by Lemma 5.12. Since [[mesh(w)]] contains the

transition sequence:

(σ1, σ1)(σ
′
1, σ

′′
1)(σ

′′
1 , σ2) . . . (σ

′′
n−1, σn)(σ

′
n, σ

′′
n Ret)Done

we obtain that [[C]](P) contains the transition sequence:

(σ1, σ1)(σ1, σ
′
1)(σ

′
1, σ

′′
1)(σ

′′
1 , σ2)(σ2, σ

′
2) . . . (σ

′′
n−1, σn)(σn, σ

′
n)(σ

′
n, σ

′′
n Ret)

which generates the run:
σ1σ1σ

′
1σ

′′
1σ2σ

′
2 . . . σ

′′
n−1σnσ

′
nσ

′′
n

Suppose that this run is also in runs([[C]](Q)). Therefore, there exists w′ ∈ Qc such that

(σ1, σ
′
1)(σ

′
1, σ

′′
1)(σ

′′
1 , σ2)(σ2, σ

′
2) . . . (σ

′′
n−1, σn)(σn, σ

′
n)(σ

′
n, σ

′′
n)

is a shuffle of w′ with

(σ′
1, σ

′′
1)(σ

′′
1 , σ2) . . . (σ

′′
n−1, σn)(σ

′
n, σ

′′
n)Done

which we call w′′, or with a prefix of w′′. We analyze the origin of the transitions in the
shuffle:

• The transitions (σi, σ
′
i) must all come from w′, since each of the transitions in w′′ contains

one of the stores σ′′
j and, by choice, these are different from σi and σ′

i.

• Suppose that, up to some i − 1 < n, w′ starts like w, in other words it starts as
(σ1, σ

′
1) . . . (σi−1, σ

′
i−1). Suppose further that, in the shuffle up to this point, each tran-

sition (σj , σ
′
j) is followed immediately by the corresponding transitions (σ′

j , σ
′′
j)(σ

′′
j , σj+1)

from w′′. We argue that this remains the case up to n.

20 M. ABADI AND G. D. PLOTKIN

− We consider (σ′
i−1, σ

′′
i−1), the next possible transition in the shuffle. This transition

cannot come from w′ because, by the choice of σ′′
i−1, we have that

(σ1, σ
′
1) . . . (σi−1, σ

′
i−1)(σ

′
i−1, σ

′′
i−1) 6∈ Qc

So this transition comes from w′′.
− One step further, in order to derive a contradiction, we suppose that the transition

(σ′′
i−1, σi) comes from w′. So w′ starts:

(σ1, σ
′
1) . . . (σi−1, σ

′
i−1)(σ

′′
i−1, σi)

and in fact:
(σ1, σ

′
1) . . . (σi−1, σ

′
i−1)(σ

′′
i−1, σi)(σi, σ

′
i)

since, as noted above, the last transition here must come from w′. The next transition
in the shuffle is (σ′

i, σ
′′
i). By the choice of σ′′

i , we have that

(σ1, σ
′
1) . . . (σi−1, σ

′
i−1)(σ

′′
i−1, σi)(σi, σ

′
i)(σ

′
i, σ

′′
i) 6∈ Qc

So the transition (σ′
i, σ

′′
i) cannot come from w′. Therefore, it must come from w′′.

However, the next available transition in w′′ is (σ′′
i−1, σi), and (σ′

i, σ
′′
i) and (σ′′

i−1, σi)
must be different because σ′′

i−1 and σ′′
i are different, by choice, from σ′

i and σi.
Thus, the assumption that the transition (σ′′

i−1, σi) comes from w′ leads to a contra-
diction. This transition must come from w′′.

• Finally, suppose that, up to n, w′ starts like w, in other words as:

(σ1, σ
′
1) . . . (σn, σ

′
n)

and that, in the shuffle, each transition (σj , σ
′
j) is followed immediately by the corre-

sponding transitions (σ′
j, σ

′′
j)(σ

′′
j , σj+1) from w′′. By the choice of σ′′

n, we have that

(σ1, σ
′
1) . . . (σn, σ

′
n)(σ

′
n, σ

′′
n) 6∈ Qc

so (σ′
n, σ

′′
n) comes from w′′, not from w′.

In sum, w′ = w, and therefore w ∈ Qc, contradicting our assumption that w 6∈ Qc.
Next, suppose that w is of the form (σ1, σ

′
1) . . . (σn, σ

′
n) Done. With the same C, we

obtain that [[C]](P) contains the transition sequence:

(σ1, σ1)(σ1, σ
′
1)(σ

′
1, σ

′′
1)(σ

′′
1 , σ2)(σ2, σ

′
2) . . . (σ

′′
n−1, σn)(σn, σ

′
n)(σ

′
n, σ

′′
n Ret)Done

which generates the run:

σ1σ1σ
′
1σ

′′
1σ2σ

′
2 . . . σ

′′
n−1σnσ

′
nσ

′′
nDone

Suppose that this run is also in runs([[C]](Q)). Again, by the choice of σ′′
1 , . . . , σ

′′
n, this

can be the case only if w is in Qc. (The argument for the contradiction may actually be
simplified in this case, because of the marker Done.)

We obtain the following Full-abstraction Theorem:

Theorem 5.15. [[C]] ⊆ [[D]] iff, for every context C, runs([[C[C]]]) ⊆ runs([[C[D]]]).

Proof. The implication from [[C]] ⊆ [[D]] is an immediate consequence of the compositionality
of the semantics (Proposition 4.2). The converse follows from Lemmas 5.13 and 5.14.

A MODEL OF COOPERATIVE THREADS 21

Coarser-grained definitions of obs(P) may sometimes be appropriate. For those, we
expect that full abstraction will typically require additional closure conditions on P , such
as closure under suitable forms of stuttering and mumbling, much as in our work and
Brookes’s on parallel composition [AP93, Bro96].

6. Algebra

The development of the denotational semantics in Section 4 is ad hoc, in that the
semantics is not related to any systematic approach. In this section we show how it fits in
with the algebraic theory of effects [PP02, PP03, HPP06, PP08, PP09].

In the functional programming approach to imperative languages, commands have unit
type, 1. Then, taking the monadic point of view [BHM02], they are modeled as elements of
T (1) for a suitable monad T on, say, the category of ω-cpos and continuous functions. For
parallelism one might look for something along the lines of the resumptions monad [HP79,
CM93, HPP06].

In the algebraic approach to computational effects [PP02, HPP06], one analyses the
monads as free algebra monads for a suitable equational or Lawvere theory L (here mean-
ing in the enriched sense, so that inequations are allowed, as are families of operations
continuously parameterized over an ω-cpo). The operations of the theory (for example a
binary choice operation in the case of nondeterminism) are thought of as effect constructors
in that they create the effects at hand.

As discussed in [HP79], resumptions are generally not fully abstract when their domain
equation is solved in a category of cpos. If, instead, it is solved in a category of semilattices,
increased abstraction may be obtained. The situation was analyzed from the algebraic point
of view in [HPP06]. It was shown there that resumptions arise by combining a theory for
stores [PP02] with one for nondeterminism, one for nontermination, and one for a unary
operation d thought of as suspending computation. The difference between solving the
equation in a category of semilattices or cpos essentially amounts to whether or not one
asks that d, and the other operations, commute with nondeterminism.

In [Bro96], Brookes, using an apparently different and mathematically elementary trace-
based approach, succeeded in giving a fully abstract semantics for a language of the kind
considered in [HP79]. However, in [Jef95], Jeffrey showed that trace-based models of con-
current languages can arise as solutions to domain equations in a category of semilattices,
thereby relating the two approaches.

We propose here to identify the suspension operation d with the operation of the same
name introduced in Section 4.3; indeed this identification was the origin of the definition of
yield given there, and it is natural to further identify yield as the generic effect [PP03] cor-
responding to the suspension operation. These identifications are justified by Corollary 6.5,
below, and the discussion following it.

In Section 6.1 we carry out an algebraic analysis of resumptions. We show in The-
orem 6.1 that, imposing the commutations with nondeterminism just discussed, they do
indeed correspond to a traces model, provided one uses the Hoare or lower powerdomain.
(This powerdomain is a natural choice as we consider only “may” semantics in this paper,
and elements of such powerdomains are Scott closed, so downwards-closed, a natural gen-
eralization of our prefix-closedness condition.) The proof makes the link between domain
equations and traces.

22 M. ABADI AND G. D. PLOTKIN

The missing ingredient in an algebraic analysis of Proc is then an account of async. In
the denotational semantics of any command of the form async C, all Ret marking is lost
from the meaning of C, because of the application of the cleaning function, −c; further all the
sequences in [[C]]c are proper. We propose to treat async as a generic effect, parameterized
by an element of AProc (which will be [[C]]c).

In order to give the equations for the async operation it will, as one may expect, be useful
to first have an algebraic analysis of AProc; we carry out this analysis in Section 6.2. It
turns out, as detailed in Theorem 6.2, that AProc is similar to, but not quite, a resumptions
ω-cpo. Finally, we analyze processes in Section 6.3, showing, in Theorem 6.4, that a process
is a kind of “double-thread”—more precisely, a resumption that returns not only a value
but also an element of AProc.

6.1. Resumptions. Our theory LRes for resumptions follows [HPP06] but is somewhat
modified, as we are interested only in “may” semantics and as we wish to allow infinitely
proceeding processes. The theory is a combination of several constituent theories which we
now consider successively.

The Lawvere theory LS of stores can be presented via a family of unary operations
updatex,n and a family of “N-ary” operations lookupx (x ∈ Vars, n ∈ N). (An N-ary
operation is a countably infinitary operation whose arguments are indexed by the natural
numbers.) For any computation γ, updatex,n(γ) is read as the computation that first
updates x to n and then proceeds as γ; for any N-indexed collection (γn)n of computations,
lookupx((γn)n) is read as the computation that proceeds as γn if x has value n in the current
store.

The Lawvere theory LH for nondeterminism is that of the lower (aka Hoare) powerdo-
main, presented using a binary nondeterministic choice operation ∪; the Lawvere theory
LΩ for nontermination is the theory of a least element, presented using a constant Ω; and
the Lawvere theory Ld for suspension is that of a unary operation d, with no equations.
See [PP02, HPP06] for more details of these theories, including an account of the equations
for stores and for Hoare powerdomains.

For resumptions, continuing to follow [HPP06], we wish the operations of LS to commute
with those of LH and LΩ (which automatically commute with each other) and it is also
natural to have d commute with nondeterministic choice, but not with the operations of
LS, as we wish to model interruption points, and not with Ω, as we want to be able to
model infinitely proceeding processes. We therefore define:

LRes = LH ⊗ ((LS ⊗ LΩ) + Ld)

and let TRes be the associated monad. (For any two theories L and L′ presented using
disjoint signatures, the theories L+ L′ and L⊗ L′ can be presented using the union of the
signatures of L and L′ and, in the former case, by the union of their equations and, in the
latter case, by the union of their equations together with additional equations that say that
each operation of each theory commutes with each operation of the other.)

We now give an elementary trace-based picture of TRes(P) for sufficiently general ω-
cpos P . Let Q be a partial order. A Q-transition is a pair of states (σ, σ′ x) in which the
second is marked with an element x of Q; we let τ range over stores and stores marked with
an element of Q. A basic Q-transition sequence is a non-empty sequence consisting of plain
transitions optionally followed by a Q-transition. Let ≤Q be the least preorder on the set
of basic Q-transition sequences which contains the prefix relation ≤p and is such that, for

A MODEL OF COOPERATIVE THREADS 23

any x, y in Q, if x ≤ y then u(σ, σ′x) ≤Q u(σ, σ′y). One has that ≤Q is a partial order and
that u ≤Q v holds iff:

either u ≤p v
or else ∃w, x ≤ y. u ≤p w(σ, σ

′x) ∧ v = w(σ, σ′y)

We need a few notions concerning ideals in partial orders. An ideal I in a partial order
Q is a downwards-closed subset of Q; for any subset X of Q we write X ↓ for the least
ideal including X, viz {x ∈ Q | ∃y ∈ X.x ≤ y}; and for any x ∈ Q we write x↓ for {x}↓.
Downwards-closed sets, i.e., ideals, provide a suitable generalization of prefix-closed sets
when passing from sequences to general partial orders.

An ideal I is directed if it is nonempty and any two elements of the ideal have an upper
bound in the ideal. An ideal is denumerably generated if I = X↓ for some denumerable

X ⊆ I. We write I↑
ω(Q), respectively Iω(Q), for the collection of all denumerably generated

directed ideals of Q, respectively all denumerably generated ideals of Q, and we partially

order them by subset; I↑
ω(Q) is an ω-cpo, indeed it is the free such over Q; and Iω(Q) is

the free ω-cpo with all finite sups over Q: it follows that it is also the free such ω-cpo over

I↑
ω(Q).

LetQ-BTrans be the set of basicQ-transition sequences, partially ordered as above. One
can view Iω(Q-BTrans) as an LRes-model with the following definitions of the operations,
where now we use l to range over Vars:

(updatel,n)Iω(Q-BTrans)(I) = {(σ, τ)u | (σ[l 7→ n], τ)u ∈ I}

(lookupl)Iω(Q-BTrans)((In)n) =
⋃

n{(σ, τ)u ∈ In | σ(l) = n}

I ∪Iω(Q-BTrans) J = I ∪ J

ΩIω(Q-BTrans) = ∅

dIω(Q-BTrans)(I) = {(σ, σ)u | σ ∈ Store, u ∈ I} ∪ {(σ, σ)|σ ∈ Store}

(We skip over the small difference between the notion of an LRes-model and of an algebra
satisfying equations.)

We write ωCpo and ωSL for, respectively, the category of ω-cpos and the category of
ω-cpos with all finite sups. For any poset P , its lifting P⊥ is the poset obtained from P
by freely adjoining a least element ⊥; its elements are (0, x), for x ∈ P , and ⊥, and they
are ordered in the evident way. If P has all sups of increasing ω-chains, i.e., is an ω-cpo
(respectively has finite sups), so does P⊥. For any object a of any given category, and any
set X, we write X ⊗ a and aX for, respectively, the X-fold sum and product of a with
itself, assuming they exist. The category ωSL has countable biproducts, given by the usual
cartesian product of posets, and it is convenient to identify X ⊗ L with LX , for countable
sets X.

The next theorem shows that the algebraic notion of resumptions can indeed be char-
acterized in trace-based terms, specifically as ideals of basic Q-transition sequences.

Theorem 6.1. Viewed as an LRes-model, Iω(Q-BTrans) is TRes(I
↑
ω(Q)). The unit

(ηTRes
)
I↑
ω(Q)

:I↑
ω(Q) → Iω(Q-BTrans)

is given by:
(ηTRes

)
I↑
ω(Q)

(I) = {(σ, σ x) | σ ∈ Store, x ∈ I}

24 M. ABADI AND G. D. PLOTKIN

and, for any continuous f :I↑
ω(Q) → Iω(R-BTrans), its Kleisli extension

f † :Iω(Q-BTrans) → Iω(R-BTrans)

is given by:

f †(I) = {u(σ, τ)v | ∃σ′, x. u(σ, σ′ x) ∈ I, (σ′, τ)v ∈ f(x↓)}
∪ {u ∈ I | u has no Q-transition}

Proof. Models of LRes in ωCpo correspond to models of LS in ωSL together with a morphism
d′ : L⊥ → L, where L is the carrier of the model. (Such morphisms are equivalent to ω-
continuous maps on L which preserve binary sups, but not necessarily ⊥.) The carrier L
of the model of LRes is that of the model of LS in ωSL; it is necessarily an ω-cpo with all
finite lubs. The LS operations on L become those of the model of LS in ωSL, and the map
d : L → L extends uniquely to a morphism on L⊥, obtaining the required map d′. This
correspondence extends straightforwardly to an equivalence of categories.

So, as Iω(Q) is the free ω-cpo with finite sups over the ω-cpo I↑
ω(Q), we seek the free

structure
(L, (updatel,n)L, (lookupl)L, dL)

over Iω(Q), consisting of a model (L, (updatel,n)L, (lookupl)L) of LS in ωSL and a morphism
d′ :L⊥ → L.

By Theorem 1 of [PP02] the free algebra monad for LS over ωSL is TS = (S ⊗ −)S ,
where we abbreviate Store to S (the theorem depends on the set of variables being finite).
The definitions of the operations (updatel,n)TS(L) and (lookupl)TS(L) of an algebra TS(L) are

given by Proposition 1 of [PP02]; the unit (ηTS
)L at L is the canonical map L −→ (S⊗L)S .

So, by Corollary 2 of [HPP06], for any poset Q, L is the solution of the following
“domain equation” in ωSL:

L ∼= (S ⊗ (L⊥ + Iω(Q)))S (6.1)

by which we mean the initial ω-cpo with finite sups L and map

α : (S ⊗ (L⊥ + Iω(Q)))S → L

(Such a map is necessarily an isomorphism.)
The morphism (updatel,n)L :L → L is

L
α−1

−−→ TS(L⊥ + Iω(Q))
(updatel,n)TS (L⊥+Iω(Q))
−−−−−−−−−−−−−−−−→ TS(L⊥ + Iω(Q))

α
−→ L

the morphism (lookupl)L :L
N → L is

LN (α−1)N
−−−−→ TS(L⊥ + Iω(Q))N

(lookupl)TS (L⊥+Iω(Q))
−−−−−−−−−−−−−−→ TS(L⊥ + Iω(Q))

α
−→ L

the morphism d′L :L⊥ → L is

L⊥
inl
−→ L⊥ + Iω(Q)

(ηTS)(L⊥+Iω(Q))
−−−−−−−−−−→ TS(L⊥ + Iω(Q))

α
−→ L

and at I↑(Q) the unit ηTRes
is

I↑
ω(Q) →֒ Iω(Q)

inr
−→ L⊥ + Iω(Q)

(ηTS)(L⊥+Iω(Q))
−−−−−−−−−−→ TS(L⊥ + Iω(Q))

α
−→ L

Now, since countable copowers and powers coincide in ωSL, Equation (6.1) can be rewritten
as:

L ∼= S ⊗ (S ⊗ (L⊥ + Iω(Q))) (6.2)

A MODEL OF COOPERATIVE THREADS 25

As Iω : Pos → ωSL is a left adjoint, where Pos is the category of posets, it preserves all
colimits; Iω also commutes with lifting. So there is an isomorphism:

β :Iω(S × (S × (R⊥ +Q))) ∼= S ⊗ (S ⊗ (Iω(R)⊥ + Iω(Q)))

for any poset R. So, again using that Iω preserves all colimits, we can solve Equation (6.2)
by first solving the equation:

R ∼= S × (S × (R⊥ +Q))

in the category Pos, and then applying Iω. To do that, one takes R to be the least set such
that

R = S × (S × (R⊥ +Q))

and then imposes the evident inductively defined partial order on it. The solution of Equa-
tion (6.2) is then given by taking L = Iω(R) and α = β−1.

We now have an expression of L as Iω(R), as well as definitions of (updatel,n)L,
(lookupl)L, dL, and the unit. So, given the initial discussion above, we see that L forms the

free model of LRes over I
↑
ω(R) with unit:

(ηRes)I↑
ω(R)

(I) = {(σ, (σ, inr(x))) | x ∈ I}

and with operations:

(updatel,n)L(I) = {(σ, (σ′, u)) | (σ[l 7→ n], (σ′, u)) ∈ I}
(lookupl)L((In)n) = {(σ, (σ′, u)) ∈ In | n ∈ N, σ(l) = n}
I ∪L J = I ∪ J
ΩL = ∅
dL(I) = {(σ, (σ, inl(0, u))) | σ ∈ S, u ∈ I} ∪ {(σ, (σ,⊥)) | σ ∈ S})

There is an evident isomorphism of partial orders θRes :R ∼= Q-BTrans, given recursively
by:

θRes((σ, (σ
′, inl((0, u))))) = (σ, σ′)θRes(u)

θRes((σ, (σ
′, inl(⊥)))) = (σ, σ′)

θRes((σ, (σ
′, inr(x)))) = (σ, σ′x)

This induces an isomorphism Iω(R) ∼= Iω(Q-BTrans) of ω-cpos, and so the free such model
is also carried by Iω(Q-BTrans). Using this, and the above definitions of the operations
and unit for Iω(R), one then verifies that the operations and unit for Iω(Q-BTrans) are as
required.

As regards the formula for the Kleisli extension, that f †(ηTRes
)
I↑
ω(Q)

= f is evident and

that the purported extension is a morphism of models of LRes is a calculation.

One can go further and obtain a closely related, if less elementary, picture of TRes(P) for
an arbitrary ω-cpo P : one needs a notion of ideal that takes the ω-sups of P into account.

6.2. Asynchronous Processes. One might hope that AProc can be understood as an
ω-cpo of resumptions, and, indeed, basic {Done}-transition sequences and proper pure non-
empty transition sequences are very similar. Define a map θAProc :{Done}-BTrans → PPSeq
by:

θAProc(u(σ, σ
′ Done)) = u(σ, σ′)Done

θAProc(u) = u (if u does not contain Done)

Unfortunately, while θAProc is a monotonic bijection, it is not an isomorphism of partial
orders, as u(σ, σ′) ≤p u(σ, σ

′)Done but u(σ, σ′)6≤{Done}u(σ, σ
′ Done).

26 M. ABADI AND G. D. PLOTKIN

There is a related programming language phenomenon. Denotationally, we have the
inclusion:

[[(async (yield; block));C]] ⊆ [[(async skip);C]]

but not the inclusion:
[[yield; block]] ⊆ [[skip]]

As in the proof of the full-abstraction theorem, one can distinguish [[yield; block]] from
[[skip]] using a sequential context; however, this context is not available when the command
is within an async.

To solve this difficulty we take the theory of asynchronous threads LAProc to be LRes

extended by a new constant halt and the equation:

d(Ω) ≤ halt

We can turn AProc into a model of LAProc by defining operations as follows:

(updatel,n)AProc(P) = {(σ, σ′)u | (σ[l 7→ n], σ′)u ∈ P} ∪ {ε}
(lookupl)AProc((Pn)n) =

⋃

n{(σ, σ
′)u ∈ Pn | σ(l) = n} ∪ {ε}

P ∪AProc Q = P ∪Q
ΩAProc = {ε}

dAProc(P) = {(σ, σ)u | σ ∈ Store, u ∈ P} ∪ {ε}
haltAProc = {(σ, σ)Done | σ ∈ Store}↓

Note that haltAProc = [[skip]]c.
We write TAProc for the monad associated to the theory AProc. The next theorem

shows that the variant theory LAProc indeed captures AProc. First we need some notation.

• We define a unary derived operation al,m,k, for l ∈ Vars and m,n ∈ Value by:

al,m,k(x) ≡def lookupl((tm′)m′)

where:

tm′ ≡def

{

updatel,k(x) (if m′ = m)
Ω (otherwise)

• We define a unary derived operation aσ,σ′ , for σ, σ′ ∈ Store by:

aσ,σ′(x) ≡def al1,σ(l1),σ′(l1)(. . . aln,σ(ln),σ′(ln)(x) . . .)

where l1, . . . , ln is an enumeration of Vars.
• For every sequence of plain transitions u = (σ1, σ

′
1) . . . (σn, σ

′
n) we define a unary derived

operation au by:
au(x) ≡def aσ1,σ

′
1
(d(. . . aσn,σ′

n
(d(x)) . . .))

• For every sequence of plain transitions u and σ, σ′ ∈ Store, we define two constants u and
u(σ, σ′)Done by:

u ≡def au(Ω) and u(σ, σ′)Done ≡def au(halt)

Note that uAProc = uIω(Q) = u ↓, where, for example, uAProc is the interpretation of u in

AProc; further u(σ, σ′)DoneAProc = u(σ, σ′)Done ↓. Below we may confuse a constant or
operation with its interpretation in a specific algebra A, e.g., writing u or au rather than
uA or (au)A, provided that the intended algebra can be understood from the context.

Theorem 6.2. AProc is the initial LAProc-model, i.e., it is TAProc(0).

A MODEL OF COOPERATIVE THREADS 27

Proof. We begin by examining the connection between Iω({Done}) and AProc. By The-
orem 6.1, Iω({Done}) is the free model of LRes over {Done}. So f : {Done} → AProc
has a unique extension to a morphism f † : Iω({Done}) → AProc of LRes-models, where
f(Done) =def haltAProc. We now show that:

f †(I) = {θAProc(u) | u ∈ I} ↓

from which it follows that f † is onto. It is enough to show that f †(u ↓) = θAProc(u) ↓, which
holds as, for any u not containing Done, we calculate that

f †(u ↓) = f †(u)Iω({Done})) = (u)AProc = u ↓= θAProc(u) ↓

and that

f †(u(σ, σ′ Done) ↓) = f †((au)Iω({Done})(η(Done))) = (au)AProc(f
†(η(Done)))

= (au)AProc(haltAProc) = u(σ, σ′)Done ↓
= θAProc(u(σ, σ

′ Done)) ↓

where, in both cases, the second equality holds as f † is a morphism of LRes-models.
Let L be a model of LAProc. We have to show there is a unique morphism h :AProc → L.

For uniqueness, let h, h′ be such morphisms. Then both f † ◦h and f † ◦h′ are morphisms of
LRes models from Iω({Done}) to L, extending the map Done 7→ haltL. So, as there is only
one such map, f † ◦ h = f † ◦ h′, and therefore, as f † is onto, h = h′, as required.

For existence, define the map θ :PPSeq → L by: θ(u) = (au)L. Using the fact that L is
a model of AProc, particularly the axiom d(Ω) ≤ halt, one has that θ is monotonic. One
can then define a continuous map h :AProc → L by:

h(I) =
∨

u∈I

θ(u)

with the sup on the right existing as I is denumerable. Let g be the unique morphism of
LRes models from Iω({Done}) to L, extending the map Done 7→ haltL.

We have that h ◦ f † = g, as, for any u not containing Done, we may calculate that:

h(f †(u ↓)) = h(u ↓) = θ(u) = au = g(au) = g(u)

and that

h(f †(u(σ, σ′ Done) ↓)) = h(au(halt)) = h(u(σ, σ′)Done ↓)
= θ(u(σ, σ′)Done) = au(σ,σ′)Done

= au(σ,σ′)(halt) = g(au(σ,σ′)(η(Done)))
= g(u(σ, σ′ Done))

As h◦f † = g, and f † and g are morphisms of LRes models, and f † is onto, h is automatically
a morphism of LRes models. For example, for the preservation of d, given I ∈ AProc, choose
J ∈ Iω({Done}) such that f †(J) = I and calculate that:

h(dAProc(I)) = h(dAProc(f
†(J)))

= h(f †(dIω({Done})(J))) = g(dIω({Done})(J))

= dL(g(J)) = dL(h(f
†(J)))

= dL(h(I))

Further, h preserves halt as h(haltAProc) = θ(haltAProc) = haltL. We therefore have that h
is a morphism of LAProc-models, which concludes the proof.

28 M. ABADI AND G. D. PLOTKIN

One can go on and obtain a general view of the monad TAProc using a suitable notion of
(proper) pure Q-transition sequences. However we omit the details as they are not needed
for an account of processes.

There is another possible proof of Theorem 6.2 along the lines of that of Theorem 6.1.
First one notes that to have a model of LAProc in ωCpo is to have a model of LS in ωSL,
with carrier L, say, together with a morphism d : L⊥ → L and an element halt ∈ L such
that d(Ω) ≤ halt. It is not hard to see that to have such a morphism and element is to have
a morphism (L+ Iω(1))⊥ → L, where 1 is the one-point partial order.

One then sees that the carrier of the initial such model is given by the solution of the
domain equation:

L ∼= (S ⊗ (L+ Iω(1))⊥)S
and that that can be solved by first solving the corresponding equation

R ∼= S × (S × (R+ 1)⊥)
in Pos and then setting L = Iω(R). The rest of the proof proceeds as expected.

Equally, there should be an elementary proof of Theorem 6.1, which, like that of The-
orem 6.2, makes use of definability. The more conceptual proofs have the advantage of
showing, via domain equations, the origins of the two kinds of transition sequences and
their ordering.

6.3. Processes. We turn to our algebraic account of Proc. The signature of our theory
of processes, LProc, is that for LRes together with two families of unary operation symbols
asyncP and yield toP , where P is in AProc. The first of these corresponds to the function
of the same name defined above, but restricted to asynchronous threads. The second corre-
sponds to a slightly different version of async in which the first action is that of the thread
spun off, rather than that of the active command. We often find it convenient to write
asyncP t and yield toP t as, respectively, P ⊲ t and P ⊳ t, thinking of them as right and left
shuffles.

We begin with a theory LSpawn for async and yield to which involves the other opera-
tions. The first group of equations for LSpawn concerns commutation with ∪:

(P ∪AProc P
′)⊲ x = (P ⊲ x) ∪ (P ′

⊲ x)
P ⊲ (x ∪ y) = (P ⊲ x) ∪ (P ⊲ y)

(P ∪AProc P
′)⊳ x = (P ⊳ x) ∪ (P ′

⊳ x)
P ⊳ (x ∪ y) = (P ⊳ x) ∪ (P ⊳ y)

The second group of equations concerns the interaction of async with the other opera-
tions of LProc (except for ⊳):

P ⊲ updatel,n(x) = updatel,n(P ⊲ x)
P ⊲ lookupl((xn)n) = lookupl((P ⊲ xn)n)

P ⊲ Ω = Ω
P ⊲ d(x) = d(P ⊲⊳ x)

P ⊲ (P ′
⊲ x) = (P ⊲⊳ P ′)⊲ x

where we write P ⊲⊳ x for the “left action” (P ⊲ x) ∪ (P ⊳ x). The first three state that
P ⊲ − commutes with another operation; the next concerns the interaction of async with
suspension and brings in yield to; the last reduces two occurrences of async to one. The

A MODEL OF COOPERATIVE THREADS 29

third, and last, group of equations is for the interaction of yield to with the other operations
of LAProc:

(updatel,n)AProc(P)⊳ x = updatel,n(P ⊳ x)
(lookupl)AProc((Pn)n)⊳ x = lookupl((Pn ⊳ x)n)

ΩAProc ⊳ x = Ω
dAProc(P)⊳ x = d(P ⊲⊳ x)
haltAProc ⊳ x = d(x)

The first three assert that − ⊳ x acts homomorphically with respect to an operation; the
next concerns the interaction with suspension; and the last concerns what happens when
asynchronous threads halt. Finally we add an inequation:

ΩAProc ⊲ x ≤ x

We take the equations of LProc to be those of LSpawn, i.e., the equations are the ones
just given for async and yield to, together with those of LRes. One would naturally have
expected LProc also to have an equation with left-hand side P ⊲ (P ′

⊳ x); indeed, we could
have added the equation:

P ⊲ (P ′
⊳ x) = P ′

⊳ (P ⊲⊳ x)

However this equation is redundant as it can be proved from the others using the algebraic
induction principle of “Computational Induction” described in [PP08]. (One proceeds by
such an induction on P ′, with a subinduction on P .) The inequation is somewhat inelegant:
a possible improvement would be to use Pool instead rather than restricting to asynchronous
threads. This would give the possibility of a version of halt, to denote Done ↓, such that
the equations

halt⊲ x = halt⊳ x = x

held, making the inequation redundant.
Let TProc be the monad associated to the theory Proc. We now aim to give a picture

of TProc(I
↑
ω(Q)) like that we gave of TRes(I

↑
ω(Q)). Take the partial order Q-Trans of the

Q-transition sequences to be that of the basic (Q× PSeq)-transition sequences. Note that
one can regard Q-transition sequences as elements of a kind of “double thread” in which
the first thread returns a value together with a second (asynchronous) thread.

We show that Q-Proc =def Iω(Q-Trans) carries the free model of LProc on I↑
ω(Q). We

view Q-Proc as a LRes-model as in Section 6.1. In order to give async and yield to, we first
mutually recursively define the incomplete right and left shuffles u⊲ v and u⊳ v in Q-Proc
of a proper pure transition sequence u with a Q-transition sequence v, by:

u⊲ (σ, σ′) = {(σ, σ′)u−}↓
u⊲ (σ, σ′(x, u′)) = {(σ, σ′(x,w)) | w ∈ u ⊲⊳ u′} ↓
u⊲ (σ, σ′)v = {(σ, σ′)w | w ∈ u ⊲⊳ v} ↓ (v 6= ε)

where, for any pure transition sequence w, w− is w less any occurrence of Done, and writing
u ⊲⊳ v for the incomplete shuffles (u⊳ v) ∪ (u⊲ v) of u and v, and:

ε⊳ v = ∅
(σ, σ′)Done⊳ v = {(σ, σ′)v} ↓
(σ, σ′)u⊳ v = {(σ, σ′)w | w ∈ u ⊲⊳ v} ↓

where, in the last line, u is required to be proper. (Recall that an incomplete shuffle of two
sequences is a shuffle of two of their prefixes, equivalently a prefix of a shuffle of them.)
Both ⊲ and ⊳ are monotonic operations.

30 M. ABADI AND G. D. PLOTKIN

Then, for P ∈ AProc and I ∈ Q-Proc, we put:

(asyncProc)P (I) =
⋃

u∈P, v∈I

u⊲ v

(yield toProc)P (I) =
⋃

u∈P, v∈I

u⊳ v ∪ {u− | u ∈ P, u 6= ε}

If I is not empty we have:

(yield toProc)P (I) =
⋃

u∈P, v∈I

u⊳ v

With these additional operations, Q-Proc is a model of LProc.
In the following we make use of the notation introduced in Section 6.2.

Lemma 6.3. For any proper pure transition sequence u, the equation u↓ ⊳ Ω = u− is
provable in LProc.

Proof. The proof is by induction on the length of u. In the case where u = ε, we have
u↓= ΩAProc, and in the equational theory we have ΩAProc ⊳ Ω = Ω, as required.

In the case where u = (σ, σ′), we have u↓= aσ,σ′(dΩAProc), and in the equational theory,
we have:

aσ,σ′(dΩAProc)⊳ Ω = aσ,σ′(dΩAProc ⊳ Ω)
= aσ,σ′(d(ΩAProc ⊳ Ω) ∪ d(ΩAProc ⊲ Ω))
= aσ,σ′(dΩ)

In the case where u = (σ, σ′)Done, we have u ↓= aσ,σ′(halt), and in the equational
theory, we have:

aσ,σ′(halt)⊳ Ω = aσ,σ′(halt⊳ Ω)
= aσ,σ′(dΩ)

Finally, in the case where u = (σ, σ′)v, with v a proper pure transition sequence, we
have u↓= aσ,σ′(d(v↓)), and in the equational theory, we have:

aσ,σ′(d(v↓)) ⊳ Ω = aσ,σ′(d(v↓) ⊳ Ω)
= aσ,σ′(d((v↓) ⊳ Ω) ∪ d((v↓) ⊲ Ω))
= aσ,σ′(d((v↓) ⊳ Ω))

= aσ,σ′(d(v−))

= u−

using the induction hypothesis in the next-to-last step.

Our main algebraic theorem characterizes free models of a natural equational theory
for resumptions with thread-spawning in terms of a kind of double-thread.

Theorem 6.4. Viewed as an LProc-model, Iω(Q-Trans) is the free model over I↑
ω(Q). The

unit (ηTProc
)
I↑
ω(Q)

:I↑
ω(Q) → Iω(Q-Trans) is given by:

(ηTProc
)
I↑
ω(Q)

(I) = {(σ, σ (x,Done)) | x ∈ I} ↓

and, for any continuous f :I↑
ω(Q) → Iω(R-Trans), its Kleisli extension

f † :Iω(Q-Trans) → Iω(R-Trans)

A MODEL OF COOPERATIVE THREADS 31

is given by:

f †(I) = {u(σ, τ)v | ∃σ′, x. u(σ, σ′ (x,Done)) ∈ I,
(σ′, τ)v ∈ f(x↓)}

∪{u(σ, τ)v | ∃σ′, x, w 6= Done. u(σ, σ′ (x,w)) ∈ I,
(σ′, τ)v ∈ w ↓ ⊲f(x↓)}

∪ {u ∈ I | u has no (Q× PSeq) transition}

Proof. To show that Iω(Q-Trans) is the free algebra over I↑
ω(Q) with unit as above, we

must show that for any LProc-model A and any continuous function f :I↑
ω(Q) → A there is

a unique morphism h :Iω(Q-Trans) → A of models of LProc such that the following diagram
commutes:

I↑
ω(Q)

f

Iω(Q-Trans)

(ηTProc
)
I↑
ω(Q)

? h
- A

-

We begin by showing uniqueness. To that end, fix A and f , and let h be a morphism such

that the diagram commutes. Define g :I↑
ω(Q× PSeq) −→ A by putting:

g((x, u)↓) =

{

f(x↓) (if u = Done)
u↓ ⊲Af(x↓) (otherwise)

This is a good definition, with monotonicity being established using the inequation for ⊲.

We have f = gα and (ηTProc
)
I↑
ω(Q)

= (ηTRes
)
I↑
ω(Q×PSeq)

α where α :I↑
ω(Q) → I↑

ω(Q×PSeq) is

defined by setting α(x↓) = (x,Done)↓.
We then have that the following diagram commutes:

I↑
ω(Q× PSeq)

g

Iω((Q× PSeq)-BTrans)

(ηTRes
)
I↑
ω(Q×PSeq)

? h
- A
-

as we may we calculate, for u = Done, that:

h((ηTRes
)
I↑
ω(Q×PSeq)

((x, u) ↓)) = h(η(x↓))

= f(x↓)
= g((x, u)↓)

and, for u 6= Done, that:

h((ηTRes
)
I↑
ω(Q×PSeq)

((x, u) ↓)) = h({(σ, σ(x, u)) | σ ∈ Store} ↓)

= h(u ↓ ⊲{(σ, σ(x,Done)) | σ ∈ Store} ↓)
= h(u ↓ ⊲(ηTProc

)
I↑
ω(Q)

(x ↓))

= u ↓ ⊲Ah((ηTProc
)
I↑
ω(Q)

(x ↓))

= u ↓ ⊲Af(x ↓)
= g((x, u)↓)

32 M. ABADI AND G. D. PLOTKIN

This is enough to show uniqueness, as if h(ηTProc
)
I↑
ω(Q)

= h′(ηTProc
)
I↑
ω(Q)

= f , for two

such morphisms h and h′, then h(ηTRes
)
I↑
ω(Q×PSeq)

= h′(ηTRes
)
I↑
ω(Q×PSeq)

= g, and so h = h′,

as h and h′ are morphisms of models of LRes (being morphisms of models of LProc).
For existence we are again given A and f and wish to construct a suitable h. To

that end, with g and α as before, take h to be the TRes-extension of g. Then we have
h(ηTProc

)
I↑
ω(Q)

= h(ηTRes
)
I↑
ω(Q×PSeq)

α = gα = f and so it remains to prove that h preserves

async and yield to.
As regards the preservation of async, since it is continuous, preserves ∪ in each argu-

ment, and is strict in its second argument, it suffices to establish preservation for individual
transition sequences. That is, it suffices to show, for all proper pure transition sequences u
and all v in Q-Trans, that:

h(u⊲ v) = u⊲A h(v)

where here, and below, we omit ↓’s, writing, e.g., u and v rather than u↓ and v↓.
As regards the preservation of yield to, since it is continuous and preserves ∪ in each

argument, it suffices to show, for all proper pure transition sequences u and all v in Q-Trans
that:

h(u⊳ v) = u⊳A h(v)

and:
h(u⊳ Ω) = u⊳A h(Ω)

For the last of these three equations, as h(Ω) = Ω, using Lemma 6.3, we see that is

enough to show that h(u−) = u−, and this holds as h is a homomorphism of models of LRes.
The proof of the first two equations is a simultaneous induction on the sum of the

lengths of u and v, invoking LProc equations on A as necessary. We begin with the first
equation. In the first case, we consider v = (σ, σ′). Here, on the one hand, we have:

h(u⊲ (σ, σ′)) = h((σ, σ′)u−) = h((σ, σ′)u−) = (σ, σ′)u−

using the fact that h is a homomorphism for the last equality, and, on the other, we have:

u⊲A h((σ, σ′)) = u⊲A h(aσ,σ′(dΩ))
= u⊲A (aσ,σ′(dΩ))
= aσ,σ′(u⊲A dΩ)
= aσ,σ′(d(u⊲A Ω) ∪ d(u⊳A Ω))

= aσ,σ′(d(u−)) (by Lemma 6.3)

= (σ, σ′)u−

For the next case we consider v = (σ, σ′(x, u′)). Here, on the one hand we have:

h(u⊲ v) = h({(σ, σ′(x, u′′)) | u′′ ∈ u ⊲⊳ u′})
=

⋃

u′′∈u⊲⊳u′ h((σ, σ′(x, u′′)))
=

⋃

u′′∈u⊲⊳u′ aσ,σ′(h((ηTRes
)
I↑
ω(Q×PSeq)

(x, u′′)))

=
⋃

u′′∈u⊲⊳u′ aσ,σ′(u′′ ⊲A f(x))
= aσ,σ′(

⋃

u′′∈u⊲⊳u′(u′′ ⊲A f(x)))
= aσ,σ′((u ⊲⊳ u′)⊲A f(x))

and, on the other hand, we have:

u⊲A h(v) = u⊲A h(aσ,σ′((ηTRes
)
I↑
ω(Q×PSeq)

(x, u′)))

= aσ,σ′(u⊲A h((ηTRes
)
I↑
ω(Q×PSeq)

(x, u′)))

= aσ,σ′(u⊲A (u′ ⊲A f(x)))

A MODEL OF COOPERATIVE THREADS 33

For the last case for the first equation we have v = (σ, σ′)v′, with v′ in Q-Trans, and we
calculate:

h(u⊲ (σ, σ′)v′) = aσ,σ′(h(u⊲ d(v′))) = aσ,σ′(h(d(u ⊲ v′ ∪ u⊳ v′)))
= aσ,σ′(d(h(u⊲ v′) ∪ h(u⊳ v′))) = aσ,σ′(d(u⊲A h(v′) ∪ u⊳A h(v′)))
= aσ,σ′(u⊲A (d(h(v′)))) = u⊲A aσ,σ′(d(h(v′)))
= u⊲A h((σ, σ′)v′)

applying the induction hypothesis in the second line.
Turning to the second equation, the first case we consider is where u = ε, and we have:

h(ε⊳ v) = h(Ω ⊳ v) = h(Ω) = Ω = Ω⊳A h(v) = ε⊳A h(v)

The second case is where u = (σ, σ′)Done and we have:

h((σ, σ′)Done⊳ v) = h((σ, σ′)v) = aσ,σ′(d(hv))
= aσ,σ′(halt ⊳A h(v)) = aσ,σ′(halt)⊳A h(v)
= (σ, σ′)Done ⊳A h(v)

The last case is where u = (σ, σ′)u′, with u′ a proper pure transition sequence, and we have:

h((σ, σ′)u′ ⊳ v) = h(aσ,σ′ (d(u′))⊳ v) = h(aσ,σ′ (d(u′ ⊲⊳ v)))
= aσ,σ′(d(h(u′ ⊲⊳ v))) = aσ,σ′(d(u′ ⊲⊳A h(v)))
= aσ,σ′(d(u′))⊳A h(v) = (σ, σ′)u′ ⊳A h(v)

applying the induction hypothesis to obtain the fourth equality.
Finally, the formula for the Kleisli extension follows from the construction of h, using

the Kleisli formula of Theorem 6.1.

As in the case of resumptions, one can go further and obtain a closely related, if less
elementary, picture of TProc(P) for arbitrary P .

Note that the proof of Theorem 6.4 is elementary, making use of definability in a similar
way to the proof of Theorem 6.2. However, unlike in the cases of Theorems 6.1 and 6.2,
we do not know any conceptual proof of Theorem 6.4. The difficulty is that the theory of
processes LProc, particularly the part concerning ⊳ and ⊲, seems somewhat ad hoc, and is
not built up in a standard way from simpler theories. There is surely more to be understood
here.

Nonetheless, with Theorem 6.4 available, we are in a position to give our algebraic
account of Proc. There is an isomorphism θProc :Q-Trans → TSeq\{ε}, where Q = {Ret},
sending u = (σ1, σ

′
1) . . . (σn, σ

′
n) to itself and u(σ, σ′ (Ret, v)) to u(σ, σ′ Ret)v. One then has

an isomorphism of ω-cpos θ̃Proc : Iω(Q-Trans) ∼= Proc given by: θ̃Proc(I) = θProc(I) ∪ {ε}.
It follows that Proc can be seen as the free model of LProc over the terminal ω-cpo {Ret},
as we now spell out. First, define the set of left shuffles u⊳ v of a pure transition sequence
u with a transition sequence v by setting

ε⊳ v = {ε}

and
(σ, σ′)u⊳ v = {(σ, σ′)w | w ∈ u ⊲⊳ v}

Then, we have:

34 M. ABADI AND G. D. PLOTKIN

Corollary 6.5. Equip Proc with the following operations:

(updatex,n)Proc(P) = {(σ, τ)u | (σ[x 7→ n], τ)u ∈ P} ∪ {ε}
(lookupx)Proc((Pn)n) =

⋃

n{(σ, τ)u ∈ Pn | σ(x) = n} ∪ {ε}
P ∪Proc Q = P ∪Q

ΩProc = {ε}
dProc(P) = {(σ, σ)u | σ ∈ Store, u ∈ P} ∪ {ε}

P ⊲Proc Q = async(P,Q)
P ⊳Proc Q =

⋃

u∈P,v∈Q u⊳ v

(where x ranges over Vars).

Then θ̃Proc : Iω(Q-Trans) ∼= Proc is an isomorphism of LProc-models, and Proc is the
free model of LProc over {Ret}, with unit (ηProc){Ret} :{Ret} → Proc given by:

(ηProc){Ret}(Ret) = {(σ, σ Ret)Done | σ ∈ Store}↓

The Kleisli extension of a map f :{Ret} → Proc is given by:

f †(P) = P ◦ f(Ret)

Proof. The proof is a calculation using Theorem 6.4. The following equations are useful:

θ̃Proc(u⊲ v) = (u⊲ θProc(v)) ↓

θ̃Proc(u⊳ v) = (u⊳ θProc(v)) ↓

where u is a proper pure transition sequence and v is a {Ret}-transition sequence.

As we now see, the algebraic view also determines the semantics of our language. This
achieves our aim of placing cooperative threads within the algebraic approach to effects,
thereby justifying the previous, more ad hoc, account.

First, we have that [[skip]] = (ηProc){Ret}(Ret) and that P ◦ Q = (Ret 7→ Q)†(P), so
the Kleisli structure determines the semantics of skip and composition, just as one would
expect from the monadic point of view.

Next, the update and lookup operations, together with the assumed primitive natural
number and boolean functions, determine the semantics of assignments, conditionals, and
while loops. The operations are equivalent to two generic effects, of assignment and reading:

:= :Vars× N → Proc ! :Vars → TProc(N)

One can use the reading generic effect to give the semantics of numerical expressions as
elements of TProc(N); with that, one can give the semantics of assignments, using the as-

signment generic effect, standard monadic means, and θ̃Proc. Similarly, one can use the
reading generic effect to give the semantics of boolean expressions as elements of TProc(B),
where B =def {true, false}; with that one can give the semantics of conditionals and while

loops, again using standard monadic means and θ̃Proc (as well as least fixed-points for while
loops).

Continuing, the d operation is that of the algebra; and block is modeled by ΩProc. Fi-
nally, the semantics of spawning is determined by async together with the cleaning function

−c :Proc → AProc

It turns out that the latter is also determined by algebraic means. Specifically, one can
regard AProc as a model of LRes as in Section 6.2 (so we ignore halt) and then extend it

A MODEL OF COOPERATIVE THREADS 35

to a model of LProc as follows. First for any proper pure transition sequences u and v we
define u⊲ v ∈ AProc inductively on v by:

u⊲ ε = {ε}
u⊲ (σ, σ′)Done = {(σ, σ′)u} ↓
u⊲ (σ, σ′)v = {(σ, σ′)w | w ∈ u ⊲⊳ v} ↓

where, in the last line, v is required to be proper. Then we put:

(asyncAProc)P (Q) =
⋃

u∈P,v∈Q

u⊲ v

and (yield toAProc)P (Q) = (asyncAProc)Q(P). With these definitions, −c is the extension of
the map Ret 7→ haltAProc to Proc.

In the converse direction one can consider adding missing algebraic operations to the
language, for example adding ∪ and yield to via constructs C or D and yield to C. The
latter construct is to the binary yield to as async is to the binary async. It generalizes
yield, which is equivalent to yield to skip. Its operational semantics is given by the rule:

〈σ, T, E [yield to C]〉 −→ 〈σ, T.E [skip], C〉

One may debate the programming usefulness of such additional constructs, but they
do allow one to express the equations used for the algebraic characterizations at the level
of commands. For example, the equation P ⊲ d(x) = d(P ⊲⊳ x) becomes:

(async C); yield;D
=

yield; ((async C);D or (yield to C);D)

6.4. Dendriform Algebras and Modules. We have found it useful to employ various
forms of shuffle: sometimes we shuffle two things of the same kind with each other, e.g., two
pure transition sequences with each other; and sometimes we shuffle two things of different
kinds with each other, e.g., a pure transition sequence with a transition sequence.

We have further found it useful to break down such shuffles into left and right shuffles,
e.g., in the case of the left and right shuffles of asynchronous processes with processes;
indeed we employ a uniform notation, writing ⊳,⊲, and ⊲⊳ for left shuffles, right shuffles,
and (ordinary) shuffles, respectively. Our algebraic account of threads has further involved
a number of equations concerning the interaction of these shuffle operations with each other
and with other operations.

Shuffle operations and their algebra have been studied in a variety of settings. In partic-
ular, Loday’s dendriform algebras [Lod01, FG08] provide a wide-ranging general notion of
left and right shuffling of two things of the same kind with each other. Foissy’s dendriform
A-modules [Foi07] provide the corresponding notion of action: left or right shuffling a thing
of one kind with a thing of another kind. We next relate our treatment to these general
concepts, thereby placing our various shuffle operations and our equations for them in a
standard algebraic context.

Let R be a given commutative semiring (with no requirement for a 0 or a 1). Then
a dendriform dialgebra is an R-module A equipped with two binary bilinear operations ⊳

36 M. ABADI AND G. D. PLOTKIN

and ⊲ such that, for all x, y, z ∈ A:

(x⊳ y)⊳ z = x⊳ (y ⊲⊳ z)
x⊲ (y ⊲ z) = (x ⊲⊳ y)⊲ z
(x⊲ y)⊳ z = x⊲ (y ⊳ z)

where x ⊲⊳ y =def x ⊳ y + y ⊲ x; it is commutative if x ⊳ y = y ⊲ x always holds. Then
(A, ⊲⊳) is a semigroup in the category of R-modules, equivalently ⊲⊳ is an associative bilinear
operation; it is commutative if the dialgebra is.

Given a dendriform algebra A, a dendriform A-module is an R-module M equipped
with two binary bilinear operations ⊳,⊲ : A × M → M such that, for all a, b ∈ A and
x ∈ M :

(a⊳ b)⊳ x = a⊳ (b ⊲⊳ x)
a⊲ (b⊲ x) = (a ⊲⊳ b)⊲ x
(a⊲ b)⊳ x = a⊲ (b⊳ x)

where ⊲⊳: A × M → M is given by: a ⊲⊳ x = a ⊳ x + a ⊲ x. Then ⊲⊳: A × M → M is a
bilinear action of (A, ⊲⊳) on M .

In all our examples we take R to be the natural two-element semiring over B; join
semilattices with a zero form B-modules (setting truex = x and falsex = 0). As a first
example, consider the B-module of the collection of all languages, i.e., all sets of strings
over a given alphabet, not containing ε. This is a commutative dialgebra, taking ⊳ to be
the left shuffle operation, and ⊲ to be the right one; ⊲⊳ is then the usual shuffle operation.

The semilattice of asynchronous processes AProc forms a commutative dendriform B-
algebra, setting:

P ⊳AProc Q = (yield toAProc)P (Q) P ⊲AProc Q = (asyncAProc)P (Q)

One then has that Q-Proc forms a dendriform AProc-module, setting:

P ⊳Q-Proc I = (yield toProc)P (I) P ⊲Q-Proc I = (asyncProc)P (I)

It follows that Proc also forms a dendriform AProc-module, using the definitions of the left
and right shuffling given in Corollary 6.5.

Algebraically, the first group of equations for LSpawn state the bilinearity of the two
module operations. The second group contains the second of the three module equations.
The equation

a⊲ (b⊳ x) = b⊳ (a ⊲⊳ x)

generalizing one considered above, holds in any module over a commutative dendriform
algebra. To account for the other two module equations algebraically one would need an
algebraic treatment of the dendriform algebra operations on AProc. These operations are
effect deconstructors rather than effect constructors. An account of unary deconstructors
has been given in [PP09], but a satisfactory treatment of binary ones remains to be found;
we therefore leave further algebraic treatment to future work.

7. Conclusion

A priori, the properties and the semantics of threads in general, and of cooperative
threads in particular, may not appear obvious. In our opinion, a huge body of incorrect
multithreaded software and a relatively small literature both support this point of view.
With the belief that mathematical foundations could prove beneficial, the main technical
goal of our work is to define and elucidate the semantics of threads. For instance, semantics

A MODEL OF COOPERATIVE THREADS 37

can serve for validating reasoning principles; our work is only a preliminary, but encouraging,
step in this respect.

Our initial motivation was partly practical—we wanted to understand and further the
AME programming model and similar ones. We also saw an opportunity to leverage devel-
opments in trace-based denotational semantics and in the algebraic theory of effects, and to
extend their applicability to threads. As our results demonstrate, the convergence of these
three lines of work proved interesting and fruitful.

We focus on a particular small language with constructs for threads. Several possible
extensions may be considered. These include constructs for parallel composition, nondeter-
ministic choice, higher-order functions, and thread-joining. More speculatively, they also
include generalized yields, of the kind that arise in the algebraic theory of effects, as dis-
cussed in Section 6. Importantly, our monadic treatment of threads indicates how to add
higher-order functions to the semantics.

Our results mostly carry over to these extensions. In some cases, small changes or
restrictions are required. In particular, the full-abstraction proof with nondeterministic
choice would use fresh variables; the one for higher-order functions might require standard
limitations on the order of functions, cf. [Jef95]. Thus, our approach seems to be robust,
and indeed—as in the case of higher-order functions—helpful in accounting for a range
of language features. Further, our algebraic analysis of the thread monad links it to the
broader theme of the algebraic treatment of effects. In that regard, as the discussion after
Theorem 6.4 indicates, there is clearly still further understanding to be gained.

Another possible direction for further work is the exploration of alternative semantics.
For instance, we could switch from the “may” semantics that we study to “must” seman-
tics. We could also define alternative notions of observation. As suggested in Section 5.3,
some of the coarser notions of observation might require closure conditions, such as closure
under suitable forms of stuttering and under mumbling. These may correspond to suitable
axioms on the suspension operator d, as alluded to in [Plo06]: we conjecture that stuttering
corresponds to d(d(x)) ≤ d(x) and that mumbling corresponds to d(x) ≥ x.

It would also be interesting to consider finer notions of observation that distinguish
blocking from divergence. To this end we could add constructs such as orElse [HMP05]
and, in the semantics, treat blocking as a kind of exception. Finally, we could revisit lower-
level semantics with explicit optimistic concurrency and roll-backs, of the kind employed in
the implementation of AME.

Acknowledgements

We are grateful to Mart́ın Escardó and Martin Hyland for their helpful comments and
suggestions.

References

[ABH08] Mart́ın Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of transactional mem-
ory and automatic mutual exclusion. Proc. 35th. ACM SIGPLAN-SIGACT Symp. on Principles of

Programming Languages (eds. George C. Necula and Philip Wadler), 63–74, ACM Press, 2008.
[AP93] Mart́ın Abadi and Gordon D. Plotkin. A logical view of composition. Theor. Comput. Science,

114(1):3–30, 1993.

38 M. ABADI AND G. D. PLOTKIN

[AP09] Mart́ın Abadi and Gordon D. Plotkin. A model of cooperative threads. Proc. 36th. ACM SIGPLAN-

SIGACT Symp. on Principles of Programming Languages (eds. Zhong Shao and Benjamin C. Pierce),
29–40, ACM Press, 2009.

[Abr79] Karl Abrahamson. Modal logic of concurrent nondeterministic programs. Proc. Int. Symp. on Se-

mantics of Concurrent Computation (ed. Gilles Kahn), Lect. Notes Comput. Sci., 70:21–33, Springer,
1979.

[AI07] Luca Aceto and Anna Ingólfsdóttir. The saga of the axiomatization of parallel composition. Proc.
16th. Int. Conf. on Concurrency Theory (eds. Lúıs Caires and Vasco Thudichum Vasconcelos), Lect.
Notes Comput. Sc., 4703:2–16, Springer, 2007.

[AHT02] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R. Douceur. Cooperative
task management without manual stack management. USENIX Annual Technical Conf., General Track

(ed. Carla Schlatter Ellis), 289–302, 2002.
[AZ06] Roberto Amadio and Silvano Dal Zilio. Resource control for synchronous cooperative threads. Theor.

Comput. Science, 358:229–254, 2006.
[BHM02] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects. Advanced Lectures from Int.

Summer School on Applied Semantics (eds. Gilles Barthe, Peter Dybjer, Lúıs Pinto, and João Saraiva),
Lect. Notes Comput. Sci., 2395:42–122, Springer, 2002.

[BMT92] Dave Berry, Robin Milner, and David N. Turner. A semantics for ML concurrency primitives.
Proc. 19th. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, 119–129, ACM
Press, 1992.

[Bou07] Gérard Boudol. Fair cooperative multithreading. Proc. 18th. Int. Conf. on Concurrency Theory (eds.
Lúıs Caires and Vasco Thudichum Vasconcelos), Lect. Notes Comput. Sci., 4703:272–286, Springer,
2007.

[Bou06] Fréderic Boussinot. Fairthreads: mixing cooperative and preemptive threads in C. Concurrency and

Computation: Practice and Experience, 18(5):445–469, 2006.
[Bro96] Stephen Brookes. Full abstraction for a shared-variable parallel language. Inform. Comput.,

127(2):145–163, 1996.
[Bro02] Stephen Brookes. The essence of parallel Algol. Inform. Comput., 179(1):118–149, 2002.
[CGA05] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher Donawa, Allan Kielstra,

Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-
uniform cluster computing. Proc. 20th. Annual ACM SIGPLAN Conf. on Object-Oriented Programming,

Systems, Languages, and Applications (eds. Ralph E. Johnson and Richard P. Gabriel), 519–538, ACM
Press, 2005.

[CM93] Pietro Cenciarelli and Eugenio Moggi. A syntactic approach to modularity in denotational semantics.
Proc. 5th. Biennial Meeting on Category Theory and Computer Science, 1993.

[FG08] Kurusch Ebrahimi-Fard and Li Guo. Rota-Baxter Algebras and Dendriform Algebras. J. Pure Appl.

Algebra, 212(2), 320-339, 2008.
[FH99] William Ferreira and Matthew Hennessy. A behavioural theory of first-order CML. Theor. Comput.

Science, 216(1-2):55–107, 1999.
[Foi07] Löıc Foissy. Bidendriform bialgebras, trees, and free quasi-symmetric functions. J. Pure Appl. Alge-

bra, 209(2):439–459, 2007.
[GMR09] Pierre Ganty, Rupak Majumdar, and Andrey Rybalchenko. Verifying liveness for asynchronous

programs. Proc. 36th. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (eds.
Zhong Shao and Benjamin C. Pierce), 102–113, ACM Press, 2009.

[GMP06] Dan Grossman, Jeremy Manson and William Pugh, What do high-level memory models mean
for transactions? Proc. 2006 Workshop on Memory System Performance and Correctness (eds. Antony
L. Hosking and Ali-Reza Adl-Tabatabai), pp. 62–69, ACM Press, 2006.

[HMP05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable memory trans-
actions. Proc. 10th. ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming (eds.
Keshav Pingali, Katherine A. Yelick and Andrew S. Grimshaw), 48–60, ACM Press, 2005.

[HP79] Matthew Hennessy and Gordon D. Plotkin. Full abstraction for a simple programming language.
Proc. 8th. Symp. on Mathematical Foundations of Computer Science (ed. J. Bečvář), Lect. Notes
Comput. Sci., 74:108–120, Springer, 1979.

[HdeBR94] E. Horita, J. W. de Bakker, and J. J. M. M. Rutten. Fully abstract denotational models for
nonuniform concurrent languages. Inform. Comput., 115(1):125–178, 1994.

A MODEL OF COOPERATIVE THREADS 39

[HPP06] Martin Hyland, Gordon Plotkin, and John Power. Combining effects: sum and tensor. Theor.

Comput. Science, 357(1–3):70–99, 2006.
[IB07] Michael Isard and Andrew Birrell. Automatic mutual exclusion. Proc. 11th. USENIX Workshop on

Hot Topics in Operating Systems, 1–6, 2007.
[Jef95] Alan Jeffrey. A fully abstract semantics for a concurrent functional language with monadic types.

Proc. 10th. Symp. on Logic in Computer Science, 255–264, IEEE Press, 1995.
[Jef97] Alan Jeffrey. Semantics for core Concurrent ML using computation types. Higher Order Operational

Techniques in Semantics (eds. Andrew D. Gordon and Andrew M. Pitts), 55–90, Cambridge University
Press, 1997.

[JR05] Alan Jeffrey and Julian Rathke. A fully abstract may testing semantics for concurrent objects. Theor.
Comput. Science, 338(1–3):17–63, 2005.

[JM07] Ranjit Jhala and Rupak Majumdar. Interprocedural analysis of asynchronous programs. Proc. 34th.
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (eds. Martin Hofmann and
Matthias Felleisen), 339–350, ACM Press, 2007.

[Lod01] Jean-Louis Loday. Dialgebras. Dialgebras and related operads, Lect. Notes Math., 1763:7–66,
Springer, 2001.

[SQL07] Microsoft. SQL Server 2005 books online. CLR Hosted Environment, at
http://msdn.microsoft.com/en-us/library/ms131047.aspx, 2007.

[PR97] Prakash Panangaden and John H. Reppy. The essence of Concurrent ML. ML with Concurrency (ed.
Flemming Nielson), 5–29, Springer, 1997.

[Plo06] Gordon D. Plotkin. Hennessy-Plotkin-Brookes Revisited. Proc. 26th. Foundations of Software Tech-

nology and Theoretical Computer Science (eds. S. Arun-Kumar & Naveen Garg), Lect. Notes Comput.
Sci., 4337:4, Springer, 2006

[PP02] Gordon Plotkin and John Power. Notions of computation determine monads. Proc. 5th. Int. Conf. on
Foundations of Software Science and Computation Structures (eds. Mogens Nielsen and Uffe Engberg),
Lect. Notes Comput. Sci., 2303:373–393, Springer, 2002.

[PP03] Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Appl. Categor. Struct.,
11(1):69–94, 2003.

[PP08] Gordon D. Plotkin and Matija Pretnar. A logic for algebraic effects. Proc. 23rd. Symp. on Logic in

Computer Science, 118–129, IEEE Press, 2008.
[PP09] Gordon D. Plotkin and Matija Pretnar. Handlers of Algebraic Effects. Proc. 18th. European Symp.

on Programming (ed. Giuseppe Castagna), Lect. Notes Comput. Sci., 5502:80–94, Springer, 2009.
[SJ05] Vijay A. Saraswat and Radha Jagadeesan. Concurrent clustered programming. Proc. 16th. Int. Conf.

on Concurrency Theory (eds. Mart́ın Abadi and Luca de Alfaro), Lect. Notes Comput. Sci., 3653:353–
367, Springer, 2005.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. Proc. 14th. Annual ACM Symp. on

Principles of Distributed Computing, 204–213, ACM Press, 1995.
[SKB07] Yannis Smaragdakis, Anthony Kay, Reimer Behrends, and Michal Young. Transactions with iso-

lation and cooperation. Proc. 22nd. Annual ACM SIGPLAN Conf. on Object-Oriented Programming,

Systems, Languages, and Applications (eds. Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes
and Guy L. Steele Jr.), 191–210, ACM Press, 2007.

[BCZ03] J. Robert von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric A. Brewer. Capriccio:
scalable threads for Internet services. Proc. 19th. ACM Symp. on Operating Systems Principles (eds.
Michael L. Scott and Larry L. Peterson), 268–281, ACM Press, 2003.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://msdn.microsoft.com/en-us/library/ms131047.aspx

	1. Introduction
	2. The Language
	3. Operational Semantics
	3.1. States
	3.2. Evaluation Contexts
	3.3. Steps

	4. Denotational Semantics
	4.1. Informal Introduction
	4.2. Transitions and Transition Sequences
	4.3. Interpretation of Commands
	4.4. Interpretation of Thread Pools
	4.5. Equivalences
	4.6. Two Extensions

	5. Adequacy and Full Abstraction
	5.1. Runs
	5.2. Adequacy
	5.3. Full Abstraction

	6. Algebra
	6.1. Resumptions
	6.2. Asynchronous Processes
	6.3. Processes
	6.4. Dendriform Algebras and Modules

	7. Conclusion
	Acknowledgements
	References

