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Abstract. Stochastic Constraint Programming (SCP) is an extensioBooi-
straint Programming for modelling and solving combinatbproblems involving
uncertainty. This paper makes three contributions to the. fiérstly we propose
a metaheuristic approach to SCP that can scale up to largpéeprs better than
state-of-the-art complete methods. Secondly we show hawectandard filter-
ing algorithms to handle hard constraints more efficientlsirtty search. Thirdly
we extend our approach to problems with endogenous unasytad which prob-
ability distributions are affected by decisions. This esien enables SCP to
model and solve a wider class of problems.

1 Introduction

Many real-world problems contain elements of uncertaiabg these are often mod-
elled and solved by Stochastic Programming (SP) methodsSbthastic Constraint
Programming (SCP) is an extension of Constraint Program(@R) designed to model
and solve similar problems, a research direction first psedan [3, 36]. A motivation
for SCP is that it should be able to exploit the more complaiatde types and con-
straints used in CP, leading to more compact models and thefysowerful filtering
algorithms. But Stochastic Constraint Satisfaction Reoid (SCSPs) are in a higher
complexity class than Constraint Satisfaction Problen&R€) and can be much harder
to solve.

An m-stage SCSP is defined as a tuple S, D, P,C,0, L) whereV is a set of
decision variables§ a set of stochastic variableB, a function mapping each element
of VUS to a domain of values? a function mapping each variable$hto a probability
distribution,C' a set of constraints oriuU.S, § a function mapping each constraine C
to a threshold valué € (0,1], andL = [(V4,51),...,(Vim, Sm)] @ list of decision
stagessuch that thé/; partitionV and theS, partition.S. Each constraint must contain
at least ond” variable, a constrairit with threshold)(h) = 1 is ahard constraintand

* This material is based in part upon works supported by ther8ei Foundation Ireland under
Grant No. 05/IN/1886. S. A. Tarim is supported by the Sciénand Technological Research
Council of Turkey (TUBITAK) under Grant No. MAG-110 K500.



Constraints:

c1: Pr{sizi + s2x2 > 30} > 0.75

c2: Pr{soz1 =12} > 05
Decision variables:

r €{1,2,3,4}

z2 € {3,4,5,6}
Stochastic variables:

s1 € {4(0.5),5(0.5)}

s2 € {3(0.5),4(0.5)}
Stage structure:

= {l’l} S1 = {51}

Vo ={z2} S2={s2}

L = [(V1,51),(Vz, S2)]

Fig. 1. A simple SCSP example.

one withd(h) < 1 is achance constrainflTo solve ann-stage SCSP an assignment to
the variables irl; must be found such that, given random values¥grassignments
can be found fol, such that, given random values {85, ... assignments can be
found for V,,, such that, given random values f6y,, the hard constraints are each
satisfied, and the chance constraints (containing botsidecand stochastic variables)
are satisfied in the specified fraction of all possibtenarios(set of values for the
stochastic variables).

An SCSP solution is policy treeof decisions, in which each node represents a value
chosen for a decision variable, and each arc from a nodesemiethe value assigned
to a stochastic variable. Each path in the tree represeriffeaedt possible scenario
and the values assigned to decision variables in that Scerasatisfying policy tree
is a policy tree in which each chance constraint is satisfigtd Kespect to the tree. A
chance constrairit € C is satisfied with respect to a policy tree if it is satisfied @nd
some fractionp > 6(h) of all possible paths in the tree.

As an example, consider the 2-stage SCSP in Figure 1 whereithbers in brack-
ets indicate that the stochastic variable values each hraability 0.5. Decision vari-
ablex; must be set to a fixed value while the valuergefdepends on that &f, . A policy
tree for this problem is shown in Figure 2. The four scenatipB, C and D each have
probability 0.25. Constraint, is satisfied in A, B, C and D hence with probability 1.0.
Constrainte, is satisfied in A and C hence with probability 0.5. These pbilliees
satisfy the threshold¥¢;) andf(c2) so this is a satisfying policy.

The above framework is a CP analogue of the subfield of SP kras@hance-
Constrained(or Probabilistic Constrainefl Programming The form in which it is
stated, involving both decision and stochastic varialidespmetimes called thmplicit
formin the SP literature [5], which has both decision and staahaariables (though
the SP notation is different). The alternative is theensive fornin which scenarios
are expanded to formdeterministic equivalergroblem containing only decision vari-
ables. The extensive form is typically much larger than thplicit form. We shall use
only the implicit form in this paper and in our SCP solver.



x1=4

s1=5 sl=4

x2=4 x2=5
s2=4 s2=3 s2= s2=
A B C D

Fig. 2. A satisfying policy tree for the SCSP in Figure 1.

We extend this version of SCP in two ways. Firstly, we allomstnaints on statis-
tical parameters of the problem variables, such as expectat variance. Note that a
chance constrairit with thresholdd (k) can be written as a constraint on an expectation
E{reify(h)} > 6(h) where reify(h) is 1 if h is satisfied and 0 otherwise. Secondly, we
may wish to solve an SCSP while minimising (or maximising)offective function,
in which case we have a Stochastic Constrained Optimis&ioblem (SCOP). The
objective function may be defined in terms of statisticalapaeters, for example we
may wish to maximise the expectation or minimise the vagasfca decision variable,
or maximise a chance constraint threshold. In all thesesc@s&COP can be solved as
a series of SCSPs with an increasingly tight constraint.

Several complete methods for solving multi-stage SCP problhave been pro-
posed but none seems practicable for large problems. Inetenpethods such as local
search and genetic algorithms are often more scalable hulittke work has been done
on applying them to SCP. We propose a new approach: transfonmiti-stage problem
into an unconstrained optimisation problem which can beegsbby metaheuristics. The
paper is organised as follows. Section 2 describes the tyethwod for solving problems
in SCP. Section 3 adds standard filtering algorithms to hehdltd constraints more ef-
fectively. Section 4 extends SCP and our solver to a forrarmfogenous uncertainty
in which probability distributions may depend on earliecid®ns. Section 5 discusses
related work. Section 6 concludes the paper.

This work is based on [28, 29] but contains new results: caygom problems were
used in [28], Quantified Boolean Formulae were used as anram[29], both pa-
pers used artificial neural networks whereas this papermoesnd this paper extends
SCP to endogenous uncertainty and supplies missing pi®ofse of the material was
briefly described in [17, 19] but this paper contains the d@fandescriptions.

2 Metaheuristics for SCP

In this section we describe a metaheuristic approach torgp&CP problems.



2.1 SCP as unconstrained optimisation

We transform the problem of finding a satisfying policy treeah unconstrained op-
timisation problem. We do this vigenalty functionsvhich are commonly used when
applying local search or genetic algorithms to CSPs [10firieea variable at each pol-
icy tree node, whose values are the domain values for theidaciariable at that node.
(Our solver does this automatically by traversing the treeedbefore search begins.)
Then a vector of values for these variables represents eyjtodie.

For each hard or chance constrdine C' we define a penalty;, in each scenario,
which is 0 if h is satisfied and 1 if it is violated in that scenario. Then thgoctive
function for a vectow is:

fv)= Z max{E{xy} — 0(h),0}

heC

We computeE{x} by traversing the policy tree, and at each leaf checking dret
constrainth is satisfied: if it is then that scenario contributes its @ioibty to E{x}, }.

If f(v) = 0 then each constrairit € C' is satisfied with probability at least that of
its satisfaction threshold(%). When solving an SCOP we impose a constraint on the
objective function, and on finding a new solution we tighthis tonstraint; sgf (v)
includes a penalty for the SCOP objective function. We cam apply metaheuristics

to the following unconstrained optimisation problem: findectorv that minimises
f(v) to 0. We shall refer to this method Evolved PoliciegEP).

2.2 A genetic algorithm

A solution to an SCP problem is a vectomwith one value per policy tree node. In
principle any metaheuristic algorithm can be used to exgtloe space of vectors, butin
this paper we shall use a genetic algorithm, implementeadreclipse constraint logic
programming system [1]. We assume a basic knowledge of retstics; a survey can
be found in [7], and for further details on evolutionary aigfums in particular we refer
the reader to books such as [11].

We represent a vector of values by a chromosome in the obviayswith one
gene per value. The fitness is simplyv) and is to be minimised. The metaheuristic
we use is a version of the Microbial Genetic Algorithm (MGAB] shown in Figure 3.
Other evolutionary algorithms and a simple local searchritlym also performed well
in experiments, but we found the MGA to be robust and efficeamd we shall use it
throughout the paper. In the MGA chromosomes are notiomaiignged in a ring and
breeding is restricted to neighbouring chromosomes. Tsgiction makes the MGA
an example of the class og&llular genetic algorithmsvhose localised breeding often
leads to greater genetic diversity. The recombinationatpelis uniform crossovein
which each gene in the new chromosome takes a value chostmgnfrom the corre-
sponding values in the two parent chromosomes. Becausétiie sffspring replaces
the weaker of the two parents, this can be interpreted as #akav parent receiving
genetic material from the stronger parent. This mimics dyéat reproduction, hence
the name of the algorithm.



initialise the population randomly

repeat until finding desired solution or timeout
randomly choose 2 neighbouring chromosormgs
recombines andb to form new chromosome
mutatec to form new chromosomé
replace the less-fit of andb by d

Fig. 3. The Microbial Genetic Algorithm.

Constraints:
Pr{zi1s1 + z283 + x3s5 + v4s7 =80} > «
Pr{x1s2 + 284 + T356 + Tass < 100} > S
Pr{z1s2 + x2584 + w386 + xas8 > 60} > [
Pr{zis2 + z3s6 > 30} > 0.7
Pr{z2s4 + z4ss = 20} > 0.05
Decision variables:
xr € {5,...,10} X2 € {4,...,10}
xr3 € {3,...,10} x4 € {6,...,10}
Stochastic variables:
si € Dy Viedl,...,8}
Stage structure:
= {l’l} S1 = {81,85}
Vo = {z2} S2 ={s2,s6}
Vs ={x3} Ss={ss,s7}
Via={xa} Si={s4,88}
L= [<V17 Sl>7 <V27 SQ>7 <V37 SS>7 <V47 S4>]

Fig. 4. Random SCSPs.

The mutation operator we use changes each gene’s value vattdam value with
probability (1 — 0.5"71)—1 wheren is the number of genes per chromosome. This
value was chosen so that the probability of each chromoseing Imutated is 0.5. The
population size we shall use is 50 unless stated otherwise.

2.3 Experiments

We now show that EP can scale to large SCP problems betterctiraplete meth-
ods. We use a benchmark set of random 4-stage SCSPs with &ecbamstraints over
4 decision variables; ... x4 and 8 stochastic variables ... ss, shown in Figure 4
whereD; denotes a random domain chosen uniformly from2, 3, 4,5} with 2 val-
ues fori € {1,3,5,7} and 3 values foi € {2,4,6,8}. We generate instances for
a € {0.05,0.1,0.12,0.15,0.17,0.2} and 8 € {0.6,0.7,0.8}, with 5 different sets of



stochastic variable domains, giving 90 instances in fotédne of these instances is
known to be unsatisfiable but some might be.

Table 1 compares the global chance-constraint (GCC) methidd], the scenario-
based method (SBA) of [34] and EP. GCC is the state-of-theeanplete method for
these problems while SBA was the previous best. All figuresimiseconds and “—”
denotes that the time is greater than 200 seconds. All tinees abtained on a 2.8 GHz
Pentium (R) 4 with 512 MB RAM, or on another machine with tinmesmalised to this
one; the same machine was used throughout this paper. EBdigte medians over 30
runs.

problem set 1problem set 2 problem set 3 problem set 4problem set 5

a [|SBA GCCERSBA GCC ERSBA GCC ERSBA GCC ERSBA GCC EH
0.0506 — 710 — 86 9 1 8 13 — — 16 — 6 7
0.1004 — 815 — —132 1 73§ — 13 32 — 610
0.1206 — 817 — —13§ 1 7 49 — 23 33 — 612
0.1506 — 72} — —16 — — 63 — — 47 — —17
0.170¢6 — 829 — —18) — — 76 — — 68 — —21
0.2006 — 830 — —18 — —121 — — 82 — —25
0.050.7 — 717 — 911 1 72y — 11 27 O 6 12
0.100.f — —24 — —139 1 8 371 — — 41 — —14
0.120.f — —18 — —154 1 7 47 — — 41 — —15
0.150f — —31 — —189 — — 63 — — 54 — —19
0.170f — —3 — — —| — — 77 — — 66 — —22
0200f — —42) — — —| — —117 — — 85 — —30
0.0508 — 740 — — —| 1 830 — 105 — 719
0.1008 — 864 — — —| 1 7 47 — 12 63 — —21
01204 — —89 — — —| 1 762 — 14 6§ — — 25
01508 — —92f — — —| — — 73 — — 81 — —28
01708 - ——| — — — — — 89 — — 95 — —28
02008 - ——| — — — — —105 — —191 — —33

Table 1.Results in seconds for random SCSPs.

SBA transforms these SCSPs into (deterministic) CSPs wits06variables and
6485 constraints. GCC transforms them into CSPs with 258hlias and 5 constraints.
EP transforms them into unconstrained optimisation probleith 185 variables. The
SCSPs turn out to be hard for SBA and somewhat easier for GO®etkr, EP solves
all problems that could be solved by SBA or GCC, as well as ntlaatywere solved by
neither. Moreover, EP can potentially be improved by usirgyarsophisticated meta-
heuristics.

! These problems were used in [28] but there was a typogramviaa in their definition which
we correct here.



3 Filtering hard constraints

EP treats hard constraints as a special case of chanceaiotsstihis is not incorrect
but it does not exploit CP filtering methods. Moreover, the o$ penalty functions
is not always the best way of handling constraints in a loeareh or evolutionary
algorithm. For example when solving permutation problerasirbetter results are ob-
tained by designing mutation and recombination operatmsifically for deriving new
permutations from old ones. We could design genetic oper&bo specific problems,
but here we aim instead for a single solver that will do welleowariety of problem
types.

Inspired by hybrid search algorithms for CP, we now desaaifigering technique
for hard constraints on finite domain variables. This teghaiwas first reported in [29].
It allows us to use standard CP filtering algorithms by treptitochastic and decision
variables uniformly, without the need for specialised fitig algorithms. This greatly
simplifies the implementation of our solver. We shall alsovglthat it can give much
better results on permutation problems, though it is a deapproach that is not aimed
specifically at permutations.

3.1 The method

Evolutionary algorithms (EAs) and local search are ofteplieg to constrained prob-
lems, and there are at least three distinct ways of handbingtcaints in an EA; for an
overview see (for example) [10]. The simplest method is the afpenalty functions
which we used in EP. Another methodrépair where a chromosome representing an
infeasible solution is transformed to one representingsilide solution. A third method
is adecoder which is a function that maps chromosomes to solutionshéndecoder
approach a chromosome is no longer a solution, but a set wéigti®ns on how to
construct a solution. This can be highly effective on tigtgbnstrained problems, but
unfortunately a decoder is problem-specific.

We shall use filtering algorithms tpartially decode chromosomes. The stronger
the filtering method, the more likely we are to obtain a fel@s@mlution. In the limit
as consistency increases we would have a function that coafdany chromosome
into a feasible solution, but this is an NP-complete tasktasriounts to solving a
CSP. Nevertheless, we shall show that filtering algorithars grofitably be used as
partial decoders for EAs applied to SCP problems. We calitbdified methodriltered
Evolved Policie$FEP). Whereas EP uses a penalty function approach on afiredmts,
FEP uses a decoder-like approach on the hard constraintpearadty functions on
chance constraints.

Before starting the search we traverse the policy tree oiitb@ut filtering, to count
the number of noded’. During search, as we traverse the policy tree guided bya: chr
mosomev we apply constraint filtering algorithms using the hard ¢rists, treating
both stochastic and decision variables as in a standard TPmay remove values
from both decision and stochastic variable domains andedaacsktracking, so the com-
plete policy tree might not be traversed. We detect this mntiag the numben/,, of
nodes visited and computing a penalty) = (N — M, )/(M, + 1). If all nodes are
visited then)M, = N andt¢(v) = 0. We then modify our objective function to include



Constraints:
Cl1:0=T
c2:0<c
Decision variables:
c,0€{0,1}
Stochastic variables:
r € {0(0.5),1(0.5)}
Stage structure:
V1 = {C} Sl = {’f’}
Vo = {O} S1 = @
L = [(V1,51), (Va, S2)]

Fig. 5. The umbrella problem.

the new penaltyf(v) + ¢(v). This is also a penalty function, but the penalty is now
differentand it depends on the filtering algorithms us&tough it might appear unsafe
to apply filtering to stochastic variables, the additiorahalty:(v) makes FEP correct
(see Section 3.4). We further modify FEP so that alleles aresed directly as decision
variable values, but are instead usedex®mmended valueshis will be explained in
Section 3.2.

3.2 lllustrative example

We shall illustrate the filtering method with a simple 2-&&CSP. Suppose we are
trying to decide whether to carry an umbrella, given two digyarobable scenarios:
that it rains or not. We use a first-stage binary decisionatdgic to denote carrying
an umbrella¢ = 1) or not ¢ = 0). A first-stage binary stochastic variabiéndicates
whether it rains« = 1) or not (- = 0), with equal probabilities 0.5. A second-stage
binary decision variable represents the decision to open the umbrella=(1) or not

(o = 0). In SP terminology the latter decision isecourse actioras it depends on the
scenario. There are three hard constraints. Firstly, weocdnput up the umbrella if
we carry it:o < c¢. Secondly, we do not wish to get wet so if it rains then put up th
umbrella:r < o. Thirdly, we would like to enjoy the sun if it is out, so we onyt

up the umbrella if it rainso < r. The last two constraints can be combined into one:
o = r. An SCSP model for this problem is shown in Figure 5.

This SCSP has 8 possible plans corresponding to the 2 chficescombined
with the 2 choices fopo in each of the 2 scenarios. There is only one satisfying polic
tree: carry the umbrella, and put it up if and only if it rais, shown in Figure 6(i).
In this figure satisfied constraints are indicated by tickd @imlated constraints by
crosses. EP can be used to search for this policy tree whickhak represent by a
chromosomel01: the first digit is the value of, the second is the value ofin the
scenaria- = 0, and the third is the value ofin the scenarie = 1. In all scenarios both
constraints are satisfied so the penalty' (801) = 0. FEP handles this chromosome
by counting the number of noded g, visited by using this chromosome, and the
number of node$V in a satisfying policy tree; both are 3 so the penalty undd? i



c=1 c=0 c=0

r=0 r=1 r=0 r=1 r=0
0=0 o=1 0=0 o=1 0=0
clv cl1V cl v c1 X
c2v 2V c2 X c2 X
() 101 (EP) (i) 011 (EP) (iii) 011 (FEP)

Fig. 6. Three policy trees for the umbrella problem.

t(10D) = (3 —3)/(3+ 1) = 0. Hence for this chromosome EP and FEP both return a
penalty of 0 indicating satisfaction, as would be expected.

Now consider how EP handles a chromosome correspondinghtmasatisfying
policy tree such a®11, in which we do not carry the umbrella but we always open
it. The tree is shown in Figure 6(ii). In scenaro= 0 constraintc; is satisfied but
¢ is violated, while in scenarie = 1 both constraints are violated, so the penalty
is f(011) = 0.5 x 1 + 0.5 x 2 = 1.5. FEP handles this chromosome differently. It
uses the first gene to assign= 0, then uses constraint to filter the value 1 from
dom(o) (the domain ob): an example of filtering on a stochastic variable domairis Th
removal triggers the further removal of value 1 from deirvia constraint;, so now
dom(r) = dom(o) = {0}. The recommended values forin each scenario are now
irrelevant, as 0 must be chosen in both cases. The policyctvgesponding to this
chromosome using FEP is shown in Figure 6(iii). Because(dpr {0} the policy
tree has only 2 nodes instead of 3, so the penalty0$l) = (3 —2)/(2+1) = 1/3.
FEP’s filtering has pruned the domain dothof a stochastic variable, leading to an
incomplete policy tree. This may appear to be incorrect bahly occurred because
the policy tree is non-satisfying: FEP did not prune dejmin the case of the satisfying
policy tree. EP and FEP simply use different functions toghise non-satisfying trees.

This simple example also illustrates another feature of. EFider EP there is ex-
actly one chromosom&01 corresponding to a solution, but under FEP therefane
such chromosome400, 101, 110and111 As long asc = 1 the values ob in both
scenarios are fixed by filtering on constraint so the recommended values are irrel-
evant. We shall show that this can make it easier to find afgiatispolicy tree using
FEP.

An additional advantage of FEP is that it can be used to redu@emosome length.
If we know that a decision variable is functionally dependem earlier assignments
then we need not represent it in the chromosome, as its reeoed values are irrel-
evant. In this example constraint makeso functionally dependent on so the chro-
mosome needs only one gene, foOur FEP implementation allows this information
to be provided by the user.



3.3 Experiments

In the well-knownTravelling Salesman ProblefTSP) we must find a permutation
of a set of cities such that visiting the cities in that orderd returning to the first
city, minimises the total distance travelled. In tRebabilistic TSP(PTSP) [16] the
probability of city i being in the tour ig;; if it is not in the tour then it is ignored,
and the distance between its predecessor and successasiigitised. The objective is
to choose a tour that minimises the expected total distaavelted. We shall use the
PTSP to test two hypotheses empirically: (i) can filteringiove performance, and (ii)
can stronger filtering further improve performance?

We model the PTSP as an SCOP as follows. To model a permut#tidvncities
we use decision variables € {1,...,N} (: = 1... N) which must all take different
values to form a permutation. We assume additional citiesd\a+ 1 are the start and
end points of each tour, and that the distances betwees itgmd 1, and betweek
andN + 1, are 0. Use binary stochastic variablegi = 1... N) whereb; = 1 means
that city is present in the toifrAn SCP model is shown in Figure Zour | engt h
is aglobal chance constrain32] that computes the length of a tour in a scenario.
To do this it needs the values of theand theN x N distance matrix}/;; of the
graph.al | di ff er ent is a standard global constraint that forces its parameters t
take different values.

We compare four implementationsaif | di f f er ent , two using EP:

— asingleal | di f f er ent chance constraint with threshold 1
— N? pairwise disequality chance constraints

and two using FEP:

— N? pairwise disequality hard constraints with arc consisteA¢c)
— asingleal | di f f er ent hard constraint with generalised arc consistency (GAC)
[30]

A drawback with this problem for our purposes is that FEP nmapschromosome to
a valid permutation, whether using either GAC, pairwise A@wen pairwise forward
checking. One way of making GAC and pairwise AC filter diffetlg is to restrict
some variable domains, and we somewhat arbitrarily chaosestrict the domains of
Uny2---un t0{1,..., N/2}. We compare the performance of our solver using the four
al | di f f er ent implementations with various values df.

For simplicity we use complete graphs wilid;; = 1 andp; = 0.5. Then the
tour length in each scenario is independent of the pernauati = "1 | b, so all
permutations have the same expected lefigth} = N/2. We are left with an SCSP in
which we must simply find a permutation. We apply the sameugiariary algorithm as
in Section 2 and take the median of 30 runsfE {5, 10, 15,20, 25}. The results are
shown in Table 2, where “?” indicates that the median runisrggeater than 1 minute
and “chr” denotes the number of chromosomes used.

2 There is arO(NN?) expression for expected tour length but this is not relekiant.
8 This is a hard constraint: tretochastical | di f f er ent constraint has a different meaning.



Minimise:

E{\}
Constraints:

al ldifferent ({v:})

tourl engt h({b;:}, Mi;, \)
Decision variables:

v; € {1,...N} (Vi=1...N)
Stochastic variables:

b € {0(1 —pi), 1(ps)} (Vi=1...N)
Stage structure:

V1 = {UZ} Sl = {bl}

L = [{(V1,51)]

Fig. 7. An SCP model for the PTSP.

EP FEP
@) @) ®) @)

N| chrse¢ chr se¢cchr se¢chr se

5/ 26 d 410.0] 10.00 10.00
1022428 2 772 2 540.00 10.0Q
15  ? 93054 19206 0.02 1 0.0d
200 ? 9 ? 93280.04 10.00
250, ? 7 ? 9476 0.08 10.00

Table 2. Comparing 4 implementations af | di f f erent .

Method (1) is extremely poor: in fact it is worse than randpetioosing chromo-
somes, which would take on averag® iterations. Method (2) does better because
it distinguishes between chromosomes that are differesthices from being permu-
tations: for example wheiW = 5 chromosomel1245more nearly corresponds to a
permutation of 1,2, 3,4, 5} than11111does, but method (1) does not distinguish be-
tween them. Method (3) is much better, as its use of pairwiSdikering enables it
to partially decode chromosomes into near-permutatioreghbtl (4) is the best: GAC
enables it to fully decode all chromosomes into permutation

These results empirically support both of our theoretjeaibtivated hypotheses.
Firstly, both FEP methods beat both EP methods, showingaiyalying standard fil-
tering algorithms to hard constraints can give much betsults than treating hard
constraints as chance constraints. Secondly, method &3 breethod (3), showing that
using stronger filtering algorithms can boost performancthér. Of course, as in (non-
stochastic) CP, these results are unlikely to apply to abjgms as runtime overheads
might outweigh the advantages of filtering.

3.4 Properties

We now prove some useful FEP properties. Firstly it is imgatrto show correctness:



Proposition 1. FEP is correct.

Proof. If a chromosome represents a policy in which hard constraints are never vio-
lated then its recommended decision variable assignmeamsine consistent with the
stochastic variable assignments in every scenario, satanrfi will occur on a stochas-
tic variable domain in any scenario, every node will be edjf\/, = N and¢(v) = 0.
Conversely, ift(v) = 0 thenM, = N, which is only possible if hard constraints are
never violated, s& represents a policy in which hard constraints are neveatadl
Hencet(v) = 0 if and only if the policy represented bysatisfies the hard constraints,
which shows the correctness of FEP.

As shown in Section 3.3, FEP can be more efficient than EP. dylikxplanation
is that FEP solves an optimisation problem with more optisaéiitions (chromosomes
representing satisfying policy trees for the SCSP) than EP:

Proposition 2. The optimisation problem representing an SCSP has morenaptio-
lutions under FEP than under EP.

Proof. Firstly, we show that any EP solution is also a FEP solutiothé EP solution,
the recommended value for each variable solves the problarefore it satisfies all
hard constraints, so filtering cannot remove those values.

Secondly, we show by example that there exists a FEP solfgican SCSP, using
a certain filtering algorithm, that is not an EP solution. e the illustrative example
of Section 3.2 in which chromosomes 100, 110 and 111 areispofutinder FEP but not
EP. O

Section 3.3 also showed that using stronger filtering cathéutboost performance.
Again a likely explanation is that it further increases thenter of optimal solutions:

Proposition 3. The optimisation problem representing an SCSP has morenaptio-
lutions under FEP if the level of consistency is increased.

Proof. Firstly, we show that any FEP solution with a given filteringaithm A is also
a solution under a stronger filtering algoritBnin the FEP solution unde4, taking the
nearest remaining value in any decision variable domaireuddsolves the problem.
Stronger filtering can only remove more values from the dorait the value chosen
under.A will not be pruned because it was correct, so it will also besem undes.
Secondly, we show by example that there exists an SCSP agrihfjjitalgorithms
A andB, with B stronger than4, and a solution undes that is not a solution under
A. Take the SCSP in Figure 8, létenforce arc consistency on each of the disequality
constraints representing tleé | di f f er ent constraint, let3 enforce GAC on the
constraint, and let the chromosome contain genes- 0,y0 = 0,y1 = 0) wherey;
denoteg, in the scenario witty = 4. This is a solution unde8 because GAC applied
before any assignments are made removes 0 and 1 fronfadpso = will be set to
the nearest remaining value which is 2. Theis assigneduv(s) € {0,1} and GAC
removesw(s) from dom(y), soy is assigned — w(s). However, it is not a solution
underA because pairwise arc consistency does not remove 0 and dbvoxx), sox
will follow the recommendation and be assigned value 0. €aimot lead to a solution.
a



Constraints:
Pr{alldifferent (z,y,s)} =1
Decision variables:
z €{0,1,2,3}
y €{0,1}
Stochastic variables:
s € {0(0.5),1(0.5)}
Stage structure:
V1 = {x} S1 = {8}
Va={y} S2=0
L = [(V1,51), (Va, S2)]

Fig. 8. SCSP used in the proof of Proposition 3.

4 Endogenous uncertainty

The form of uncertainty addressed so far is sometimes calegenoushe stochastic
variable probability distributions are fixed and known at #tart. Exogenous uncer-
tainty is the only type handled in most SCP and SP researchet#sy, some problems
haveendogenous uncertaintyhich make them much harder to solve.

Endogenous uncertainty may be of two types. Firstly, théabdity distribution of
a stochastic variable may depend upon the values of decraigables from the same
or an earlier stage. Secondly, the time at which the unceytéas observed may de-
pend upon the values of earlier decision variables, thohglptobability distributions
are fixed and known at the start. The latter are sometimesdcaMTOXUNCOproblems
(STochastic Optimisation problems with eXogenous Unasstaand eNdogenous Ob-
servations) [24]. We shall not tackle STOXUNO problems iis fhaper but we extend
SCP to include the first type of endogenous uncertainty.

For a survey of work on endogenous uncertainty see [12], whientions appli-
cations including network design and interdiction, serselection, facility location,
and gas reservoir development. Other examples includiealitrial planning [9] and
portfolio optimisation [33].

4.1 Handling decision-dependent probabilities

To model endogenous uncertainty we simply allow decisiotabies to specify prob-
ability distributions. That is, the probability associigith a value for stochastic vari-
ablev € S; is allowed to be specified by a decision variable V; wherej < . (We
assume that the stochastic variable domains are the sameticase: if not then we can
take their union as the domain and set some probabilitieg fiohandle this extension
we allow real-valued decision variables, which must be tairsed to be functionally
dependent upon the values of stochastic or other decisigables that have already
been assigned. These variables need not be representesl chrtmosome because
they are functionally determined. The same is true of othectionally-determined
decision variables, and the user can specify which these are



These are the only modifications we need to model decisipestient probabili-
ties and the solver needs no other changes. The first apptiaaftthis technique was
described in [17] on a production planning problem and lemitieh faster performance
than an SP approach.

4.2 A disaster planning application

As an example we take the stochastic network problem of Reetia[25]. Consider a
transportation network, each of whose links (bridges) naéiydith some probability.
The failure probability of a link can be reduced by investingney in it, and we have
a budget limiting the total investment. We would like to nnirise the expected shortest
path between a specified source and sink node in the netwane §&nerally, we might
minimise a weighted sum of expected shortest paths for teelesburces and sinks,
chosen to represent (for example) high population areabasyitals; for simplicity we
shall consider only a single source and sink. This type dbler arises in pre-disaster
planning, where a decision maker aims to maximise the rabsstof a transportation
network with respect to possible disasters, to facilitaszue operations.

Endogenous uncertainty arises in this problem becausesitisions (which links
to invest in) affects the probabilities of the random evétite link failures). This is a
2-stage problem. In the first stage we must decide which liokavest in, then link
failures occur randomly. In the second stage we must chosberiest path between
the source and sink (the recourse action), given the suayilmks. If the source and
sink are no longer connected then a fixed penalty is imposstalt al. point out that,
though a natural approach is to strengthen the weakest linissdoes not necessarily
lead to the best results.

We can model the problem in SCP as follows. For each éink £ (whereFE is
the set of links in the network) we define a binary decisiorialde y. which is 1 if
we invest in that link and O otherwise. We define a binary sastib variable-. which
is 1 if link e survives and 0 if it fails. We define a single second-stagéstetvari-
ablez to be computed by a shortest-path algorithm. Following #egt#l. denote the
survival (non-failure) probability of linke by p. without investment ang. with, the
investment required for link by c., the length of linke by ¢., the budget byB, and
the penalty for no path from source to sink by. Our 2-stage SCP is shown in Fig-
ure 9 whereshor t est _pat h_cost (M, t.,r., z) is a global chance constraint that
constructs a representation of the graph fromithgalues, uses Dijkstra’s algorithm
to find a shortest path between source and sink, and compsitengthz; if source
and sink are unconnected ther= M. We implemented this constraint via an Eclipse
suspended goavhose execution is delayed until the second stage. To modeapili-
ties we define real auxiliary decision variabjegfailure) ands, (survival). Thef, are
constrained to bé — p, if link e is invested in {. = 1) and1 — ¢. otherwise. The
probabilities must sumto 1 sQ = 1 — f.. All constraints are hard and are handled by
the filtering method described in Section 3.

Only they, are independent decision variables: fhes., z variables are all func-
tionally dependent on thg . Our solver allows the user to specify functionally-depemd
variables so that no genes need be used for them; identiftyérg leaves only 12 genes
per chromosome, one for eagh



Minimise:

Constraints:
c1: XjeeEcey6 <B
c2t fe=ye(l —¢e) + (1 —ye)(1 — pe) (Ve € E)
c3: Se=1—fe (Ve € E)
ca : shortest path_cost (M,tc,re, 2)

Decision variables:

ye € {0,1} (Ve € E)

fe,Se, 2 €R (Ve € E)
Stochastic variables:

re € {0(fe), 1(se)} (Ve € E)

Stage structure:
Vi = {Ye, fe,se|le € E} S1={rc.|e€ E}
V2 = {Z} SQ = @
L = [(V1, 51), (Va, S2)]

Fig. 9. An SCP model for the disaster planning problem.

4.3 Experiments

Peeteaet al.tackle a real road network with 30 directed links, giving Bidm scenarios
which are then sampled. We will address scenario reductiethaads in future work
so we do not use this network, which has too many scenarioBE& to enumerate.
They also tackle an 8-node 9-link network, but we do not ugedhher because not
quite enough information is provided to recreate the pmola&actly, and no execution
times are provided for comparison. Instead we design our(siightly larger) network
with 8 nodes and 12 undirected links, which is small enouglugato compute optimal
solutions by brute force in a reasonable time. A further dr@ek with the disaster
planning problem is that we have no other algorithms to comp&P with: current
complete SCP solvers cannot solve this model of the prob&ralse of its endogenous
uncertainty. However, we can analyse the usefulness ofdiaPtaheuristics.

Our network is shown in Figure 10 with links labelled 1-12¢ e problem is to
minimise the expected shortest distance between nodes B.artk problem instances
have the parameters shown in Table 3. We set all investmgrtsl and allow a budget
B = 6 so that up to 6 links may be invested in. There 2r& = 4096 scenarios and
the same number of possible plans. By enumerating and eiwvajua! possible plans
we can completely solve each instance by brute force in a fewtes. The (unique)
optimal investment plans and their costs are shown in Table 4

Note that some plans may be infeasible, for example the plarhich all links are
invested in {;. = 1) violates the budget constraint. But for this problem FERtsring
always yields a feasible plan. For instances 1-4 exactlyrdnasbsome corresponds to
the optimal solution, but because of FEP filtering 2 différeimromosomes yield the
same optimal plan for instance 510011000118nd11001100011which differ only
in the final gene. The explanation is that after assigming . y11 to the values shown,



/@X@

Fig. 10. A transportation network.

Pe=0.7,¢=08,cc=1,B=6,M =100
No|t1 to t3 ta ts te t7 ts to tio t11 tia
101010101010101010 10 10 poO
1020 1020 1020102010 20 10 RO
201020 102010201020 10 20 {10
202010102020101020 20 10 {10
10 20 30 30 20 10 30 20 10 10 20 BO

O~ wWNPEF

Table 3. Disaster planning instance parameters.

NO|y1 Y2 Y3 Y4 Ys Y6 Y7 Y8 Yo Y10 Y11 Yi2| COSt

11111000000 1 1 133.603
2(1 01 010001 0 1 1239900
311110010001 0 2140.050
4011000110 0 1 1239.943
5(1 10011000 1 1 a@50.705

Table 4. Disaster planning optimal investment plans.



there are already 6 variables assigned to 1, so 1 is filtered fon{y,2) andy is
assigned to 0 whatever value the gene recommends.

The computational results are shown in Table 5: the mean auoflthromosomes
¢, and the mean execution time “sec” in seconds. If metah@siwere of no use we
would expect them to perform no better than random seleetitimreplacement, which
would take a mean 0f096/(s + 1) chromosomes to find an optimal solution, where
s is the number of chromosomes corresponding to an optimatisol The table also
shows the number of chromosomesorresponding to an optimal solution, and the
speedup relative to random selection which is computethas/c(s + 1). We use a
smaller population size of 10 for this problem. Mean resaitesreported over 10 runs.
FEP uses 2.8-8.4 times fewer chromosomes than randomige|ettowing the benefit
of metaheuristics for this problem.

instance no.
1 2 3 4 1§
c|333 489 245 379 480
sec| 78144 48 75 9b
sl 11 1 1 2
speedup6.2 4.2 8.4 5.4 28

Table 5. Disaster planning mean results.

Note that it is easy to change the objective function in EPREB. As mentioned
above, we can generalise the single source and sink to §emgdlaninimise a weighted
sum of shortest paths. We can use Dynamic Programming to wienai shortest path
distances from a given node, and take the sum of the lengthgrBblems where there
is no well-defined source or sink node, we can use the Floydsheéd algorithm to
compute all shortest path lengths in the network and sumttresagh this would incur
higher overhead. SP researchers have recently expiskedversalisaster planning in-
cluding transportation networks [21]. FEP can use riskserebjective functions such
as conditional value-at-risk, as was done in [17]. Or we camaichance constraint to
ensure a minimum service-level (the probability that thedists a path from A to B).
All these variations can easily be implemented in FEP.

5 Related work

Several SCSP solution methods have been proposed in thedite. [36] presented
two complete algorithms based on backtracking and forwhetking and suggested
some approximation procedures, while [2] described arcansistency algorithm. In
the method of [34] an SCSP is transformed intdegerministic equivalen€SP and

solved by standard CP methods. Itis also extended to handtgha chance constraints
and multiple objective functions. This method gives mucttdseperformance on the
book production planning problem of [36] compared to the tsearch methods. To



reduce the size of the CSfenario reductiormethods are proposed, as used in SP.
These choose a small but representative set of scenariogudg it might not always
be possible to find a small representative set of scenarasinasome cases choosing
an inappropriate set of scenarios can yield an unsolvable MSreover, using even a
modest number of scenarios leads to a CSP that is severallnger than the original
SCSP. [8] modify a standard backtracking algorithm to ora ttan handle multiple
chance constraints and uses polynomial space, but is ieeffia time. For the special
case of SCP with linear recourse, [35] propose a Bender'srdposition algorithm.
[15, 31] proposed a cost-based filtering technique for SG®,[24] generalised this
problem-specific approach to global constraints. The desidocal search algorithms
for SCP was suggested in order to improve scalability [36f tbis idea does not seem
to have been pursued further.

Stochastic Boolean Satisfiability (SSAT) is related to S&€Pecent survey of the
SSAT field is given in [23], on which we base this discussion $SAT problem can be
regarded as an SCSP in which all variable domains are Boadlaronstraints are ex-
tensional and may be non-binary, and all constraints asgetteas a single chance con-
straint (there are also restricted and extended versi@ns)method therefore applies
immediately to SSAT problems. SSAT algorithms fall intoglclasses: systematic, ap-
proximation, and non-systematic. Systematic algorithradased on the standard SAT
backtracking algorithm and correspond roughly to someetur8CP algorithms. Ap-
proximation algorithms work well on restricted forms of SISBut less well on general
SSAT problems. For example the APPSSAT algorithm [22] adersi scenarios in de-
creasing order of probability to construct a partial trag,dpes not work well when all
scenarios have similar probability. A non-systematic athomn for SSAT is randevalssat
[20], which applies local search to the decision (existdptiariables in a random set
of scenarios. This algorithm also suffers from memory peotd because it must build
a partial tree.

FEP usesybrid metaheuristics, in which metaheuristics are hybridiset wiher
techniques (such as constraint filtering, dynamic progrargror other metaheuris-
tics) in order to improve performance on some class of probleA survey of hybrid
metaheuristics (for non-stochastic problems) can be fanré], including a section
on metaheuristic/constraint programming hybrids. Reigarthis survey, FEP is most
closely related to hybrids such as [18,26,27] in which tharc®e space consists of
consistent partial variable assignments. In the spec&d ohan SCP problem with no
stochastic variables the problem reduces to a CP probledrni-BR performs a hybrid
search that uses filtering while building partial assignte&rhose values are guided by
a metaheuristic; in this sense FEP generalises some existbrid CP methods to SCP
by generalising a partial assignment to a partial policg.tre

Metaheuristics have been applied to stochastic problemy timaes. The field is too
large to cover here but a recent survey is given in [4]. EP easden as an adaptation
of such methods to SCP. A major aspect of this work is the efficcomputation or
approximation of the objective function. We have not adskedghis issue in EP or FEP,
instead computing the objective exhaustively by traverire policy tree, but in future
work we will use these important techniques.



6 Conclusion

We propose EP, a method for solving Stochastic ConstraimgrBmming problems
by metaheuristics. EP is the first incomplete algorithm ihapplicable to SCP models
without scenario expansion, though as noted in Section tanelso apply incomplete
searchindirectly via a deterministic equivalent model. Experiments show ¢inasome
problems EP is faster than current complete methods. Wepatgmsed FEP, a hybrid
of EP and constraint filtering that can greatly outperformdePproblems with hard
constraints. Finally, we extended SCP and our method tadech form of endoge-
nous uncertainty, which allows it to model and solve morebfgms in a direct and
natural way. We suggest that this extended language beld¢atidogenous Stochastic
Constraint Programming

All these features contribute to the power of SCP as a framefeo modelling and
solving problems involving uncertainty. The use of metalstics makes the method
more scalable than complete methods to problems with marigide variables. How-
ever, for problems with many stochastic variables the cbstwersing the policy tree
becomes very high, and our method alone is too weak. For sutigms we must use
other techniques such as scenario sampling, and this wilidosubject of future work.
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