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Abstract. Seasonal and year-to-year variations in leaf cover
imprint significant spatial and temporal variability on bio-
geochemical cycles, and affect land-surface properties re-
lated to climate. We develop a demographic model of leaf
phenology based on the hypothesis that trees seek an optimal
leaf area index (LAI) as a function of available light and soil
water, and fit it to spaceborne observations of LAI over the
Amazon basin, 2001–2005. We find the model reproduces
the spatial and temporal LAI distribution whilst also predict-
ing geographic variation in leaf age from the basin centre
(2.1± 0.2 years), through to the lowest values over the de-
ciduous eastern and southern Amazon (6± 2 months). The
model explains the observed increase in LAI during the dry
season as a net addition of leaves in response to increased
solar radiation. We anticipate our work to be a starting point
from which to develop better descriptions of leaf phenology
to incorporate into more sophisticated earth system models.

1 Introduction

Seasonal and year-to-year variations in leaf area imprint sig-
nificant spatial and temporal variability on biogeochemical
cycles and affect land-surface properties related to climate
(Hayden, 1998). For example, the transfer of water from the
soil to the atmosphere is mostly via leaves through evapo-
transpiration, subsequently affecting humidity, air tempera-
ture and rainfall (Wilson and Baldocchi, 2000). Similarly,
carbon enters vegetated ecosystems through carbon fixation
via photosynthesis (White et al., 1999).

Over temperate regions leaf phenology is known to be
driven by changes in day length and temperature (Schwartz,

1999), although the relative importance of these determining
factors and how they might change with climate is poorly
understood (Korner and Basler, 2010).

However, the majority of the world’s forests retain leaves
year round: boreal forests which are dominated by evergreen
needle-leaf trees and often mixed with deciduous broadleaf
and needle-leaf species; and mesic tropical forests, domi-
nated by evergreen broadleaf species, which are responsi-
ble for the majority of terrestrial carbon fixation (Malhi and
Grace, 2000). Observed LAI over these evergreen forests,
particularly over the tropics, still show seasonal and year-
to-year variations (Myneni et al., 2007), but we lack knowl-
edge about the magnitude, geography, timing, and the pro-
cesses driving such variation, partly reflecting the difficulty
of taking year-round measurements. Consequently many
modelling studies assume that tropical leaf area is constant
(Cramer et al., 2001; Arora and Boer, 2005).

Space-borne observations of LAI offer the best opportu-
nity to develop a quantitative model of large-scale controls
of leaf area by virtue of their frequency and global cover-
age. We focus our study on the Amazon basin (10◦ N–10◦ S,
80◦ W–50◦ W). The vegetation in the region is mainly semi-
deciduous or evergreen tropical forest, but the species com-
position varies widely due to the differences in soil type and
altitude across the basin (Sombroek et al., 2000).

The Amazon basin experiences wet and dry seasons, with
the dry season generally running from June–September, with
longer and drier periods in the south-eastern regions (Som-
broek, 2001). Fig. 1 shows that the timing of low precipita-
tion coincides with an increase in direct radiation mainly due
to a decrease in cloud cover. Levels of diffuse radiation are
comparatively constant throughout the year.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1390 Caldararu et al.: Amazon leaf demography

Fig. 1. From top to bottom: MODIS leaf area index (m2 m−2), WorldClim precipitation (mm) (Hijmans et al., 2005), GEOS-4 direct and
diffuse photosynthetically active radiation, PAR (Wm−2) across the study region. The dry season, with precipitation levels of under 100 mm,
runs generally from July–September, period which coincides with an increase in direct PAR due to a decrease in cloud cover. We can observe
that the LAI also peaks during this period, reaching its lowest levels in the wet season.

Ground-based studies have reported an increase in leaf lit-
terfall during the dry period (Malhado et al., 2009; Chave
et al., 2010), but without simultaneous measurements of leaf
gain we cannot determine whether the increased litterfall rep-
resents a net loss of leaves. Studies using space-borne veg-
etation data (Myneni et al., 2007; Huete et al., 2006) have
reported an increase in greenness during the dry season over
the Amazon, even during severe droughts (Saleska et al.,
2007), but these drought observations have been disputed
(Samanta et al., 2010; Doughty and Goulden, 2008). These
observations are consistent with indirect evidence from the
seasonal cycle of satellite-observed emission of biogenic
trace gases (Barkley et al., 2009). The dry-season increase in
leaf area could be explained by soil moisture dynamics: wa-
ter is available all year round in the deeper soil layers (Harper
et al., 2010), which can be readily accessed by the large root-
ing depths of Amazonian vegetation (Nepstad et al., 1994;

Jipp et al., 1998). Under these circumstances, we expect that
light availability is the primary controlling factor for deter-
mining changes in leaf area (Wright and Vanschaik, 1994).
This implies that trees will carry more leaves in the dry sea-
son when direct radiation is greater. To test this idea and
to enable predictive modelling of Amazon leaf phenology,
we develop a simple leaf phenology model for the Amazon
tropical forest. Sect.3 describes this model, which we fit to
MODIS LAI data (Sect.2) to obtain parameter values for the
Amazon basin. We discuss our results in Sect.4 and demon-
strate how, in principle, our predictions of leaf area and age
distribution could impact carbon assimilation using a simple
carbon model. We conclude our paper in Sect.5.

Biogeosciences, 9, 1389–1405, 2012 www.biogeosciences.net/9/1389/2012/
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2 Data sets used

2.1 MODIS LAI data

We use leaf area index (LAI) data obtained from the MODIS
(Moderate Resolution Imaging Spectroradiometer) instru-
ment aboard the NASA Terra platform. The LAI/fPAR (frac-
tion of absorbed photosynthetically active radiation) product
collection 5 (MOD15A2) is available globally at a spatial res-
olution of 1 km every 8 days for the period 2000–present and
has been downloaded fromhttps://lpdaac.usgs.gov/. The 8
day temporal resolution is a result of compositing, i.e. assign-
ing the best value for the 8 day period based on maximum
fPAR. The data set is split into tiles (10◦ latitude by 10◦ lon-
gitude at the equator), which cover northern South America
and include the Amazon basin. We use tiles h10-12v08 and
h10-12v09 for the years 2001 to 2005.

The LAI is calculated using a radiative transfer algorithm
(the main algorithm), which uses the red (648 nm) and near-
infrared (858 nm) bands. The algorithm uses biome-specific
vegetation structure and height, leaf type and soil brightness
to obtain LAI values (Yang et al., 2006; Knyazikhin et al.,
1997, 1999). In conditions where the main algorithm cannot
be applied, a back-up algorithm is used, in which case the
LAI value is calculated using an empirical relationship be-
tween Normalised Difference Vegetation Index (NDVI) and
LAI. The data quality is affected by the presence of cloud,
atmospheric aerosol loading and snow cover. Snow cover
is not an issue for our study region, but cloud cover can af-
fect the quality of the data, especially during the wet season,
while aerosols from biomass burning can interfere with mea-
surements during the dry season. The quality flags provided
along with the LAI data offer information on overall data
quality, the algorithm used, cloud cover and aerosol pres-
ence. Ground validation studies (Cohen et al., 2006) have
shown that the back-up algorithm is often unreliable and our
analysis of the data over the Amazon region shows that val-
ues assigned by the backup algorithm are often unrealisti-
cally low, leading to large week-to-week swings in LAI. As
a consequence, we remove any LAI values calculated using
the back-up algorithm prior to spatial averaging.

LAI retrievals of vegetation often have saturation prob-
lems in that LAI becomes insensitive to changes in re-
flectance. Studies have shown that this was an issue for
high-biomass areas for collections 3 and 4, but this has been
considerably improved for collection 5 (Yang et al., 2006).
Ground based values of LAI in the Amazon basin range
from 3.5–6 m2 m−2 (Malhado et al., 2009; Aragão et al.,
2005; Roberts et al., 1996; Meir et al., 2000), with values
of up to 10 m2 m−2 registered by some studies (Doughty and
Goulden, 2008), with differences arising from the different
measurement methods. MODIS LAI values are in the range
2–6 m2 m−2, which provides us with some confidence that
there are no major saturation problems.

When relating leaf reflectance measurements to seasonal
cycles we must take into account the fact that changes in
observed reflectance can also be caused by changes in the
number of young leaves, as these have different reflectance
properties. This has been advanced as an explanation for the
observed seasonal swings over the Amazon basin by several
studies (Doughty and Goulden, 2008; Asner and Alencar,
2010; Aragão et al., 2009; Brando et al., 2010). However,
the observed seasonal changes in LAI are too large to be at-
tributed to a flush of new leaves only (Samanta et al., 2012).

The study region includes lowland tropical forests, alpine
forests, savannas and grasslands. As our study is focused on
forests, we use the MODIS landcover product MOD12Q1 to
filter non-forested pixels. We use the provided IGBP classi-
fication scheme and have retained only pixels in classes 1–
5, evergreen needleleaf forest, deciduous needleleaf forests,
deciduous broadleaf forest, evergreen broadleaf forest and
mixed forest. As there is no way to distinguish between low-
land and alpine forests we include both in our analysis.

We reproject the LAI data to an orthogonal projection and
average it to the resolution of the GEOS-4 PAR data (2◦ lat-
itude and 2.5◦ longitude) and subsequently fit our model at
this resolution.

2.2 Radiation data

We use photosynthetic active radiation (PAR) fields from as-
similated meteorological data products of the Goddard Earth
Observing System (GEOS-4) based at the NASA Global
Modeling and Assimilation Office (GMAO) (Bey et al.,
2001). The temporal resolution of this data is 1 day and the
spatial resolution is 2◦ × 2.5◦.

2.3 Soil moisture data

We use the volumetric soil moisture for 10–200 cm depth
from the NCAR/NCEP reanalysis daily average surface
flux data set (http://www.esrl.noaa.gov/psd/data/gridded/
data.ncep.reanalysis.surfaceflux.html) (Kalnay et al., 1996).
The data is available at global scales at daily timesteps for
the period 1948 to present on a Gaussian grid. We reproject
the data onto the orthogonal GEOS-4 grid for model fitting.

3 Leaf phenology model

The central assumption of our model is that trees adjust their
gains and losses of leaves in order to try to achieve, at any
given time, an optimal LAI, which we refer to as the target
LAI, LAI targ. The value of LAItarg is determined as the mini-

mum of a light-limited target, LAIlight
targ , and a water-limited

target, LAIwater
targ . We define LAIlight

targ such that the bottom
layer of leaves receives just enough light to return a positive
carbon balance, i.e., receives light at the light compensation

www.biogeosciences.net/9/1389/2012/ Biogeosciences, 9, 1389–1405, 2012
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Table 1. Model parameters

Symbol Units Description

Cdirect Wm−2 Light compensation point for direct PAR (Eq. 1, main paper)
Cdiffuse Wm−2 Light compensation point for diffuse PAR (Eq. 1, main paper)
p days Length of time window for average PAR
gainmax m2 m−2 Maximum gain rate for new leaves
acrit years Age after which leaves start ageing
µ0 years−1 Background decay constant
µ1 years−1 Age-related decay constant

pointC as derived from Beer’s law:

LAI light
targ = −

1

α
ln(

C

I0
), (1)

whereI0 is the incoming PAR at the top of the canopy and
α is the light attenuation coefficient applying to Beer’s Law,
which we have fixed to 0.5 (AppendixA1). To recognise
the potentially important difference between direct and dif-
fuse light we apply Eq.1 separately for both direct and dif-
fuse PAR, to determine their respective compensation points
(Cdirect andCdiffuse), and then keep the minimum of the two
values. For both diffuse and direct PAR we assume that, in
order to avoid sub-optimal responses to very short-term vari-
ation in light, trees calculate the target LAIlight

targ using an ef-
fective I0, defined as the average over the previousp days.
We drive Eq.1 with GEOS-4 reanalysis estimates of incom-
ing PAR (Sect.2.2). We define the water-limited target as
LAI water

targ = β1 + β2Ws, whereWs is soil moisture (from the
NCAR/NCEP Reanalysis, Sect.2.3) andβ1 andβ2 are em-
pirical coefficients (AppendixA2) We assume leaf demog-
raphy (the gain and loss of leaves of different ages) is deter-
mined by the factor limiting LAItarg. If the current LAI is be-
low LAI targ trees add new leaves of agea = 0 at a maximum
rate gainmax to reach LAItarg. If LAI targ is water limited and
the current LAI is above LAItarg, to avoid excessive water
loss or overheating leaves, trees lose leaves, beginning with
the oldest leaves, until they achieve LAItarg. When LAItarg
is light limited and LAI is above LAItarg, trees add no new
leaves, but do not actively drop leaves. In all of the above
cases, leaves are subject to continuous leaf loss according to
a mortality rateµ due to leaf ageing that depends only on leaf
agea. We define a minimum age,acrit (years), below which
we only consider the background loss, e.g. herbivory, branch
loss, so that the mortality isµ = exp−µ0. Leaves older than
acrit are lost at a faster rateµ = exp−µ1 which is caused by
leaf ageing. In order to calculate the age-dependent mortality
we introduce the concept of leaf cohorts, defined as a group
of leaves of the same age. For each cohort LAI(a,x, t) we
apply the mortality rate as:

LAI (a,x, t) = µ(a)LAI (a − 1,x, t − 1), (2)

with the mortality rateµ defined as above. The overall LAI
at each time step, LAI(x, t) is the sum of all leaf cohorts.

Overall the rate of change of LAI at each locationx and
time t (Fig. 2) is:

d

dt
(LAI (x, t)) = P(I0(x, t),LAI (x, t − 1)) −

−L(LAI (x, t),Ws(x, t)), (3)

where P(I0(x, t),LAI (x, t − 1)) denotes production pro-
cesses andL(LAI (x, t)Ws(x, t)), refers to loss processes
due to both the age-related mortality rate and active leaf
dropping due to water stress. When integrated over
time t , Eq. 3 provides, for each locationx and time
t , a predicted LAI (AppendixB1) given environmental
drivers (direct and diffuse PAR, and available soil mois-
ture), and given the value of 9 parameters specific to lo-
cationx: Cdirect,Cdiffuse,p,gainmax,acrit,µ0,µ1,β1,β2 (Ta-
ble 1). Initial parameter estimates (not shown) estimated
that LAIlight

targ < LAI water
targ for nearly all locations at nearly all

times, such that the fit to data was not statistically improved
by considering water limitation of leaf area so that we can
set LAItarg = LAI light

targ ; consequently we do not discuss soil
moisture further.

We simultaneously fit the above parameters using a
Bayesian approach (AppendixB) over our study region with
a spatial resolution of 2◦ (latitude) × 2.5◦ (longitude) to
collection 5 of the LAI data from the MODIS satellite in-
strument, which was spatially averaged to this resolution
(Sect.2.1).

4 Results

Fig. 3 shows that the model reproduces the spatial distri-
bution of mean LAI (Pearson correlation coefficientr2

=

0.9), capturing the high values (up to 4.8± 0.1 m2 m−2) over
the central and southern Amazon basin and lower values
(4.0± 0.2 m2 m−2) over the Eastern regions. More impor-
tantly, the model reproduces the broad spatial distribution of
LAI amplitude, defined as the difference between the maxi-
mum and minimum monthly LAI, with a statistically signifi-
cant correlation coefficient ofr2

= 0.46. This result supports

Biogeosciences, 9, 1389–1405, 2012 www.biogeosciences.net/9/1389/2012/



Caldararu et al.: Amazon leaf demography 1393

Fig. 2. How to calculate the predicted leaf age distribution and predicted total LAI for a model driven only by light. Note that the calculation
begins with the leaf age distribution from a previous timet − δt at the same location, which is updated to account for background leaf
mortality, and the addition of new (age = 0) leaves as driven by the LAI target, producing a predicted leaf age distribution for timet .

www.biogeosciences.net/9/1389/2012/ Biogeosciences, 9, 1389–1405, 2012



1394 Caldararu et al.: Amazon leaf demography

Fig. 3. MODIS (top) and model (bottom) leaf area index (LAI) over the Amazon (10◦N–10◦S, 80◦W–50◦W), 2001–2005 averaged over a
1×1 km grid. (a) mean LAI (m2 m−2), (b) mean annual amplitude of LAI (m2 m−2), and(c) mean timing of peak LAI (day of year).

our model structure because, unlike the mean LAI, the LAI
amplitude is highly constrained by model assumptions; the
maximum LAI amplitude is determined by the amplitude of
incoming PAR.

Figure 4 shows that the model generally has a negative
bias with respect to amplitude, which we attribute at least in
part to measurement noise, with mean MODIS (model) LAI
amplitude of 1.5± 0.4 (0.7± 0.4) m2 m−2, but the MODIS
value falls within the confidence intervals of the model
(Fig. 5). Similarly, the model reproduces the seasonal timing
of LAI variation (Fig. 4), which is also highly constrained
by the model structure, as the greatest target LAI occurs at
the time of peak incoming PAR. We find that our model gen-
erally describes between 20–80 % (median of 31 %) of the
observed temporal variability of LAI at any one 2◦

× 2.5◦

grid cell.
Fig. 6 shows posterior model parameters, which provide

further insight into the underlying processes that determine
observed variations in LAI. The spatial variations of the pa-
rameters are a reflection of not only the seasonality but also
of species composition, soil type or nutrient availability. The
two compensation points,Cdirect andCdiffuse, can be inter-

preted as a measure of the shade adaptation in trees, with a
lower compensation point indicating leaves that are adapted
for lower light conditions. We estimate thatCdirect is lower
in the south of the Amazon, with values of 1.5 compared to
5 Wm−2 elsewhere. In contrast,Cdiffuse, which effectively
limits the overall compensation point during the dry season
resulting in a lower LAI amplitude, is more homogeneous
across the basin with mean values of 0.23 Wm−2. Our val-
ues for the compensation points are broadly consistent with
ground-based measurements (Riddoch et al., 1991), provid-
ing further support for our methodology.

The delayp represents the time required for the veg-
etation to respond to changes in PAR. We find thatp is
generally 14 days for most of the basin. The exception is
over the northwestern region, wherep > 1 month, suggest-
ing that vegetation over this region is slower to respond to
changes in PAR. The maximum gain of LAI is typically
around 1 m2 m−2 month−1, with the highest values (up to
2.2 m2 m−2 month−1) over the eastern, drier regions corre-
sponding to an area with a higher LAI amplitude and a more
pronounced seasonal cycle.

Biogeosciences, 9, 1389–1405, 2012 www.biogeosciences.net/9/1389/2012/
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Fig. 4. LAI time series in(a) the eastern Amazon (8◦ N 62.5◦ W), (b) the semi-deciduous Amazon (0◦ N 72.5◦ W), and(c) the evergreen
central Amazon basin (4◦ N 67.5◦ W), as predicted by the model (black line) and MODIS LAI data (blue line). Gray shaded area represents
95 % confidence intervals. Blue bands represent aproximate dry seasons.

Fig. 5. Model uncertainty for mean LAI and annual amplitude (the difference between the maximum and minimum monthly LAI). We used
samples drawn from the posterior distribution to calculate model LAI values and then obtain posterior means and confidence intervals. Here,
the uncertainty is represented as the difference between the upper and lower bounds of the 95 % conidence intervals using parameter posterior
distributions.

To help interpret our estimated leaf loss parameters, deter-
mined by the amplitude of the observed LAI seasonal cycle,
we calculate a leaf lifespanτ95 as the time at which 95 % of
the leaves from a cohort have dropped, based on the expo-
nential decay ratesµ0 andµ1 (Eq.2):

τ95 = −
ln0.05

µ1
−

µ0

µ1
acrit + acrit, (4)

with variables as defined in Table1. Figure6 shows that
τ95 is longest in the middle of the Amazon basin, with val-
ues of around 2.1± 0.2 years, and lower in the Southern and
Eastern regions (1.5± 0.7 years), where the vegetation has a
larger deciduous component.

These lifetimes are consistent with sparse ground-based
studies over the same region, which report values between 2

months and 6.4 years (Reich et al., 2004) and in other tropical
forests (up to 26 months (Sharpe, 1997; Osada et al., 2001)).

To obtain an estimate of parameter uncertainty, we use the
posterior distribution resulting from the fitting algorithm to
calculate 95% confidence intervals (Fig.7). Most param-
eters are well constrained, with confidence intervals of 0.1
(±0.07) of the posterior mean for most parameters. The ex-
ceptions are two of the leaf mortality parameters (Fig.7f and
g), with confidence intervals of 0.8 (±0.2) for the base mor-
tality rates,µ0 and 0.5 (±0.1) for the age related rate,µ1.
This can indicate a trade-off between the two parameters as
they both contribute to determining the overall leaf lifespan.
Also, the diffuse compensation pointCdiffuse (Fig. 7b) is less
well constrained in the north-eastern regions.

www.biogeosciences.net/9/1389/2012/ Biogeosciences, 9, 1389–1405, 2012



1396 Caldararu et al.: Amazon leaf demography

Fig. 6. Mean posterior parameters that describe leaf gain and loss:(a) direct PAR compensation point,Cdirect (W m−2); (b) delay in vege-
tation response to changes in PAR,p (days);(c) maximum number of leaves that can be added over a month, gainmax (m2 m−2 month−1);
and(d) mean cohort leaf lifetimeτ95 defined as the time at which 95 % of the leaves from a cohort have dropped (years).

Our model also allows us to estimate the leaf age distribu-
tion at any point over the basin, something that would be ex-
tremely difficult to do using traditional means. Fig.8 shows
that leaves in regions with a high leaf turnover rate are gen-
erally younger than one year, with a high proportion of very
young leaves (less than 6 months) with an approximately ex-
ponential leaf age distribution which shows pronounced sea-
sonality between wet and dry seasons. In contrast, over the
evergreen areas of the central Amazon basin we estimate a
higher proportion of leaves older than 1 year and a leaf age
distribution with a less pronounced seasonality. In the more
deciduous regions in the southern basin, we find distinct leaf
cohorts originating from past growing seasons.

To provide an example of the potential impact of our new
estimates of leaf age distribution on large-scale calculations
of biogeochemistry, we incorporated this information into a
simple model of carbon assimilation. We present three sce-
narios: (1) using a constant LAI and constant leaf age distri-
bution throughout the year, (2) using the predicted LAI with a
constant leaf age distribution and (3) using the predicted LAI
and leaf age distribution. Fig.9 shows that the seasonality
of the carbon flux is driven mainly by the incoming PAR and
not by changes in LAI. When we include the predicted LAI,
the overall photosynthesis is higher by only approximately
1 µmol m−2 s−1 during the dry season. However, if we in-
clude a leaf age adjusting factor (AppendixC), the assimila-
tion rate is lower by an average of 1.5 µmol m−2 s−1 through-

out the year. The largest difference (3.37 µmol m−2 s−1) oc-
curs in June, when the new leaves start appearing in response
to increased sunlight. The assimilation also peaks later than
when using a constant LAI, as new leaves reach peak pho-
tosynthetic rates only after a certain period of time. While
some ground studies report a decrease in assimilation rate
during dry periods (Malhi et al., 1998; Miranda et al., 2005)
and during severe drought periods (Phillips et al., 2009), the
lower assimilation rate at the start of the dry season has been
observed in ground studies (Hutyra et al., 2007; Goulden
et al., 2004; Graham et al., 2003; Bonal et al., 2008; da Rocha
et al., 2004) but previous models were unable to predict this
pattern. The hypothesis advanced by one of these studies
(Hutyra et al., 2007) was that the emergence of new leaves
at the start of the dry season would create this pattern, which
is quantitatively supported by the leaf demography predicted
by our model.

5 Concluding remarks

We present a simple phenology model for the Amazon basin,
which we fitted to 5 years of MODIS LAI data. We showed
that our model reproduced the observed increase in LAI dur-
ing the dry season as a response to an increase in direct
solar radiation. Our model parameters provided further in-
formation about the vegetation in the Amazon basin. The

Biogeosciences, 9, 1389–1405, 2012 www.biogeosciences.net/9/1389/2012/



Caldararu et al.: Amazon leaf demography 1397

Fig. 7. Parameter uncertainty derived from the posterior distribution, expressed as 95 % confidence intervals relative to posterior means
for (a) direct PAR compensation point,Cdirect; (b) diffuse PAR compensation point,Cdiffuse; (c) delay in vegetation response to changes
in PAR, p; (d) maximum number of leaves that can be added over a month, gainmax; (e) age after which age related decay starts, agecrit;
(f) background decay constant,µ0 and(g) age-related decay constant,µ1.

www.biogeosciences.net/9/1389/2012/ Biogeosciences, 9, 1389–1405, 2012
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Fig. 9. Gross carbon assimilation calculated using a simple carbon
model for a constant LAI, model LAI and model LAI including the
temporal variations in leaf age. The values presented are monthly
means over a 5 year period at one location (8◦ N 55◦ W). All values
are µmol m−1 s−1.

model also provided leaf demography estimates, which can
be used to improve predictions of the seasonal carbon cycle,
which we demonstrated in principle using a simple carbon
model. We showed that using our predicted leaf demogra-
phy explains observed decrease in carbon assimilation at the
start of the dry season. Carbon fixation is only one of many
examples of leaf-age-dependent processes of which our cur-
rent understanding is hampered by incomplete knowledge of
leaf demography. Recent work has shown that including a
better description of leaf phenology in Earth system mod-
els can significantly revise estimates of land surface warm-
ing (Bounoua et al., 2010). The demographic model pre-
sented here can be used to predict responses of Amazon leaf

demography to future changes in climate and could be ex-
tended to include other tropical regions where leaf phenology
is driven partially or wholly by soil moisture. We therefore
anticipate that the insights afforded by our analysis will have
far-reaching implications for improving current understand-
ing of the natural carbon cycle in the Amazon and elsewhere.

Appendix A

Model structure

A1 Attenuation Coefficient

To quantify the attenuation of photosynthetic active radiation
(PAR) as it passes through a forest canopy, we used Beer’s
law:

I = I0e
−αL, (A1)

where I0 is the incoming PAR (Wm−2) at the top of the
canopy,I is the light level at layerL inside the canopy and
α is the light attenuation coefficient. We assume a vertically
homogeneous canopy with no leaf clumping. The light at-
tenuation coefficient is a function of the solar inclination an-
gle,φ. For a random distribution of leaf angles this is equal
to α =

0.5
sinφ

. We use a homogeneous canopy with no leaf
clumping and a random leaf angle distribution as these as-
sumptions are valid for canopies at a large scale. Because we
are using daily time scales, we can, for simplicity, calculate
the attenuation coefficient at its maximum value for a solar
angle equal to 90◦. For non-directional (diffuse) radiation the
attenuation coefficient can be calculated as the median value
over all possible radiation angles. The median is used here
rather than the mean to avoid the excessive influence of very
small or very large angles.

Biogeosciences, 9, 1389–1405, 2012 www.biogeosciences.net/9/1389/2012/
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Table A1. Comparison of leaf litterfall as predicted by the model and ground-based measurements across the Amazon basin.

Location Measured litterfall Predicted Reference
leaf loss

2◦51′ S 54◦58′ W 0.25–0.81(8.16) 0.47–0.62 Malhado et al.(2009),
Doughty and Goulden(2008)

0◦25′–1◦30′ S, 72◦30′–70◦40′ W 0.24–0.55 0.03–0.11 Lips and Duivenvoorden(1996)
11◦24’S 55◦19′ W 0.11-1.42 0.002–0.14 Sanches et al.(2008)
4◦45′–05◦30′ N 60◦30′–61◦22′ W 0.17–0.72 0.52–0.56 Dezzeo and Chacon(2006)

A2 Soil Water Target

Soil water is widely recognised as a primary constraint in
LAI, and the seasonality of LAI, in many different vegeta-
tion types around the world. For an individual tree, a greater
leaf area implies a higher stomatal conductance and hence a
greater potential rate of evapotranspiration. If this potential
rate cannot readily be met with available soil moisture, the
tree can either keep stomata open, risking excessive water
loss, cavitation and hence drought death; or close the stom-
ata, which greatly reduces water loss, but also shuts down
photosynthesis and risks leaves overheating, causing perma-
nent damage to the leaves; or the tree can reduce its total leaf
area, thus allowing for individual leaves to maintain evapo-
transpiration and photosynthesis without excessive water use
overall (McDowell et al., 2008). The first two options are
short term responses to unpredictable drought, whereas los-
ing leaves is the more sensible response to the seasonal vari-
ation in soil moisture that drives leaf phenology. Therefore,
we assume that where the current LAI exceeds the water-
limited LAI LAI water

targ , trees would drop leaves in order to
reach LAIwater

targ , starting with the oldest leaves, to produce
a leaf demography that is sustainable in the long term (see
main text).

Based on these assumptions, we specify a relationship be-
tween soil moisture and LAIwater

targ as:

LAI water
targ = β1 + β2Ws, (A2)

whereWs is the percentage soil moisture, andβ1 andβ2 are
empirical coefficients. If the current LAI is above this target,
trees will drop leaves until they reach LAIwater

targ .
We assume trees actively drop leaves when LAI exceeds

LAI water
targ , but do not do so when LAI exceeds LAIlight

targ . Where

LAI exceeds LAIlight
targ , the leaves receiving the least light will

be below their compensation point and so be a net sink, rather
than source, of carbon. However, the magnitude of this sink
will be relatively small, when compared with the magnitude
of the source from the leaves receiving more light. Also, trees
can store substantial amounts of labile carbon, which can be
used to offset short term deficits in carbon fixation. There-
fore, where LAI exceeds LAIlight

targ , the excess leaves are un-
likely to be a cause of whole plant stress or death. In contrast,
as outlined above, where LAI exceeds LAIwater

targ , the lack of

water affects the entire tree, and so could cause damage to all
leaves, or to the whole plant through cavitation. In addition,
very few trees store an amount of water that is significant
in comparison to daily water use. Therefore, when LAI ex-
ceeds LAIwater

targ , the excess leaves are an immediate source of
danger to the whole tree.

We fit the model using the method as described in Sect.B
below, using NCEP/NCAR reanalysis derived soil moisture
data (Kalnay et al., 1996). The values obtained for theβ1
andβ2 parameters result in a water limited target LAIwater

targ

that is higher than the light limited target LAIlight
targ at all lo-

cations throughout the year, This implies that vegetation is
never water limited. As a result we set LAItarg = LAI water

targ ,
which results in the model structure described in Fig.2.

Appendix B

Parameter estimation

The model has 7 free parameters (Table1), which we fit in-
dependently for each location, resulting in 840 parameters.

Our aim was to estimate model parameters for location
x, which we denote as the vectorθx, given the MODIS
data for locationx, which we denoteZx. To do this we
used a Bayesian approach, seeking to estimate the poste-
rior probability distribution ofθx, given Zx, which we de-
notep(θx|Zx). The posteriorp(θx|Zx) is proportional to the
product of the likelihoodL(Zx|θx), and the priorp(θx) such
thatp(θx|Zx) ∝ L(Zx|θx)p(θx). Often,p(θx|Zx) covers too
large a region of parameter space to be evaluated completely.
In this case we instead use sampling methods, which provide
a set of random samples ofθx drawn fromp(θx|Zx). We used
a Metropolis-Hastings Markov Chain Monte Carlo (MCMC)
sampling routine (Gilks, 1996.).

We define the likelihood as

l(Zx|θx) =

∑
t (x)

ln[n(LAI obs(x, t),LAI pred(x, t,θx),σx)] (B1)

where l(Zx|θx) is the log-likelihood; LAIpred(x, t,θx) is
the predicted LAI at locationx at time t (this depends
on the model parametersθx); LAI obs(x, t) is the observed
MODIS LAI at location x at time t ; and n(LAI obs(x, t),

www.biogeosciences.net/9/1389/2012/ Biogeosciences, 9, 1389–1405, 2012
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LAI pred(x, t,θx),σx) denotes the probability density for ob-
serving LAIobs(x, t) given a normal distribution with mean
LAI pred(x, t,θx) and standard deviationσx whereσx is a pa-
rameter that specifies the magnitude of unexplained variation
in LAI. Eq. B1 represents a loop over all timest for which
observed LAI were available for locationx (this set of times
is denotedt (x) in Eq.B1).

We initially used non-informative, uniform priors for all
parameters. We assumed that, a priori, all parameter com-
binations were equally likely. However, we found that, with
non-informative priors on all parameters, we could not prop-
erly constrain all parameters for all locations. Therefore, we
assigned an informative prior on one of the parameters af-
fecting the rate of gain and loss of leaves. We did this for
one parameter only to keep the overall influence of priors to
a minimum. We base our prior on an extensive study (Reich
et al., 2004) of leaf lifespan (time after which all leaves are
dead) in the northern Amazon. To define the prior we use
the mean (2.35 years) and standard deviation (0.18 years) of
these measurements. In our model, we define leaf lifespan
τ95,x as the leaf age at which only 5 % of leaves remain alive.
This is a function of three model parameters:µ0,x, µ1,x and
acrit,x. Using this prior, the posterior in the MCMC sampling
becomes:

ln(p(θx|Zx)) = l(Zx|θx) + ln(n(τ95,x, τ̂,στ )), (B2)

wheren(τ95,x, τ̂,στ ) is the probability density forθ95,x as-
suming that it is drawn from a normal distribution with mean
τ̂ and standard deviationστ . This measure is only propor-
tional to the posterior because it does not take into account
an integration constant. However, when using MCMC sam-
pling this is unimportant because the constant cancels out
when calculating the probability for acceptance and rejec-
tion. With this simple leaf lifespan constraint in place, we
found that all parameters converged for all locations and that
leaf lifespan varies substantially across the region, showing
that the parameter estimates were not overly influenced by
the prior (otherwise all leaf lifespans would have converged
on τ̂ ). Also, parameters not directly affectingτ95,x were es-
timated to have reasonable values, implying that the model
structure, MODIS data, the prior on leaf lifespan, and previ-
ous knowledge on other parameters, were all consistent with
each other.

We used Metropolis-Hastings MCMC sampling (hereafter
MH-MCMC) to provide a set of 600 random samples from
p(θx|Zx). MH-MCMC is a widely recognised and simple,
albeit computational heavy, method to provide samples from
the posterior parameter distribution. MH-MCMC samples
this distribution simply by proposing new parameter sets and
accepting or rejecting these on the basis of their posteriors,
according to a standard Metropolis criterion. Given a suf-
ficient number of steps, the random walk reaches a quasi-
equilibrium, after which the average properties of the walk
(e.g. the mean and standard deviation as measured against

any one parameter) no longer change. After this quasi-
equilibrium has been reached, the current position of the al-
gorithm at any one time constitutes a random sample from
the posterior (Gelman, 2004). However, there is a great deal
of freedom in exactly how to carry out MH-MCMC for a
particular case, especially in how new parameter sets are pro-
posed. For our analysis we used “Filzbach”1, a previously
tested and robust algorithm.

We allowed 60 000 iterations for the burn-in (the period to
quasi-equilibrium), then sampled every 100 iterations from a
further 60 000 total iterations, thus providing our 600 sam-
ples fromp(θx|Zx). From these samples we calculated, for
each parameter, the posterior mean, and 95 confidence inter-
vals. All values reported in the paper are posterior means.
We have used parameter sets drawn from this distribution to
obtain LAI values (Fig.2) and then calculate average LAI
values and upper and lower 95 % confidence bounds for all
values.

B1 Generating predicted LAI values

In order to both parameterize, and run simulations of, our
model, it was necessary to generate predicted LAI values for
each locationx and timet , (e.g. see the likelihood defined
above). Importantly, as a demographic model, our model as
defined in the main text produces rates of change of the LAI
held within different leaf age classes. Therefore, to produce
LAI (x, t,θx) it is necessary to first, set an initial leaf age dis-
tribution, and second, simulate the model forward in time
from this initial state, until we reach timet . The schematic
for this is given in Fig.2. To make our predictions for a
given parameter setθx, we set the initial leaf age distribution
as LAI(a,x, t,θx) = 0 for all a (corresponding to no leaves)
then simulated the year 2000 10 times over, each time be-
ginning the simulated year, using as the initial state the leaf
age distribution from the end of the previous simulated year.
This acted to spin up the model to produce a reasonable ini-
tial leaf age distribution consistent with current parameters.
After the spin-up, we then simulated the model forward in
time in steps of 8 days, keeping note of LAI(x, t,θx) for all t
where we had observations of LAI with which to compare the
predictions. Note that, although for the parameter estimation
we only used the total LAI, LAI(x, t,θx), the model can only
be simulated by keeping track of the LAI within each age
class, LAI(a,x, t,θx). Thus predicted leaf age distributions
emerge as a natural outcome of applying our model.

1Filzbach, a software library for carrying out Metropolis-
Hastings Markov chain Monte Carlo parameter estimation in C++
or C#. Filzbach is under development in the Computational Science
lab at Microsoft Research Cambridge and is available for download,
complete with a suite of example uses, viahttp://research.microsoft.
com/en-us/groups/ecology/ecotechandtools.aspx
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Appendix C

Carbon Assimilation Model

To illustrate the impact that our model results have on the
carbon cycle in the Amazon, we use a simple canopy model
to describe leaf photosynthesis rates. We assume that the
only limitation to photosynthesis is light availability, so that
carbon assimilation rates are a linear function of incoming
PAR:

A(I) =

{
φI − q ,I < Imax
Amax ,I > Imax

(C1)

whereAmax is the maximum assimilation rate that occurs
after photosynthesis reaches saturation with light for PAR
levels aboveImax. We use literature values (Kubiske and
Pregitzer, 1996; Riddoch et al., 1991; Langenheim et al.,
1984; Miranda et al., 2005; Hutyra et al., 2007; Kitajima
et al., 1997) to obtain anAmax of 6.12 µmol m−2 s−1 and
Imax equal to 150 µmol m−2 s−1 (Hutyra et al., 2007). The
values cited above have been measured for various locations,
species and light environments which we have averaged to
obtain a canopy scale value. We then use these values to cal-
culateφ andq, by assuming that assimilation is zero at a light
level equal to the compensation pointCdirect.

We use our posterior age distributions to correct photosyn-
thetic rates for the effects of leaf ageing. Studies have shown
(Kitajima et al., 1997; Doughty and Goulden, 2008) that in
tropical systems photosynthesis rates peak a few weeks after
budburst and that measured rates decline with age, reaching
half the peak value for leaves older than 1 year. Of course,
these figures do not reflect the large variation in leaf lifespan
in the Amazon. It has been observed that longer lived leaves
show a slower decline in assimilation rates with age and are
also slower to reach peak rates (Kitajima et al., 1997).

To account for these changes we use an age correction fac-
tor. Assuming that the values defined above are correct for
mature leaves, then a population composed entirely of ma-
ture foliage will have an age factor of 1, while populations
with a combination of young, mature and old leaves will have
a factor less than 1. We define this factor as

γage= fnewAnew+ fmatAmat+ foldAold, (C2)

where fnew, fmat and fold are the fractions of young
(age<0.07τ95), mature and old (age>agemin) leaves respec-
tively. The corresponding adjusting factors are equal to 0.05
for young leaves, 1 for mature and 0.5 for old. We assume
that theAmax andImax values used above are valid for fully
mature leaves.

Appendix D

Predicted leaf litterfall

We compare model predictions against ground-based mea-
surements of leaf litterfall 9TableA1. This provides an eval-
uation of the model parameters that is independent of the LAI
data used to parameterise the model. All litterfall measure-
ments have been converted from mass units (gm−2 month−1)
to area units (m2 m−2 month−1) using either the leaf mass per
unit area value given by (Fyllas et al., 2009) (94.85 gm−2) or
the specific value for that site if any is given in the study
(mentioned in brackets).
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