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SUMMARY

Oct4 is an essential regulator of pluripotency in vivo
and in vitro in embryonic stem cells, as well as
a keymediator of the reprogramming of somatic cells
into induced pluripotent stem cells. It is not known
whether activation and/or repression of specific
genes by Oct4 is relevant to these functions. Here,
we show that fusion proteins containing the coding
sequence of Oct4 or Xlpou91 (the Xenopus homolog
of Oct4) fused to activating regions, but not those
fused to repressing regions, behave as Oct4, sup-
pressing differentiation and promoting maintenance
of undifferentiated phenotypes in vivo and in vitro.
An Oct4 activation domain fusion supported embry-
onic stem cell self-renewal in vitro at lower concen-
trations than that required for Oct4 while alleviating
the ordinary requirement for the cytokine LIF. At still
lower levels of the fusion, LIF dependence was
restored. We conclude that the necessary and suffi-
cient function of Oct4 in promoting pluripotency is
to activate specific target genes.

INTRODUCTION

Cells that can differentiate into all adult cell types exist transiently

in early embryos. When cultured in vitro, these pluripotent

embryonic stem cells (ESCs) can self-renew indefinitely (Evans

and Kaufman, 1981; Martin, 1981). Pluripotent, self-renewing

cell lines, called induced pluripotent stem cells (iPSCs), can

also be derived from somatic cells by transient ectopic expres-

sion of transcription factors that are normally expressed in

ESCs (Takahashi and Yamanaka, 2006). The pluripotent state

can be maintained in vitro by defined cytokines such as LIF

(Smith et al., 1988; Williams et al., 1988) and BMP4 or serum

(Ying et al., 2003) for mouse pluripotent cells. In particular,

removal of LIF leads to spontaneous differentiation of mouse

ESCs toward mesoderm and endoderm (Ying et al., 2003).

The class V Pou (PouV) transcription factor Oct4 is central to

both the generation and the maintenance of iPSCs and ESCs.

Thus, removal of Oct 4 from ESCs causes these cells to differen-

tiate into trophectoderm and primitive endoderm (Hay et al.,

2004; Niwa et al., 1998; Niwa et al., 2000), and of the original

four factors that together enable iPSC formation, (Oct4, Klf4,

Sox2, and c-Myc) (Takahashi and Yamanaka, 2006), only Oct4

is essential regardless of the source of somatic cell (Kim et al.,

2009). In mouse embryos, Oct4 is initially expressed in the inner

cell mass (ICM) of the blastocyst but persists in the pluripotent

epiblast and becomes progressively restricted to the posterior

region of the embryo, where progenitor cells remain throughout

gastrulation (Palmieri et al., 1994). Oct4�/� embryos die at preim-

plantation stages as a result of the differentiation of pluripotent

ICM progenitors to trophectoderm (Nichols et al., 1998). Oct4

homologs in nonmammalian species are also expressed in

gastrulation-stage progenitors, where they act to block preco-

cious differentiation (Cao et al., 2006; Lavial et al., 2007; Lunde

et al., 2004; Morrison and Brickman, 2006; Reim et al., 2004).

The Xenopus laevis PouV protein, Xlpou91, can support murine

ESC self-renewal of Oct4 null cells, and Oct4 mRNA can rescue

some Xenopus PouV knockdown phenotypes (Morrison and

Brickman, 2006). What gene-regulatory mechanisms are

required to establish and maintain ESCs and iPSCs, and in

particular, what role is played by Oct4?

Despite an abundance of data on Oct4 targets and pheno-

types, it is still unclear how Oct4 acts as a transcription factor

to regulate differentiation. Experiments with reporter genes in

cell lines suggest that Oct4 can function as both an activator

and a repressor of gene transcription (reviewed in Pan et al.,

2002), and Oct4 has been found to be associated with both acti-

vator and repressor complexes (Ang et al., 2011; Bilodeau et al.,

2009; Boyer et al., 2006; Pardo et al., 2010; Pasini et al., 2010;

Yeap et al., 2009; Yuan et al., 2009).
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Genome-wide chromatin immunoprecipitation (ChIP) experi-

ments, with both human and mouse ESCs, have detected

Oct4 bound to numerous genes, some of which are expressed

in ESCs and some of which are not (Boyer et al., 2005; Chen

et al., 2008; Kim et al., 2008; Loh et al., 2006). Some of these

genes become upregulated, and some downregulated, as

ESCs differentiate in response to Oct4 knockdown (Sharov

et al., 2008) (Loh et al., 2006). This finding has led to the sugges-

tion that, in ESCs, Oct4/PouV and its partners Sox2 and Nanog

simultaneously activate genes encoding components of a ‘‘plu-

ripotency network’’ and, simultaneously, repress differentia-

tion-specific genes (Bilodeau et al., 2009; Boyer et al., 2005;

Boyer et al., 2006; Chen et al., 2008; Kim et al., 2008; Loh

et al., 2006; Pasini et al., 2010). A contrasting suggestion is

that Oct4 drives the expression of genes required for differentia-

tion (and not for pluripotency) but this pathway is somehow

blocked in ESCs by the conflicting effects of other genes (e.g.,

Nanog, Klf4, etc.) that attempt to promote differentiation along

different pathways (Loh and Lim, 2011). One line of evidence

purported to support this idea is that overexpression of Oct4,

like its removal, causes ESCs to differentiate (Niwa et al., 2000).

Here, we study Oct4 derivatives designed to act exclusively as

activators or repressors of transcription. Each protein bears the

PouV DNA-recognition sequence fused to either a strong tran-

scriptional activation region (VP16 and derivatives thereof) or

a strong repression region (Engrailed or HP1). We find that the

activator, but not the repressor, fusions (along with other tran-

scription factors) drive iPSC formation. The activator fusions,

but not the repressor fusions, maintain the growth and pluripo-

tency of murine ESCs lacking wild-type Oct4, and the activator

fusions uniquely block differentiation of multipotent progenitor

cells in Xenopus embryos. While maintaining ESCs in place of

Oct4, an Oct4-activator fusion can render the pluripotent state

both LIF-independent and immune to an ‘‘overexpression’’

phenotype (apparently by strongly activating key genes). We

suggest that the activity of Oct4 as an activator is sufficient for

the induction of iPSC formation and the maintenance of ESCs

and embryonic progenitors.

RESULTS

Converting PouV Proteins to Activators and Repressors
Table 1 shows a series of fusion proteins, each with the DNA-

binding specificity of Oct4 or Xlpou91, designed to work exclu-

sively as activators or as repressors. Genes encoding these

proteins were constructed by fusing intact murine and human

Oct4 and Xlpou91 sequences, separately, to an activating region

derived from mammalian VP16; to the repressing region of the

Drosophila protein Engrailed (EnR); and to the mammalian

heterochromatin protein HP1. In some cases the flexible hinge

region of lambda C1 was interposed between the PouV protein

and attached regulatory regions, an approach that has been

particularly effective at converting full-length homeodomain

repressors to activators (Brickman et al., 2001; Brickman et al.,

2000; Zamparini et al., 2006). As a control, we also made fusions

in which the DNA-binding domain was damaged by the mutation

V267P (Niwa et al., 2002). We tested the activities of these fusion

proteins with reporters introduced into the previously described

murine ESC line ZHBTc4 (Niwa et al., 2000). Both endogenous

copies of Oct4 have been deleted from these cells, and an

Oct4 transgene, under control of a tetracycline (Tc)-repressible

promoter, has been added. The cells grow as ESCs in the

absence of Tc, and addition of Tc causes them to differentiate

into trophoblast and primitive endoderm cells. In the absence

of Tc, an introduced reporter gene bearing Oct4 binding sites

is expressed, but by 24 hr after the addition of Tc, the introduced

reporter fails to be expressed. mRNA and protein measurements

confirm that the added Oct4 gene was essentially silent at this

time. Within 96 hr after the addition of Tc, the cells have differen-

tiated (Morrison and Brickman, 2006; Niwa et al., 2002; Niwa

et al., 2000).

Table 1. PouV Fusion Proteins

Fusion Protein PouV Protein Hinge Transcriptional Regulatory Region Repeats

Oct4lVP2 mOct4 l C1 (91–132) VP16 (413–460) 2

XlPou91lVP2 XlPou91 l C1 (91–132) VP16 (413–460) 2

OCT4-VP16 hOCT4 - VP16 (425–455) 1

OCT4-VP16 hOCT4 - VP16 (425–490) 1

OCT4-VP16 (3F) hOCT4 - VP16 (PADALDDFDLDML) 3

Oct4lEnR mOct4 l C1 (91–132) EnR (168–281) 1

XlPou91lEnR XlPou91 l C1 (91–132) EnR (168–281) 1

OCT4-HP1a hOCT4 - HP1a 1

OCT4-HP1b hOCT4 - HP1b 1

OCT4-HP1g hOCT4 - HP1g 1

The human and mouse Oct4 genes and the Xenopus homolog XlPou91 were variously fused to one or more activating regions from VP16, to a repres-

sing region from theDrosophila Engrailed protein, and to one of each of the three intact isoforms of the human protein HP1. In some cases a sequence

encoding a hinge region in lambda repressor c1 was inserted between Oct4 or XlPou91, added regulatory sequences, and repeated regulatory

modules (Ohashi et al., 1994). PADALDDFDLDML is a single amino acid variant of an activating sequence found in VP16 (Baron et al., 1997). ‘‘Repeats’’

indicate the number of copies of the activation region in the corresponding fusion. The three OCT4-VP16 activation fusions are listed in the order of

their presumed activation strengths, referred to in the text as ‘‘weak,’’ ‘‘medium,’’ and ‘‘strong.’’ Abbreviations are as follows: m, murine; h, human;

Xl, Xenopus laevis.
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We cotransfected ZHBTc4 ESCs 24 hr after the addition of Tc

with, separately, one of two different Oct4 responsive reporter

genes (Niwa et al., 2002) and one or another of the Pou proteins

listed in Table 1. One reporter contains the Oct4- and Sox2-

dependent enhancer of the Fgf4 gene driving the TK promoter,

and the other reporter contains six copies of a reiterated oc-

tamer-binding site. Both Oct4lVP2 and Xlpou91lVP2 efficiently

activated both reporters, whereas Oct4lEnR and Xlpou91lEnR

repressed basal expression. The fusion proteins neither acti-

vated nor repressed transcription from a reporter lacking any

PouV protein-responsive elements. lVP2 and lEnR had little

activity when fused to Oct4V267P (Niwa et al., 2002) (Figure S1).

Activator Fusion Proteins Block Differentiation In Vivo
We injected mRNA encoding Xlpou91, Xlpou91lEnR, or

Xlpou91lVP2 into early Xenopus embryos and assessed, by

in situ hybridization and RT-PCR, the expression of early lineage

markers at gastrulation. We found that markers of early meso-

derm and endoderm differentiation (Sox17, Mixer, and Goose-

coid [Gsc]) were suppressed by Xlpou91 and Xlpou91lVP2

and were enhanced by Xlpou91lEnR. In contrast, the ventral

marker BMP4, whose activity has been linked to ESC self-

renewal (Morrison and Brickman, 2006; Ying et al., 2003), re-

sponded oppositely to these added factors (Figures 1A and

S2A). The capacity of Xlpou91lEnR to induce the expression

of differentiation markers implies that their induction is an indi-

rect effect of inhibiting the PouV-supported network of undiffer-

entiated gene expression.

Activator Fusion Proteins Rescue Oct4 Null ESCs
Figure 1B shows that exogenously added Xlpou91lVP2 and

Oct4lVP2 maintained ZHBTc4 ESC growth in the absence of

endogenous Oct4 (i.e., in the presence of Tc), whereas neither

of the repressor fusions did so. The colonies depicted in the

figure were generated by stable transfection of the ZHBTc4

ESCs with vectors expressing both the Pac gene (which renders

cells resistant to puromycin) and one or another wild-type PouV

proteins or PouV fusion protein under the control of the strong

constitutive CAG promoter. The efficiency with which Oct4lVP2

supported Oct4 null ESCs (the rescue index, or normalized

rescue efficiency) (Niwa et al., 2002) was equivalent to that

obtained with wild-type Oct4. Although the rescue index for

Xlpou91lVP2 was not as high as that obtained by Oct4lVP2,

both proteins supported identical undifferentiated colony

morphologies. Inspection of the rescued colonies suggests

that Oct4lVP2 and Xlpou91lVP2 rendered the cells less likely

to spontaneously differentiate than those rescued by wild-type

Oct4 or Xlpou91. Thus, the latter displayed typical ESC colony

morphology, with undifferentiated cells in the center and differ-

entiated cells around the periphery (Figure 1C). In contrast,

colonies rescued by the activator fusion proteins appeared

undifferentiated throughout (Figure 1D). The mutant Oct4V267P,

fused to either lVP2 or lEnR, was unable to support growth in

the absence of Oct4 (Figure S2B). We also noted that colonies

derived from stable transfection of ZHBTc4 with Oct4 or

Xlpou91, in the absence of Tc, contained more differentiated

cells than those in the presence of Tc (Figure 1C). This phenotype

is consistent with the observation that overexpression (as well as

underexpression) of Oct4 induces differentiation (Niwa et al.,

2000). However, colonies derived from transfection of the

activator forms of both proteins remained completely undifferen-

tiated in the absence of Tc, a matter we return to below. Trans-

fection of Oct4lEnR and Xlpou91lEnR into Oct4-expressing

cells produced colonies composed largely of differentiated cells,

as expected (Figure 1E). Similar completely undifferentiated

colony morphologies were observed when Oct4lVP2 was intro-

duced into the unrelated E14Tg2A ESC line (Figure S2C).

We further substantiated the rescue experiment just described

by generating ZHBTc4 cell lines maintained by wild-type Oct4

and, separately, by Oct4lVP2 and by Xlpou91lVP2. Colonies

like those in Figures 1C and 1D were expanded for at least five

passages in the presence of constant puromycin and Tc. The

Oct4lVP2- and Xlpou91lVP2-supported cultures had fewer

differentiated cells than did those supported by wild-type Oct4

(Figure S4A). In both cases we examined multiple independent

clonal cell lines to assure that ESC phenotypes were not the

result of isolated karyotypic changes. As Oct4lVP2 and

Xlpou91lVP2- expressing cell lines appeared identical, we

focused on Oct4lVP2-supported cell lines. Four different

Oct4lVP2-supported cell lines were also confirmed to have

normal karyotypes (data not shown). We found that these cell

lines self-renewed as efficiently as Oct4-supported lines, as as-

sayed by assessment of the capacity of single cells to generate

ESC colonies (Figures S4B and S4C). No difference in prolifera-

tion or plating efficiency was detected when these lines were

compared to either ZHBTc4 or the unrelated ESC line

E14Tg2A (Figure S4D). ESCs supported by Oct4lVP2, like

ZHBTc4 and E14Tg2A cells, expressed the ESC transcription

factors Nanog, Sox2, and Oct4 and the cell-surface markers

SSEA-1 and E-cadherin (Figure 3B, S4E, and S4F).

Activator Fusion Proteins Induce Pluripotency
As noted in the Introduction, Oct4 is typically required, alongwith

other transcription factors, to induce reprogramming of somatic

cells to iPSCs in vitro. We tested the ability of various PouV-acti-

vator fusions and -repressor fusions to substitute for wild-type

Oct4 in such a reprogramming experiment. We were able to

generate both human and murine stable iPSCs by using acti-

vator, but not, where tested, repressor fusions (Figures 2A and

2B). The mouse iPSCs in Figure 2A were generated with the

use of a single piggyBac transposon that bears the Sox2, Klf4,

and c-Myc genes, as well as either wild-type Oct 4 or Oct4lVP2,

all under control of a Tc-inducible promoter (Kaji et al., 2009).

Although the timing of the appearance of ESC-like iPSC colonies

after transfection and addition of the Tc analog Doxycycline

(Dox) was comparable in the two cases, the Oct4lVP2 colonies

grew faster than did their counterparts containing wild-type Oct4

(Figure 2A). The Oct4lVP2-derived iPSC colonies were

expanded in the presence of Dox. As expected for iPSCs, growth

became independent of the exogenous genes, as indicated by

growth in the absence of Dox (Figures S5A and S5B). When

Oct4lVP2-induced iPSCs were transplanted into adult mice,

they formed teratomas containing derivatives of all three germ

layers (Figure S5C), a further indication of pluripotency. To

generate human iPSCs, we infected human fibroblasts with len-

tiviral vectors expressing the three additional factors (all human)
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plus either wild-type human OCT4 or OCT4 fusion proteins

(Figure S3) (Papapetrou et al., 2009). Figure 2B shows that three

OCT4-repressing fusions eliminated iPSC formation and that

two activating fusions labeled ‘‘weak’’ and ‘‘medium’’ (see

Table 1 legend) substituted efficiently for wild-type OCT4. The

activator fusion labeled ‘‘strong’’ worked somewhat less effi-

ciently than did its weaker counterparts, but Figure 2C shows

Figure 1. Actions of PouV-Activator

and -Repressor Proteins

(A) In situ assays for the mRNA products of Mixer,

Sox17, and BMP4 were performed on stage 10.25

embryos after injection of Xlpou91, Xlpou91lVP2,

or Xlpou91lEnR mRNA at the two-cell stage into

both blastomeres. The images are from the

vegetal pole (top two rows) and the animal pole

(bottom row).

(B) The relative numbers of cells rescued by the

indicated regulators is shown as the rescue index.

Each transfection was divided, and half the cells

were plated in the presence of Tc and the rest in its

absence. The rescue index was calculated by

dividing the number of alkaline phosphatase (AP)-

positive colonies obtained in the absence and

presence of Oct4 (± Tc). Data represent the mean

values obtained from three independent experi-

ments.

(C–E) Morphology of ESC colonies supported by

wild-type PouV proteins (C), activator fusions (D),

and repressor fusions (E). The colonies were

generated by stable transfection of the ZHBTc4

ESCs with vectors expressing one or another wild-

type PouV or PouV fusion proteins and the Pac

gene (which renders cells puromycin resistant)

from an internal ribosome entry site (IRES) in the

same message, all under the control of the strong

CAG promoter. Constitutive expression of the

exogenous fusion proteins in the absence of Oct4

was selected on the basis of Puromycin resistance

in the presence of Tc. Cultures were stained for

AP (red).

that decreasing its concentration

improved its activity in this assay. Thus,

Oct4-activator fusions, but not -repressor

fusions, promote iPSC formation.

Gene Expression in Activator-
Induced and -Maintained
Pluripotent Cell Lines
Murine ESC Lines

We used microarrays to compare the

transcriptional profiles of ESCs main-

tained, respectively, by wild-type Oct4

and by Oct4lVP2. A set of genes directly

or indirectly responsive to wild-type Oct4

was previously determined by measuring

changes in gene expression after knock-

down of endogenous Oct4 (by adding Tc

to the parental ZHBTc4 ESCs) (Sharov

et al., 2008). Putative direct targets of

Oct4, from among these genes, were identified as being rapidly

responsive and having at least one Oct4 binding site in the

vicinity of the transcription start site on the basis of the ChIP-

PET method. Of the 372 putative Oct4-dependent targets

(from Sharov et al., 2008), some 94% were expressed at normal

or higher levels in Oct4lVP2- maintained cells. Expression of the

remaining 6% (23 genes) was reduced more than 2-fold
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(Figure 3A). Among these 23 there were only two genes with

known pluripotency-related activity: Sall4 and Lefty1. Most

genes associated with differentiation (e.g., Cdx2, Eomes, Fgf5,

Gata6, Gata3, Igf2, Hand1, Esx1) were either reduced or

expressed at normal levels (Table S1). All other pluripotency-

related genes were expressed at either normal or higher levels

in Oct4lVP2-rescued cells (Table S1, Figure 3B; also see Fig-

ure S7), with a small set of primordial germ cell and pluripotency

markers expressed at levels greater than 2-fold above wild-type

cells, including Gdf3, Dppa2, Dppa3 (Stella), Eras, Tcfcp2l1, Id3,

Fbxo15, Sox15, andNanog. Nanogwas expressed at an average

of 2- to 5-fold higher than in ordinary ESCs, and its distribution

was more homogeneous (Figure S4E). Gene ontology (GO)

annotations of the upregulated and downregulated genes in

the Oct4lVP2 cell line with more than 2-fold changes are listed

in Table S2. While there does not appear to be a single biological

process common to the upregulated genes in Oct4lVP2 cells,

the downregulated gene set was enriched in functions associ-

ated with embryonic development and differentiation. These

GO terms include a list of developmental transcription factors,

cell differentiation, system development, epithelial differentia-

tion, sex differentiation, cell migration,Wnt signaling, and several

categories related to neural development.

Murine and Human iPSC Lines

Endogenous pluripotency genes, includingOct4, Klf4, Sox2, and

c-Myc, were expressed in murine iPSCs generated from fibro-

blasts with Oct4lVP2 (plus the other three factors) (Figure 3C,

Figure S5). Expression of Nanog and Dppa4 at early times after

transduction of human fibroblasts with OCT4 fusions was

increased by increasingly stronger versions of OCT4-VP16 (Fig-

ure 3D). These markers were only modestly induced at this early

time point by wild-type OCT4, and not at all by OCT4-HP1.

ESCs Rescued and Maintained by Activator Fusions
Are Resistant to Differentiation
Overexpression of Nanog has been reported to counter the

induction of differentiation as a result of LIF removal (Chambers

et al., 2003). Consistent with these findings, our Oct4lVP2-sup-

portedmurine ESCs, which overexpress Nanog, are able to grow

in the absence of LIF, as shown in Figure 4A. Oct4lVP2-main-

tained ESC lines were AP positive and exhibited undifferentiated

ESC morphology when grown with or without LIF. These cells

did, however, grow more slowly in the absence of LIF than in

its presence (Figure 4 and Figures S6B and S6C). To better

understand the response of Oct4lVP2-supported cells to LIF,

we compared mRNA from Oct4lVP2-rescued cell lines and

two sets of control lines (Oct4-rescued and the parental ZHBTc4

cells) in response to LIF withdrawal (Figures 4B and 4C, Table

S3, and Figure S6). LIF withdrawal caused similar changes in

gene expression in the latter two lines, with a single set of

genes decreased (cluster a, Figure 4B) and a second set

increased (cluster b, Figure 4B). However, LIF withdrawal from

Oct4lVP2-maintained cell lines caused little change in expres-

sion of genes in either set. For example, expression of the plurip-

otency genes Nanog, Klf4, Sox2, and Rex1 was downregulated

in the control cells after LIF withdrawal, but their expression

was unaffected in Oct4lVP2-maintained cells. The endodermal

markers Gata4 and Gata6, upregulated upon LIF withdrawal

Figure 2. Oct4-Activator Fusions Support iPSC Generation

(A) Morphology of colonies resulting from mouse embryonic fibroblasts (MEF)

transfection with either wild-type Oct4 or Oct4lVP2 alongside the other re-

programming factors (cMyc, Klf4, and Sox2) at days 5, 9, 18, and 24 after

transfection in the presence of the Tc analog Dox. MEFs were transfected with

a piggyBac transposon bearing a single-message multigene expression

cassette under the control of a Tc-inducible promoter.

(B) OCT4 activator fusions support human iPSC generation. MRC-5 human

embryonic fibroblasts were transduced with combinations of four lentiviral

bicistronic vectors coexpressing each reprogramming factor, linked by a P2A

peptide, to a fluorescent protein (Papapetrou et al., 2009): SOX2 together with

mCitrine, KLF4 with mCherry, cMYC with mCerulean, and either wild-type

OCT4 or OCT4 fusion proteins with vexGFP. The efficiency was calculated

with the use of the experimental setup depicted in Figure S3C. In brief, the

number of Tra-1-81+ colonies (scored by immunostaining on day 15 after

transduction) per number of plated cells divided by the fraction of quadruple

positive cells as estimated by flow cytometry on day 2 after transduction.

(C) Lower levels of the strong activator (OCT4-VP16 [3F]) work more efficiently

in iPSC formation. MRC-5 human embryonic fibroblasts were transduced as in

(B) with the use of 3-fold titrations of the vector expressing either wild-type

OCT4 or OCT4-VP16 (3F) and constant amounts of the other three vectors

(SOX2, KLF4, cMYC). The reprogramming efficiency was calculated as in (B).

See also Figure S3C and its associated legend.
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Figure 3. Oct4 Activator Fusions Induce and Maintain the Expression of Pluripotency-Related Genes

(A) Oct4lVP2 enhances the expression of Oct4-positively-regulated genes and inhibits the expression of those genes negatively regulated by Oct4.

We compared the total set of genes changing when Oct4lVP2-supported cells were compared to controls, to the complete set of genes responsive to Oct4.

Themajority of these genes (94%) were expressed at normal (around the x axis) or higher than normal (above the x axis) levels in Oct4lVP2 cells. The basis for this

plot was the difference between the log expression of genes in Oct4lVP2 cells and the average log expression in both controls, plotted against the maximum

gene expression change (log ratio) in a time course afterOct4-Tc silencing (addition of Tc) in ZHBTc4 ESCs (the time course data from Sharov et al., 2008). Genes

with < 1.5-fold change of expression after Oct4-Tc silencing are not shown. Oct4-dependent genes that also contain Oct4, Nanog, and Sox2 binding sites are

indicated as targets (light blue or purple; see Sharov et al., 2008).

(B) Expression of pluripotency genes in Oct4lVP2-rescued cells. Expression levels of pluripotency-related genes including Nanog, Sox2, Klf4, and Rex1 were

determined by qRT-PCR. Expression levels of all analyzed genes were normalized to TBP levels for each sample.

(C) iPSCs generated with the use of Oct4lVP2 express levels of pluripotency markers similar to those of normal iPSCs. Expression levels of a range of pluripotent

cell markers were assessed by qRT-PCR. Nanog, Fgf4, Rex1, Dppa4, and Eras expression is shown in wild-type Oct4 and Oct4lVP2 iPSCs. Duplicate bars

represent independent iPSC lines. Expression levels were normalized to TBP levels for each sample. Key indicates the Oct4 protein used for reprogramming. E14

(embryonic day 14) Tg2A ESCs and MEFs were used for the sake of comparison.

(D) Wild-type OCT4 and its activator fusions, but not OCT4-HP1 repressor fusions, induce immediate early expression of pluripotency markers, NANOG and

DPPA4. MRC5 human embryonic fibroblast cells were harvested 48 hr after viral transduction for mRNA analysis. Expression levels in an iPSC line generated with

the use of wild-type forms of all four factors are shown for comparison. Levels of gene expression are relative to RPL7 and normalized to nontransduced control.
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from typical ESCs, remained unaffected by LIF withdrawal from

Oct4lVP2-supported ESCs. Expression of certain mesoderm

markers that are normally expressed alongside Oct4 in the

primitive streak (e.g., Brachyury and Wnt 3) were increased after

LIF removal from Oct4lVP2-supported cells (Figure 4C and

Figure S7). When examined globally, there was a striking nega-

tive correlation between the set of genes that normally respond

to LIF and those expressed at high levels in Oct4lVP2-main-

tained cells grown in the absence of LIF (comparison based on

average log ratio, r = �0.695, t = 153, p < 0.0001; also see

Figure S6G).

Despite the robust expression of Nanog and other pluripo-

tency-related genes in Oct4lVP2-maintained ESCs, and the

conferred LIF independence just described, the expression

of Oct4lVP2 itself was 2- to 5-fold lower than that of Oct4

in ESCs maintained by wild type Oct4 (Figure 4D, Figure S4E).

We repeated the original Oct4lVP2-rescue experiment to

generate new stable cell lines (see Figure S4A), adding the

same amount of Tc to the medium but a reduced amount of

puromycin. This reduced stringency of selection enabled the

isolation of new Oct4lVP2-supported cell lines (Oct4lVP2*),

which expressed even lower levels (from 1.4- to 2-fold

mRNA and/or protein) of Oct4lVP2 (Figure 4D). These lines

also express correspondingly lower levels of Nanog and other

pluripotency factors, similar to levels found in ESCs and in

cells rescued by Oct4 (Figure 4D, Figures S8C and S8D).

Upon removal of LIF, these cells differentiated to extents

similar to those of wild-type Oct4-rescued ESCs and parental

ZHBTc4 control cell lines (Figure 4E). Colonies generated

from clonal growth of Oct4lVP2* cell lines appeared similar

to wild-type Oct4-supported cell lines, both forming differenti-

ated cells at the periphery (Figures S8A and S8B) and both

sensitive to the differentiation-induced effect of Oct4 overex-

pression (Figure 4E).

Figure 4. Differential Effect of Oct4lVP2 Dose on ESC Differentiation

(A) Oct4lVP2 maintains undifferentiated phenotypes irrespective of the presence of LIF or additional Oct4. Oct4lVP2-supported and control ESC lines were

plated in the absence of LIF or absence of Tc (Oct4 overexpression) for 5 days. Cultures were stained for AP (red).

(B) Changes in gene expression normally associated with LIF withdrawal do not occur in Oct4lVP2-supported cells. Here, a heat map shows the 3,000 genes with

the most significant differences in gene expression after LIF withdrawal. Two clusters are bracketed by ‘‘a’’ and ‘‘b’’: a, genes that are downregulated in Oct4 and

ZHBTc4 cells, but not in Oct4lVP2 cells, after 120 hr of LIF withdrawal; b, genes that are upregulated in Oct4 and ZHBTc4 cells, but not in Oct4lVP2 cells, after

120 hr of LIF withdrawal.

(C) Pluripotency genes are supported in the absence of LIF inOct4lVP2 cells. Shown are plots comparingmean log intensity values of representative pluripotency

genes. Error bars represent SD between expression levels in two independent clones.

(D) Oct4lVP2* cells compared to original Oct4lVP2 and control cell lines. These cells, generated in reduced puromycin, express reduced levels of Oct4lVP2 and

Nanog. Western blots comparing expression levels of Oct4 and Nanog in the different rescued cell lines are shown.

(E) Oct4lVP2* cell lines differentiate in response to LIF withdrawal and Oct4 overexpression. Cells were plated at clonal density in the absence of LIF or Oct4

overexpression for 5 days. Two clones for each cell line except ZHBTc4 were used and stained for AP activity (red). Representative colonies are shown for each

condition.
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DISCUSSION

Our findings support the idea that the necessary and sufficient

action of Oct4 in inducing iPSC formation, and in blocking differ-

entiation in vitro and in vivo, is to directly activate (rather than

directly repress) expression of specific target genes. Thus, in

both mouse ESCs and Xenopus embryos, PouV/Oct4-repressor

fusion proteins induced differentiation, whereas the activator

forms maintained the undifferentiated pluripotent state. Our

results are consistent with a ‘‘positive only’’ model (based on

a different line of experimentation) for maintenance of pluripo-

tency of ESCs (Chamberlain et al., 2008).

Moreover, the Oct4-activator fusions, but not the -repressor

fusions (along with additional transcription factors), induced

iPSC formation. Analysis of gene expression profiles revealed

that Oct4-activator fusions specifically enhanced expression of

many genes identified as required for pluripotency, but not of

genes that drive differentiation. One of our ESC lines (see below)

maintains its ESC state even after withdrawal of LIF. These cells

do not differentiate in response to additional Oct4 and thus do

not display the usual Oct4 overexpression phenotype. These

results are consistent with recent reports that claim enhanced

efficiency in reprogramming as a result of the use of Oct4-

VP16, Sox2-VP16, and Nanog-VP16 fusion proteins (Wang

et al., 2011a) or Oct4-MyoD (Hirai et al., 2011).

We cannot exclude the possibility that Oct4 can repress

certain genes, particularly in cases where it may bind coopera-

tively with other pluripotency factors with repression activity,

and this might also explain its association with corepressor

complexes. Such an activity, were it to exist, would not under-

mine the central finding of this paper, namely that activation

and not repression is sufficient to induce and maintain the

undifferentiated state. It is highly unlikely that our Oct4-VP16

fusion can repress certain genes as it activates others. The

fusion activates two reporters bearing two different Oct4

DNA-recognition elements, both derived from natural enhancer

elements. Moreover, we found that the activator fusion acti-

vated transcription of Xist, putatively a gene repressed by

Oct4 in vivo (Navarro et al., 2008) (Table S1). These and other

observations indicate that the fusion protein Oct4lVP2 is likely

an activator of all Oct4 targets, or at least of all those required

for pluripotency.

Our work contrasts with the suggestion of Loh and Lim (2011)

that, in maintaining the ESC state, Oct4 attempts to drive differ-

entiation along a specific path (see Introduction). It would also

contradict the notion that an essential role of Oct4 in maintaining

pluripotency is to directly repress genes required for differentia-

tion (Bilodeau et al., 2009; Boyer et al., 2005; Boyer et al., 2006;

Chen et al., 2008; Kim et al., 2008; Loh et al., 2006; Pasini et al.,

2010). It would, however, be consistent with the suggestion of

Ying et al. (2008) that pluripotency is a ‘‘ground state’’ main-

tained by factors that prevent differentiation in response to (for

example) paracrine signaling. Genes activated by Oct4 (and

perhaps other pluripotency factors) would perform this function.

This picture would cast pluripotency as another example of a

‘‘differentiated’’ state maintained by positive feedback. Thus,

for other cases of terminal differentiation, an activator (or groups

of self-reinforcing activators) maintains expression of its own

gene as it activates expression of genes required for the differen-

tiated state (Hobert, 2008). Oct4 is widely believed tomaintain its

own expression in a feedback loop involving, perhaps, other

pluripotency gene regulators (Chew et al., 2005; Hall et al.,

2009; Sharov et al., 2008). We found that increasing the acti-

vating region strength of the Oct4 fusions (bearing VP16 deriva-

tives), as well as increasing the concentration of one of them,

resulted in higher levels of Nanog expression, suggesting that

Oct4 directly activates Nanog as part of this loop.

How, then, would we rationalize this proposal with findings

and models of others? First, we note the importance attributed

by Loh and Lim (2011) to the finding that overexpression of

Oct4 causes differentiation, a result taken to imply that Oct4 acti-

vates genes required for differentiation, not for pluripotency. But

overexpression experiments can be difficult to interpret. An acti-

vator works in a concentration-dependent manner, binding to

proper DNA sites (usually with other proteins) over a certain

concentration range and then, at higher concentrations, binding

less specifically to DNA. And, by virtue of protein-protein interac-

tions, an overexpressed activator can inhibit (squelch) the effect

of other activators and even its own action (Gill and Ptashne,

1988; Ptashne, 2009). Indeed, it has been reported that overex-

pression of Oct4 lacking a functional DNA-binding domain

induces ESCs to differentiate (Niwa et al., 2002), a result indi-

cating that the phenotype is not directly attributable to the ordi-

nary action of Oct4.

In our experiments, any side effects of overexpression

evidently have been eliminated by the use of the strong activator

fusions. Thus, in a line of ESCs maintained by Oct4lVP2, the

level of the Oct4lVP2 protein is low, significantly lower than

that of wild-type Oct4 found in the typical ESC. These cells

express high levels of select pluripotency factors, including

Nanog, and are resistant to the ordinary inducing effect of differ-

entiation upon LIF removal. These cells also, unlike ESCs main-

tained by exogenously added Oct4, do not differentiate when

additional Oct4 is expressed. Another line, selected to express

even lower levels of the activator, behaves like a typical ESC,

subject to differentiation upon LIF removal, despite the very

low level of expression of the activator fusion, and this line differ-

entiates upon expression of additional Oct4.

Second, we note the importance given to genome-wide ChIP

experiments showing that, in ESCs, Oct4 can be found bound to

regulatory elements at certain genes that are not expressed—

these genes become expressed upon differentiation. But lacking

further analysis, these purported facts do not show that Oct4 is

working as a repressor at those genes. Perhaps Oct4 is bound

to genes in a nonfunctional state, awaiting relief from, or addition

of, some partner to work. Polycomb, for example, is found at

many silent genes in ESCs, but its removal has little effect on

the maintenance of pluripotent gene expression (Schoeftner

et al., 2006), and there are indications that polycomb remains

at these genes during very early steps in differentiation (J.M.B.

and W.A. Bickmore, unpublished data). There may be

a misleading assumption at work here, namely that for a gene

to be ‘‘off’’ it must be actively repressed. Though this is true for

most genes in bacteria, it is not true in general for genes

in eukaryotes. In bacteria, specific repressors are required to

eliminate an otherwise significant basal level expression upon
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removal of activators, but this is evidently not true for eukaryotic

genes. Rather, it seems, the general inhibiting effect of nucleo-

somes maintains basal expression at very low levels (Struhl,

1999; Wang et al., 2011b). Thus, without activators that would

turn on the differentiation genes, there would be no need for

repressors to turn them off. And so in ESCs, where activators

maintain expression of pluripotency genes, differentiation genes

could simply be off (by default, as it were) until activated by some

activators that are rendered functional by virtue of gain (or loss)

of a signal.

EXPERIMENTAL PROCEDURES

ESCs were cultured on 0.1% gelatin-coated flasks or plates (IWAKI) in Glas-

gow modified Eagle’s medium (GIBCO) containing nonessential amino acids,

glutamine, sodium pyruvate, 0.1 mM mercaptoethanol, 10% fetal calf serum

(FCS), and LIF as described previously (Livigni et al., 2009; Morrison and Brick-

man, 2006). LIF withdrawal and Oct4 overexpression was performed accord-

ing to Morrison and Brickman (2006). For ESC self-renewal rescue experi-

ments, 2 3 107 ZHBTc4 ESCs were electroporated with 100 mg of linearized

plasmid DNA followed by culture with or without 2 mg/ml Tc (Sigma) for

2 days. Cells were then cultured in 2 mg/ml puromycin (Sigma) with or without

Tc for 7 days. The resulting colonieswere stained for alkaline phosphatase (AP)

activity (Sigma-Aldrich) or expanded as clonal lines (Morrison and Brickman,

2006). The cDNAs used for ESC rescue were inserted into pCAGIP vector

(Niwa et al., 2002; Niwa et al., 1991).

Luciferase assays were performed as described previously (Brickman et al.,

2001; Morrison and Brickman, 2006). ZHBTc4 ESCs (1 3 105) were plated on

a 24-well plate with 2 mg/ml of Tc. Twenty-four hours after plating, the reporter

and test plasmid were transfected with the use of Lipofactamine 2000 (Invitro-

gen). Twenty-four to forty-eight hours after transfection, the cells were

collected and lysed, and luciferase assay was performed with the Dual-Lucif-

erase Reporter Assay System (Promega). Reporter plasmids were a kind gift

from Professor Hitoshi Niwa (Riken Institute, Japan) (Niwa et al., 2002). The

expression vector used was the pCAG-IP plasmid.

Growth rates were assessed in 96-well plates with CellTiter 96 Aqueous One

Solution Cell Proliferation Assay (Promega). A total of 1,000 cells were plated

per well and assayed every 24 hr according to the manufacturer’s instructions.

AP staining was performedwith the Leukocyte Alkaline Phosphatase Assay Kit

(Sigma).

For antibody staining, cells were washed twice in PBS, followed by fixation

in 4%paraformaldehyde. Cells were then permeabilized in PBS + 0.1% Tween

20 (PBST), and blocking was performed by adding 1% bovine serum albumin

(BSA) (Sigma) PBST to the cells for 30 min at room temperature. Primary anti-

bodies (see Table S4 for details) were incubated overnight at 4�C, followed by

three washes in PBST for 10min each. Alexa Fluor-conjugated secondary anti-

bodies (see Table S4 for details) were diluted in blocking solution and added to

the cells for 3 hr at room temperature with the DAPI solution. Finally, cells were

washed three times in PBST.

Flow cytometry was used to analyze the percentage of ESC clones express-

ing the cell-surface markers SSEA1 and E-Cadherin (for the antibodies, see

Table S4). Cells were collected into the cell-dissociation buffer (GIBCO) and

incubated at 37�C for 10 min. Single-cell suspension was achieved by gentle

repeated pipetting. After PBS washes, cells were resuspended in 500 ml FACS

buffer (13 PBS and 10% FCS). To mark apoptotic cells, 5 ml/106 cells of 7AAD

solution (BD PharMingen) was added to cells. Samples were analyzed in

a FACSCalibur flow cytometer (BD Biosciences). Data were analyzed with

the Cell Quest software (BD Biosciences).

For qRT-PCR analysis, total RNA was prepared from cells with the use of

Trizol reagent (Invitrogen). RNA (0.5–1 mg) was used as a template for cDNA

synthesis with the use of Superscript III (Invitrogen). qRT-PCR was performed

with the use of a LightCycler 480 (Roche). Primers and PCR conditions are

listed in Table S5.

Embryo injection, culture, and in situ hybridization were described in Zam-

parini et al., 2006 andMorrison andBrickman, 2006. To generate RNA for injec-

tions, pCS2+ plasmids harboring the target cDNAs Xlpou91lVP2, Oct4lVP2,

Xlpou91lEnR, Oct4lEnR, Oct4, and Xlpou91 were linearized with BssHII and

used as a template for RNA synthesis with SP6 polymerase (Promega). Total

RNA was prepared from five embryos with the RNeasy Mini Kit (QIAGEN)

and DNase1 treatment. RNA (500 ng) was used as a template for cDNA

synthesis with Superscript III (QIAGEN). Real-time PCR was carried out with

a Lightcycler 480 (Roche). Real-time PCR primers are listed in Table S5.

For microarray analysis, two independent clones from each cell line were

used as biological replications. Cy3-CTP-labeled sample targets were

prepared from 2.5 mg of total RNAwith the use of a Low RNA Input Fluorescent

Linear Amplification Kit (Agilent). Cy5-CTP-labeled reference target was

produced from 2.5 mg of Stratagene Universal Mouse Reference RNA. Purified

target RNAs were hybridized to the NIA Mouse 44K Microarray version 3.0

(whole-genome 60-mer oligo arrays, Agilent Technology, design ID 015087)

(Carter et al., 2005) according to the manufacturer’s protocol (Two-Color

Microarray-Based Gene Expression Analysis Protocol, version 5.0.1). Data

were analyzed via NIA Array Analysis (Sharov et al., 2005) under standard

statistical conditions (FDR < 0.05, 2-fold expression level change).

For mouse iPSC generation, PiggyBac transposons containing Oct4 and

Oct4lVP2 were constructed as described previously (Kaji et al., 2009). Mouse

embryonic fibroblasts (MEFs) were isolated from 13.5 dpc (days postcoitus)

ROSA26 knockin rtTA-IRES-GFP embryos. MEF Nucleofector Kit 2 (Amaxa)

and program T-20 were used for nucleofection. A total of 2 3 106 cells were

transfected, and 53 105 cells were seeded on gelatine in 10 cm2 dishes. Cells

were cultured in ESCmedia supplemented with 1.5 ug of Dox. Colonies arising

after transfection were picked at day 24, trypsinized, and replated on gelatine.

Dox was removed from the culture after several passages.

Lentiviral vector production, human iPSC generation, and immunostaining

were performed as previously described (Papapetrou et al., 2009). Separate

lentiviral constructs encoding full-length human Oct4, Sox2, Klf4, and cMyc

linked by a P2A peptide to vexGFP, mCitrine, mCherry, and mCerulean,

respectively, were used. MRC-5 human embryonic fibroblasts (American

Type Culture Collection [ATCC]) were transduced with supernatants of the

four lentiviral vectors in the presence of 4 mg/ml polybrene for approximately

16 hr. Three days after transduction, the cells were plated at a density of

20,000 cells per 60 mm dish on a feeder layer of mitomycin-C-treated MEFs.

Analysis of the four vector-encoded transcription factors’ expression by flow

cytometry 3 days after transduction was used to identify groups with similar

expression levels (mean fluorescence intensity) for comparison. The

next day, the medium was switched to hESC medium supplemented with

6 ng/mL FGF2 and was replaced every day thereafter. Then, 16-18 days after

transduction, colonies with hESC morphology were mechanically dissociated

and transferred into 24-well plates on MEFs. Cells were thereafter passaged

with dispase and expanded to establish hiPSC lines.
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tion factor is differentially expressed in the mouse embryo during establish-

ment of the first two extraembryonic cell lineages involved in implantation.

Dev. Biol. 166, 259–267.
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