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Abstract. Stochastic Constraint Programming (SCP) is an extension ofCon-
straint Programming for modelling and solving combinatorial problems involving
uncertainty. This paper makes three contributions to the field. Firstly we propose
a metaheuristic approach to SCP that can scale up to large problems better than
state-of-the-art complete methods. Secondly we show how touse standard filter-
ing algorithms to handle hard constraints more efficiently during search. Thirdly
we extend our approach to problems with endogenous uncertainty, in which prob-
ability distributions are affected by decisions. This extension enables SCP to
model and solve a wider class of problems.

1 Introduction

Many real-world problems contain elements of uncertainty,and these are often mod-
elled and solved by Stochastic Programming (SP) methods [5]. Stochastic Constraint
Programming (SCP) is an extension of Constraint Programming (CP) designed to model
and solve similar problems, a research direction first proposed in [3, 36]. A motivation
for SCP is that it should be able to exploit the more complex variable types and con-
straints used in CP, leading to more compact models and the use of powerful filtering
algorithms. But Stochastic Constraint Satisfaction Problems (SCSPs) are in a higher
complexity class than Constraint Satisfaction Problems (CSPs) and can be much harder
to solve.

An m-stage SCSP is defined as a tuple(V, S,D, P,C, θ, L) whereV is a set of
decision variables,S a set of stochastic variables,D a function mapping each element
of V ∪S to a domain of values,P a function mapping each variable inS to a probability
distribution,C a set of constraints onV ∪S, θ a function mapping each constrainth ∈ C
to a threshold valueθ ∈ (0, 1], andL = [〈V1, S1〉, . . . , 〈Vm, Sm〉] a list of decision
stagessuch that theVi partitionV and theSi partitionS. Each constraint must contain
at least oneV variable, a constrainth with thresholdθ(h) = 1 is ahard constraint, and

⋆ This material is based in part upon works supported by the Science Foundation Ireland under
Grant No. 05/IN/I886. S. A. Tarim is supported by the Scientific and Technological Research
Council of Turkey (TUBITAK) under Grant No. MAG-110 K500.



Constraints:
c1 : Pr {s1x1 + s2x2 ≥ 30} ≥ 0.75
c2 : Pr {s2x1 = 12} ≥ 0.5

Decision variables:
x1 ∈ {1, 2, 3, 4}
x2 ∈ {3, 4, 5, 6}

Stochastic variables:
s1 ∈ {4(0.5), 5(0.5)}
s2 ∈ {3(0.5), 4(0.5)}

Stage structure:
V1 = {x1} S1 = {s1}
V2 = {x2} S2 = {s2}
L = [〈V1, S1〉, 〈V2, S2〉]

Fig. 1. A simple SCSP example.

one withθ(h) ≤ 1 is achance constraint. To solve anm-stage SCSP an assignment to
the variables inV1 must be found such that, given random values forS1, assignments
can be found forV2 such that, given random values forS2, . . . assignments can be
found for Vm such that, given random values forSm, the hard constraints are each
satisfied, and the chance constraints (containing both decision and stochastic variables)
are satisfied in the specified fraction of all possiblescenarios(set of values for the
stochastic variables).

An SCSP solution is apolicy treeof decisions, in which each node represents a value
chosen for a decision variable, and each arc from a node represents the value assigned
to a stochastic variable. Each path in the tree represents a different possible scenario
and the values assigned to decision variables in that scenario. A satisfying policy tree
is a policy tree in which each chance constraint is satisfied with respect to the tree. A
chance constrainth ∈ C is satisfied with respect to a policy tree if it is satisfied under
some fractionφ ≥ θ(h) of all possible paths in the tree.

As an example, consider the 2-stage SCSP in Figure 1 where thenumbers in brack-
ets indicate that the stochastic variable values each have probability 0.5. Decision vari-
ablex1 must be set to a fixed value while the value ofx2 depends on that ofs1. A policy
tree for this problem is shown in Figure 2. The four scenariosA, B, C and D each have
probability 0.25. Constraintc1 is satisfied in A, B, C and D hence with probability 1.0.
Constraintc2 is satisfied in A and C hence with probability 0.5. These probabilities
satisfy the thresholdsθ(c1) andθ(c2) so this is a satisfying policy.

The above framework is a CP analogue of the subfield of SP knownasChance-
Constrained(or Probabilistic Constrained) Programming. The form in which it is
stated, involving both decision and stochastic variables,is sometimes called theimplicit
form in the SP literature [5], which has both decision and stochastic variables (though
the SP notation is different). The alternative is theextensive formin which scenarios
are expanded to form adeterministic equivalentproblem containing only decision vari-
ables. The extensive form is typically much larger than the implicit form. We shall use
only the implicit form in this paper and in our SCP solver.
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Fig. 2. A satisfying policy tree for the SCSP in Figure 1.

We extend this version of SCP in two ways. Firstly, we allow constraints on statis-
tical parameters of the problem variables, such as expectation or variance. Note that a
chance constrainth with thresholdθ(h) can be written as a constraint on an expectation
E{reify(h)} ≥ θ(h) where reify(h) is 1 if h is satisfied and 0 otherwise. Secondly, we
may wish to solve an SCSP while minimising (or maximising) anobjective function,
in which case we have a Stochastic Constrained OptimisationProblem (SCOP). The
objective function may be defined in terms of statistical parameters, for example we
may wish to maximise the expectation or minimise the variance of a decision variable,
or maximise a chance constraint threshold. In all these cases an SCOP can be solved as
a series of SCSPs with an increasingly tight constraint.

Several complete methods for solving multi-stage SCP problems have been pro-
posed but none seems practicable for large problems. Incomplete methods such as local
search and genetic algorithms are often more scalable but very little work has been done
on applying them to SCP. We propose a new approach: transforma multi-stage problem
into an unconstrained optimisation problem which can be solved by metaheuristics. The
paper is organised as follows. Section 2 describes the basicmethod for solving problems
in SCP. Section 3 adds standard filtering algorithms to handle hard constraints more ef-
fectively. Section 4 extends SCP and our solver to a form ofendogenous uncertainty
in which probability distributions may depend on earlier decisions. Section 5 discusses
related work. Section 6 concludes the paper.

This work is based on [28, 29] but contains new results: only random problems were
used in [28], Quantified Boolean Formulae were used as an example in [29], both pa-
pers used artificial neural networks whereas this paper doesnot, and this paper extends
SCP to endogenous uncertainty and supplies missing proofs.Some of the material was
briefly described in [17, 19] but this paper contains the definitive descriptions.

2 Metaheuristics for SCP

In this section we describe a metaheuristic approach to solving SCP problems.



2.1 SCP as unconstrained optimisation

We transform the problem of finding a satisfying policy tree to an unconstrained op-
timisation problem. We do this viapenalty functionswhich are commonly used when
applying local search or genetic algorithms to CSPs [10]. Define a variable at each pol-
icy tree node, whose values are the domain values for the decision variable at that node.
(Our solver does this automatically by traversing the tree once before search begins.)
Then a vector of values for these variables represents a policy tree.

For each hard or chance constrainth ∈ C we define a penaltyxh in each scenario,
which is 0 if h is satisfied and 1 if it is violated in that scenario. Then the objective
function for a vectorv is:

f(v) =
∑

h∈C

max{E{xh} − θ(h), 0}

We computeE{xh} by traversing the policy tree, and at each leaf checking whether
constrainth is satisfied: if it is then that scenario contributes its probability to E{xh}.
If f(v) = 0 then each constrainth ∈ C is satisfied with probability at least that of
its satisfaction thresholdθ(h). When solving an SCOP we impose a constraint on the
objective function, and on finding a new solution we tighten this constraint; sof(v)
includes a penalty for the SCOP objective function. We can now apply metaheuristics
to the following unconstrained optimisation problem: find avectorv that minimises
f(v) to 0. We shall refer to this method asEvolved Policies(EP).

2.2 A genetic algorithm

A solution to an SCP problem is a vectorv with one value per policy tree node. In
principle any metaheuristic algorithm can be used to explore the space of vectors, but in
this paper we shall use a genetic algorithm, implemented in the Eclipse constraint logic
programming system [1]. We assume a basic knowledge of metaheuristics; a survey can
be found in [7], and for further details on evolutionary algorithms in particular we refer
the reader to books such as [11].

We represent a vector of values by a chromosome in the obviousway, with one
gene per value. The fitness is simplyf(v) and is to be minimised. The metaheuristic
we use is a version of the Microbial Genetic Algorithm (MGA) [13] shown in Figure 3.
Other evolutionary algorithms and a simple local search algorithm also performed well
in experiments, but we found the MGA to be robust and efficientand we shall use it
throughout the paper. In the MGA chromosomes are notionallyarranged in a ring and
breeding is restricted to neighbouring chromosomes. This restriction makes the MGA
an example of the class ofcellular genetic algorithmswhose localised breeding often
leads to greater genetic diversity. The recombination operator isuniform crossoverin
which each gene in the new chromosome takes a value chosen randomly from the corre-
sponding values in the two parent chromosomes. Because the single offspring replaces
the weaker of the two parents, this can be interpreted as the weaker parent receiving
genetic material from the stronger parent. This mimics bacterial reproduction, hence
the name of the algorithm.



initialise the population randomly
repeat until finding desired solution or timeout

randomly choose 2 neighbouring chromosomesa, b

recombinea andb to form new chromosomec
mutatec to form new chromosomed
replace the less-fit ofa andb by d

Fig. 3. The Microbial Genetic Algorithm.

Constraints:
Pr {x1s1 + x2s3 + x3s5 + x4s7 = 80} ≥ α

Pr {x1s2 + x2s4 + x3s6 + x4s8 ≤ 100} ≥ β

Pr {x1s2 + x2s4 + x3s6 + x4s8 ≥ 60} ≥ β

Pr {x1s2 + x3s6 ≥ 30} ≥ 0.7
Pr {x2s4 + x4s8 = 20} ≥ 0.05

Decision variables:
x1 ∈ {5, . . . , 10} x2 ∈ {4, . . . , 10}
x3 ∈ {3, . . . , 10} x4 ∈ {6, . . . , 10}

Stochastic variables:
si ∈ Di ∀i ∈ {1, . . . , 8}

Stage structure:
V1 = {x1} S1 = {s1, s5}
V2 = {x2} S2 = {s2, s6}
V3 = {x3} S3 = {s3, s7}
V4 = {x4} S4 = {s4, s8}
L = [〈V1, S1〉, 〈V2, S2〉, 〈V3, S3〉, 〈V4, S4〉]

Fig. 4. Random SCSPs.

The mutation operator we use changes each gene’s value with arandom value with
probability (1 − 0.5n

−1

)−1 wheren is the number of genes per chromosome. This
value was chosen so that the probability of each chromosome being mutated is 0.5. The
population size we shall use is 50 unless stated otherwise.

2.3 Experiments

We now show that EP can scale to large SCP problems better thancomplete meth-
ods. We use a benchmark set of random 4-stage SCSPs with 5 chance constraints over
4 decision variablesx1 . . . x4 and 8 stochastic variabless1 . . . s8, shown in Figure 4
whereDi denotes a random domain chosen uniformly from{1, 2, 3, 4, 5} with 2 val-
ues fori ∈ {1, 3, 5, 7} and 3 values fori ∈ {2, 4, 6, 8}. We generate instances for
α ∈ {0.05, 0.1, 0.12, 0.15, 0.17, 0.2} andβ ∈ {0.6, 0.7, 0.8}, with 5 different sets of



stochastic variable domains, giving 90 instances in total.1 None of these instances is
known to be unsatisfiable but some might be.

Table 1 compares the global chance-constraint (GCC) methodof [14], the scenario-
based method (SBA) of [34] and EP. GCC is the state-of-the-art complete method for
these problems while SBA was the previous best. All figures are in seconds and “—”
denotes that the time is greater than 200 seconds. All times were obtained on a 2.8 GHz
Pentium (R) 4 with 512 MB RAM, or on another machine with timesnormalised to this
one; the same machine was used throughout this paper. EP figures are medians over 30
runs.

problem set 1problem set 2 problem set 3 problem set 4problem set 5
α β SBA GCC EPSBA GCC EPSBA GCC EPSBA GCC EPSBA GCC EP

0.05 0.6 — 7 10 — 86 96 1 8 13 — — 16 — 6 7
0.10 0.6 — 8 15 — — 132 1 7 35 — 13 32 — 6 10
0.12 0.6 — 8 17 — — 138 1 7 49 — 23 33 — 6 12
0.15 0.6 — 7 21 — — 165 — — 63 — — 47 — — 17
0.17 0.6 — 8 29 — — 181 — — 76 — — 68 — — 21
0.20 0.6 — 8 30 — — 185 — — 121 — — 82 — — 25
0.05 0.7 — 7 17 — 9 116 1 7 21 — 11 27 0 6 12
0.10 0.7 — — 24 — — 139 1 8 37 — — 41 — — 14
0.12 0.7 — — 18 — — 154 1 7 47 — — 41 — — 15
0.15 0.7 — — 31 — — 189 — — 63 — — 54 — — 19
0.17 0.7 — — 35 — — — — — 77 — — 66 — — 22
0.20 0.7 — — 42 — — — — — 117 — — 85 — — 30
0.05 0.8 — 7 40 — — — 1 8 30 — 10 56 — 7 19
0.10 0.8 — 8 64 — — — 1 7 47 — 12 63 — — 21
0.12 0.8 — — 89 — — — 1 7 62 — 14 68 — — 25
0.15 0.8 — — 92 — — — — — 73 — — 81 — — 28
0.17 0.8 — — — — — — — — 89 — — 95 — — 28
0.20 0.8 — — — — — — — — 105 — — 191 — — 33

Table 1.Results in seconds for random SCSPs.

SBA transforms these SCSPs into (deterministic) CSPs with 6739 variables and
6485 constraints. GCC transforms them into CSPs with 259 variables and 5 constraints.
EP transforms them into unconstrained optimisation problems with 185 variables. The
SCSPs turn out to be hard for SBA and somewhat easier for GCC. However, EP solves
all problems that could be solved by SBA or GCC, as well as manythat were solved by
neither. Moreover, EP can potentially be improved by using more sophisticated meta-
heuristics.

1 These problems were used in [28] but there was a typographical error in their definition which
we correct here.



3 Filtering hard constraints

EP treats hard constraints as a special case of chance constraints. This is not incorrect
but it does not exploit CP filtering methods. Moreover, the use of penalty functions
is not always the best way of handling constraints in a local search or evolutionary
algorithm. For example when solving permutation problems much better results are ob-
tained by designing mutation and recombination operators specifically for deriving new
permutations from old ones. We could design genetic operators for specific problems,
but here we aim instead for a single solver that will do well ona variety of problem
types.

Inspired by hybrid search algorithms for CP, we now describea filtering technique
for hard constraints on finite domain variables. This technique was first reported in [29].
It allows us to use standard CP filtering algorithms by treating stochastic and decision
variables uniformly, without the need for specialised filtering algorithms. This greatly
simplifies the implementation of our solver. We shall also show that it can give much
better results on permutation problems, though it is a generic approach that is not aimed
specifically at permutations.

3.1 The method

Evolutionary algorithms (EAs) and local search are often applied to constrained prob-
lems, and there are at least three distinct ways of handling constraints in an EA; for an
overview see (for example) [10]. The simplest method is the use ofpenalty functions
which we used in EP. Another method isrepair where a chromosome representing an
infeasible solution is transformed to one representing a feasible solution. A third method
is adecoder, which is a function that maps chromosomes to solutions. In the decoder
approach a chromosome is no longer a solution, but a set of instructions on how to
construct a solution. This can be highly effective on tightly-constrained problems, but
unfortunately a decoder is problem-specific.

We shall use filtering algorithms topartially decode chromosomes. The stronger
the filtering method, the more likely we are to obtain a feasible solution. In the limit
as consistency increases we would have a function that couldmap any chromosome
into a feasible solution, but this is an NP-complete task as it amounts to solving a
CSP. Nevertheless, we shall show that filtering algorithms can profitably be used as
partial decoders for EAs applied to SCP problems. We call themodified methodFiltered
Evolved Policies(FEP). Whereas EP uses a penalty function approach on all constraints,
FEP uses a decoder-like approach on the hard constraints andpenalty functions on
chance constraints.

Before starting the search we traverse the policy tree once without filtering, to count
the number of nodesN . During search, as we traverse the policy tree guided by a chro-
mosomev we apply constraint filtering algorithms using the hard constraints, treating
both stochastic and decision variables as in a standard CSP.This may remove values
from both decision and stochastic variable domains and cause backtracking, so the com-
plete policy tree might not be traversed. We detect this by counting the numberMv of
nodes visited and computing a penaltyt(v) = (N −Mv)/(Mv + 1). If all nodes are
visited thenMv = N andt(v) = 0. We then modify our objective function to include



Constraints:
c1 : o = r

c2 : o ≤ c

Decision variables:
c, o ∈ {0, 1}

Stochastic variables:
r ∈ {0(0.5), 1(0.5)}

Stage structure:
V1 = {c} S1 = {r}
V2 = {o} S1 = ∅
L = [〈V1, S1〉, 〈V2, S2〉]

Fig. 5. The umbrella problem.

the new penalty:f(v) + t(v). This is also a penalty function, but the penalty is now
differentand it depends on the filtering algorithms used. Though it might appear unsafe
to apply filtering to stochastic variables, the additional penaltyt(v) makes FEP correct
(see Section 3.4). We further modify FEP so that alleles are not used directly as decision
variable values, but are instead used asrecommended values. This will be explained in
Section 3.2.

3.2 Illustrative example

We shall illustrate the filtering method with a simple 2-stage SCSP. Suppose we are
trying to decide whether to carry an umbrella, given two equally probable scenarios:
that it rains or not. We use a first-stage binary decision variablec to denote carrying
an umbrella (c = 1) or not (c = 0). A first-stage binary stochastic variabler indicates
whether it rains (r = 1) or not (r = 0), with equal probabilities 0.5. A second-stage
binary decision variableo represents the decision to open the umbrella (o = 1) or not
(o = 0). In SP terminology the latter decision is arecourse actionas it depends on the
scenario. There are three hard constraints. Firstly, we canonly put up the umbrella if
we carry it:o ≤ c. Secondly, we do not wish to get wet so if it rains then put up the
umbrella:r ≤ o. Thirdly, we would like to enjoy the sun if it is out, so we onlyput
up the umbrella if it rains:o ≤ r. The last two constraints can be combined into one:
o = r. An SCSP model for this problem is shown in Figure 5.

This SCSP has 8 possible plans corresponding to the 2 choicesfor c combined
with the 2 choices foro in each of the 2 scenarios. There is only one satisfying policy
tree: carry the umbrella, and put it up if and only if it rains,as shown in Figure 6(i).
In this figure satisfied constraints are indicated by ticks and violated constraints by
crosses. EP can be used to search for this policy tree which weshall represent by a
chromosome101: the first digit is the value ofc, the second is the value ofo in the
scenarior = 0, and the third is the value ofo in the scenarior = 1. In all scenarios both
constraints are satisfied so the penalty isf(101) = 0. FEP handles this chromosome
by counting the number of nodesM101 visited by using this chromosome, and the
number of nodesN in a satisfying policy tree; both are 3 so the penalty under FEP is
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(i) 101 (EP) (ii) 011 (EP) (iii) 011 (FEP)

Fig. 6. Three policy trees for the umbrella problem.

t(101) = (3 − 3)/(3 + 1) = 0. Hence for this chromosome EP and FEP both return a
penalty of 0 indicating satisfaction, as would be expected.

Now consider how EP handles a chromosome corresponding to anon-satisfying
policy tree such as011, in which we do not carry the umbrella but we always open
it. The tree is shown in Figure 6(ii). In scenarior = 0 constraintc1 is satisfied but
c2 is violated, while in scenarior = 1 both constraints are violated, so the penalty
is f(011) = 0.5 × 1 + 0.5 × 2 = 1.5. FEP handles this chromosome differently. It
uses the first gene to assignc = 0, then uses constraintc2 to filter the value 1 from
dom(o) (the domain ofo): an example of filtering on a stochastic variable domain. This
removal triggers the further removal of value 1 from dom(s) via constraintc1, so now
dom(r) = dom(o) = {0}. The recommended values foro in each scenario are now
irrelevant, as 0 must be chosen in both cases. The policy treecorresponding to this
chromosome using FEP is shown in Figure 6(iii). Because dom(r) = {0} the policy
tree has only 2 nodes instead of 3, so the penalty ist(011) = (3 − 2)/(2 + 1) = 1/3.
FEP’s filtering has pruned the domain dom(r) of a stochastic variabler, leading to an
incomplete policy tree. This may appear to be incorrect but it only occurred because
the policy tree is non-satisfying: FEP did not prune dom(r) in the case of the satisfying
policy tree. EP and FEP simply use different functions to penalise non-satisfying trees.

This simple example also illustrates another feature of FEP. Under EP there is ex-
actly one chromosome101corresponding to a solution, but under FEP there arefour
such chromosomes:100, 101, 110and111. As long asc = 1 the values ofo in both
scenarios are fixed by filtering on constraintc1, so the recommended values are irrel-
evant. We shall show that this can make it easier to find a satisfying policy tree using
FEP.

An additional advantage of FEP is that it can be used to reducechromosome length.
If we know that a decision variable is functionally dependent on earlier assignments
then we need not represent it in the chromosome, as its recommended values are irrel-
evant. In this example constraintc1 makeso functionally dependent onr so the chro-
mosome needs only one gene, forc. Our FEP implementation allows this information
to be provided by the user.



3.3 Experiments

In the well-knownTravelling Salesman Problem(TSP) we must find a permutation
of a set of cities such that visiting the cities in that order,and returning to the first
city, minimises the total distance travelled. In theProbabilistic TSP(PTSP) [16] the
probability of city i being in the tour ispi; if it is not in the tour then it is ignored,
and the distance between its predecessor and successor cities is used. The objective is
to choose a tour that minimises the expected total distance travelled. We shall use the
PTSP to test two hypotheses empirically: (i) can filtering improve performance, and (ii)
can stronger filtering further improve performance?

We model the PTSP as an SCOP as follows. To model a permutationof N cities
we use decision variablesvi ∈ {1, . . . , N} (i = 1 . . . N ) which must all take different
values to form a permutation. We assume additional cities 0 andN +1 are the start and
end points of each tour, and that the distances between cities 0 and 1, and betweenN
andN + 1, are 0. Use binary stochastic variablesbi (i = 1 . . . N ) wherebi = 1 means
that city i is present in the tour.2 An SCP model is shown in Figure 7.tourlength
is a global chance constraint[32] that computes the lengthλ of a tour in a scenario.
To do this it needs the values of thebi and theN × N distance matrixMij of the
graph.alldifferent is a standard global constraint that forces its parameters to
take different values.3

We compare four implementations ofalldifferent, two using EP:

– a singlealldifferent chance constraint with threshold 1
– N2 pairwise disequality chance constraints

and two using FEP:

– N2 pairwise disequality hard constraints with arc consistency (AC)
– a singlealldifferent hard constraint with generalised arc consistency (GAC)

[30]

A drawback with this problem for our purposes is that FEP mapsany chromosome to
a valid permutation, whether using either GAC, pairwise AC or even pairwise forward
checking. One way of making GAC and pairwise AC filter differently is to restrict
some variable domains, and we somewhat arbitrarily choose to restrict the domains of
vN/2 . . . vN to {1, . . . , N/2}. We compare the performance of our solver using the four
alldifferent implementations with various values ofN .

For simplicity we use complete graphs withMij ≡ 1 and pi ≡ 0.5. Then the
tour length in each scenario is independent of the permutation: λ ≡

∑N
i=1

bi so all
permutations have the same expected lengthE{λ} = N/2. We are left with an SCSP in
which we must simply find a permutation. We apply the same evolutionary algorithm as
in Section 2 and take the median of 30 runs forN ∈ {5, 10, 15, 20, 25}. The results are
shown in Table 2, where “?” indicates that the median runtimeis greater than 1 minute
and “chr” denotes the number of chromosomes used.

2 There is anO(N3) expression for expected tour length but this is not relevanthere.
3 This is a hard constraint: thestochasticalldifferent constraint has a different meaning.



Minimise:
E{λ}

Constraints:
alldifferent({vi})
tourlength({bi},Mij , λ)

Decision variables:
vi ∈ {1, . . . N} (∀i = 1 . . . N)

Stochastic variables:
bi ∈ {0(1 − pi), 1(pi)} (∀i = 1 . . . N)

Stage structure:
V1 = {vi} S1 = {bi}
L = [〈V1, S1〉]

Fig. 7.An SCP model for the PTSP.

EP FEP
(1) (2) (3) (4)

N chr sec chr sec chr secchr sec
5 26 0 41 0.01 1 0.00 1 0.00

10 22428 2 772 2 54 0.00 1 0.00
15 ? ?3054 19206 0.02 1 0.00
20 ? ? ? ?328 0.04 1 0.00
25 ? ? ? ?476 0.08 1 0.00

Table 2.Comparing 4 implementations ofalldifferent.

Method (1) is extremely poor: in fact it is worse than randomly choosing chromo-
somes, which would take on average2N iterations. Method (2) does better because
it distinguishes between chromosomes that are different distances from being permu-
tations: for example whenN = 5 chromosome11245more nearly corresponds to a
permutation of{1, 2, 3, 4, 5} than11111does, but method (1) does not distinguish be-
tween them. Method (3) is much better, as its use of pairwise AC filtering enables it
to partially decode chromosomes into near-permutations. Method (4) is the best: GAC
enables it to fully decode all chromosomes into permutations.

These results empirically support both of our theoretically-motivated hypotheses.
Firstly, both FEP methods beat both EP methods, showing thatapplying standard fil-
tering algorithms to hard constraints can give much better results than treating hard
constraints as chance constraints. Secondly, method (4) beats method (3), showing that
using stronger filtering algorithms can boost performance further. Of course, as in (non-
stochastic) CP, these results are unlikely to apply to all problems as runtime overheads
might outweigh the advantages of filtering.

3.4 Properties

We now prove some useful FEP properties. Firstly it is important to show correctness:



Proposition 1. FEP is correct.

Proof. If a chromosomev represents a policy in which hard constraints are never vio-
lated then its recommended decision variable assignments must be consistent with the
stochastic variable assignments in every scenario, so no filtering will occur on a stochas-
tic variable domain in any scenario, every node will be visited,Mv = N andt(v) = 0.
Conversely, ift(v) = 0 thenMv = N , which is only possible if hard constraints are
never violated, sov represents a policy in which hard constraints are never violated.
Hencet(v) = 0 if and only if the policy represented byv satisfies the hard constraints,
which shows the correctness of FEP.2

As shown in Section 3.3, FEP can be more efficient than EP. A likely explanation
is that FEP solves an optimisation problem with more optimalsolutions (chromosomes
representing satisfying policy trees for the SCSP) than EP:

Proposition 2. The optimisation problem representing an SCSP has more optimal so-
lutions under FEP than under EP.

Proof. Firstly, we show that any EP solution is also a FEP solution. In the EP solution,
the recommended value for each variable solves the problem,therefore it satisfies all
hard constraints, so filtering cannot remove those values.

Secondly, we show by example that there exists a FEP solutionfor an SCSP, using
a certain filtering algorithm, that is not an EP solution. We cite the illustrative example
of Section 3.2 in which chromosomes 100, 110 and 111 are solutions under FEP but not
EP. 2

Section 3.3 also showed that using stronger filtering can further boost performance.
Again a likely explanation is that it further increases the number of optimal solutions:

Proposition 3. The optimisation problem representing an SCSP has more optimal so-
lutions under FEP if the level of consistency is increased.

Proof. Firstly, we show that any FEP solution with a given filtering algorithmA is also
a solution under a stronger filtering algorithmB. In the FEP solution underA, taking the
nearest remaining value in any decision variable domain underA solves the problem.
Stronger filtering can only remove more values from the domain, but the value chosen
underA will not be pruned because it was correct, so it will also be chosen underB.

Secondly, we show by example that there exists an SCSP and filtering algorithms
A andB, with B stronger thanA, and a solution underB that is not a solution under
A. Take the SCSP in Figure 8, letA enforce arc consistency on each of the disequality
constraints representing thealldifferent constraint, letB enforce GAC on the
constraint, and let the chromosome contain genes(x = 0, y0 = 0, y1 = 0) whereyi
denotesy in the scenario withs = i. This is a solution underB because GAC applied
before any assignments are made removes 0 and 1 from dom(x), sox will be set to
the nearest remaining value which is 2. Thens is assignedω(s) ∈ {0, 1} and GAC
removesω(s) from dom(y), soy is assigned1 − ω(s). However, it is not a solution
underA because pairwise arc consistency does not remove 0 and 1 fromdom(x), sox
will follow the recommendation and be assigned value 0. Thiscannot lead to a solution.
2



Constraints:
Pr {alldifferent(x, y, s)} = 1

Decision variables:
x ∈ {0, 1, 2, 3}
y ∈ {0, 1}

Stochastic variables:
s ∈ {0(0.5), 1(0.5)}

Stage structure:
V1 = {x} S1 = {s}
V2 = {y} S2 = ∅
L = [〈V1, S1〉, 〈V2, S2〉]

Fig. 8. SCSP used in the proof of Proposition 3.

4 Endogenous uncertainty

The form of uncertainty addressed so far is sometimes calledexogenous: the stochastic
variable probability distributions are fixed and known at the start. Exogenous uncer-
tainty is the only type handled in most SCP and SP research. However, some problems
haveendogenous uncertaintywhich make them much harder to solve.

Endogenous uncertainty may be of two types. Firstly, the probability distribution of
a stochastic variable may depend upon the values of decisionvariables from the same
or an earlier stage. Secondly, the time at which the uncertainty is observed may de-
pend upon the values of earlier decision variables, though the probability distributions
are fixed and known at the start. The latter are sometimes calledSTOXUNOproblems
(STochastic Optimisation problems with eXogenous Uncertainty and eNdogenous Ob-
servations) [24]. We shall not tackle STOXUNO problems in this paper but we extend
SCP to include the first type of endogenous uncertainty.

For a survey of work on endogenous uncertainty see [12], which mentions appli-
cations including network design and interdiction, serverselection, facility location,
and gas reservoir development. Other examples include clinical trial planning [9] and
portfolio optimisation [33].

4.1 Handling decision-dependent probabilities

To model endogenous uncertainty we simply allow decision variables to specify prob-
ability distributions. That is, the probability associated with a value for stochastic vari-
ablev ∈ Si is allowed to be specified by a decision variablex ∈ Vj wherej ≤ i. (We
assume that the stochastic variable domains are the same in each case: if not then we can
take their union as the domain and set some probabilities to 0.) To handle this extension
we allow real-valued decision variables, which must be constrained to be functionally
dependent upon the values of stochastic or other decision variables that have already
been assigned. These variables need not be represented in the chromosome because
they are functionally determined. The same is true of other functionally-determined
decision variables, and the user can specify which these are.



These are the only modifications we need to model decision-dependent probabili-
ties and the solver needs no other changes. The first application of this technique was
described in [17] on a production planning problem and led tomuch faster performance
than an SP approach.

4.2 A disaster planning application

As an example we take the stochastic network problem of Peetaet al. [25]. Consider a
transportation network, each of whose links (bridges) may fail with some probability.
The failure probability of a link can be reduced by investingmoney in it, and we have
a budget limiting the total investment. We would like to minimise the expected shortest
path between a specified source and sink node in the network. More generally, we might
minimise a weighted sum of expected shortest paths for selected sources and sinks,
chosen to represent (for example) high population areas andhospitals; for simplicity we
shall consider only a single source and sink. This type of problem arises in pre-disaster
planning, where a decision maker aims to maximise the robustness of a transportation
network with respect to possible disasters, to facilitate rescue operations.

Endogenous uncertainty arises in this problem because the decisions (which links
to invest in) affects the probabilities of the random events(the link failures). This is a
2-stage problem. In the first stage we must decide which linksto invest in, then link
failures occur randomly. In the second stage we must choose ashortest path between
the source and sink (the recourse action), given the surviving links. If the source and
sink are no longer connected then a fixed penalty is imposed. Peetaet al.point out that,
though a natural approach is to strengthen the weakest links, this does not necessarily
lead to the best results.

We can model the problem in SCP as follows. For each linke ∈ E (whereE is
the set of links in the network) we define a binary decision variableye which is 1 if
we invest in that link and 0 otherwise. We define a binary stochastic variablere which
is 1 if link e survives and 0 if it fails. We define a single second-stage decision vari-
ablez to be computed by a shortest-path algorithm. Following Peeta et al. denote the
survival (non-failure) probability of linke by pe without investment andqe with, the
investment required for linke by ce, the length of linke by te, the budget byB, and
the penalty for no path from source to sink byM . Our 2-stage SCP is shown in Fig-
ure 9 whereshortest path cost(M, te, re, z) is a global chance constraint that
constructs a representation of the graph from there values, uses Dijkstra’s algorithm
to find a shortest path between source and sink, and computes its lengthz; if source
and sink are unconnected thenz = M . We implemented this constraint via an Eclipse
suspended goalwhose execution is delayed until the second stage. To model probabili-
ties we define real auxiliary decision variablesfe (failure) andse (survival). Thefe are
constrained to be1 − pe if link e is invested in (ye = 1) and1 − qe otherwise. The
probabilities must sum to 1 sose = 1− fe. All constraints are hard and are handled by
the filtering method described in Section 3.

Only theye are independent decision variables: thefe, se, z variables are all func-
tionally dependent on theye. Our solver allows the user to specify functionally-dependent
variables so that no genes need be used for them; identifyingthem leaves only 12 genes
per chromosome, one for eachye.



Minimise:
E{z}

Constraints:
c1 :

∑
e∈E

ceye ≤ B

c2 : fe = ye(1− qe) + (1− ye)(1− pe) (∀e ∈ E)
c3 : se = 1− fe (∀e ∈ E)
c4 : shortest path cost(M, te, re, z)

Decision variables:
ye ∈ {0, 1} (∀e ∈ E)
fe, se, z ∈ R (∀e ∈ E)

Stochastic variables:
re ∈ {0(fe), 1(se)} (∀e ∈ E)

Stage structure:
V1 = {ye, fe, se | e ∈ E} S1 = {re | e ∈ E}
V2 = {z} S2 = ∅
L = [〈V1, S1〉, 〈V2, S2〉]

Fig. 9.An SCP model for the disaster planning problem.

4.3 Experiments

Peetaet al. tackle a real road network with 30 directed links, giving a billion scenarios
which are then sampled. We will address scenario reduction methods in future work
so we do not use this network, which has too many scenarios forFEP to enumerate.
They also tackle an 8-node 9-link network, but we do not use this either because not
quite enough information is provided to recreate the problem exactly, and no execution
times are provided for comparison. Instead we design our own(slightly larger) network
with 8 nodes and 12 undirected links, which is small enough for us to compute optimal
solutions by brute force in a reasonable time. A further drawback with the disaster
planning problem is that we have no other algorithms to compare FEP with: current
complete SCP solvers cannot solve this model of the problem because of its endogenous
uncertainty. However, we can analyse the usefulness of FEP’s metaheuristics.

Our network is shown in Figure 10 with links labelled 1–12, and the problem is to
minimise the expected shortest distance between nodes A andB. The problem instances
have the parameters shown in Table 3. We set all investmentsce ≡ 1 and allow a budget
B = 6 so that up to 6 links may be invested in. There are212 = 4096 scenarios and
the same number of possible plans. By enumerating and evaluating all possible plans
we can completely solve each instance by brute force in a few minutes. The (unique)
optimal investment plans and their costs are shown in Table 4.

Note that some plans may be infeasible, for example the plan in which all links are
invested in (ye ≡ 1) violates the budget constraint. But for this problem FEP’sfiltering
always yields a feasible plan. For instances 1–4 exactly 1 chromosome corresponds to
the optimal solution, but because of FEP filtering 2 different chromosomes yield the
same optimal plan for instance 5:110011000110and110011000111, which differ only
in the final gene. The explanation is that after assigningy1 . . . y11 to the values shown,
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Fig. 10.A transportation network.

pe ≡ 0.7, qe ≡ 0.8, ce ≡ 1, B ≡ 6, M ≡ 100
No t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

1 10 10 10 10 10 10 10 10 10 10 10 10
2 10 20 10 20 10 20 10 20 10 20 10 20
3 20 10 20 10 20 10 20 10 20 10 20 10
4 20 20 10 10 20 20 10 10 20 20 10 10
5 10 20 30 30 20 10 30 20 10 10 20 30

Table 3.Disaster planning instance parameters.

No y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 cost
1 1 1 1 0 0 0 0 0 0 1 1 133.603
2 1 0 1 0 1 0 0 0 1 0 1 139.900
3 1 1 1 0 0 1 0 0 0 1 0 140.050
4 0 1 1 0 0 0 1 1 0 0 1 139.943
5 1 1 0 0 1 1 0 0 0 1 1 050.705

Table 4.Disaster planning optimal investment plans.



there are already 6 variables assigned to 1, so 1 is filtered from dom(y12) andy12 is
assigned to 0 whatever value the gene recommends.

The computational results are shown in Table 5: the mean number of chromosomes
c, and the mean execution time “sec” in seconds. If metaheuristics were of no use we
would expect them to perform no better than random selectionwith replacement, which
would take a mean of4096/(s + 1) chromosomes to find an optimal solution, where
s is the number of chromosomes corresponding to an optimal solution. The table also
shows the number of chromosomess corresponding to an optimal solution, and the
speedup relative to random selection which is computed as4096/c(s + 1). We use a
smaller population size of 10 for this problem. Mean resultsare reported over 10 runs.
FEP uses 2.8–8.4 times fewer chromosomes than random selection, showing the benefit
of metaheuristics for this problem.

instance no.
1 2 3 4 5

c 333 489 245 379 480
sec. 78 144 48 75 95

s 1 1 1 1 2
speedup6.2 4.2 8.4 5.4 2.8

Table 5.Disaster planning mean results.

Note that it is easy to change the objective function in EP andFEP. As mentioned
above, we can generalise the single source and sink to several, and minimise a weighted
sum of shortest paths. We can use Dynamic Programming to compute all shortest path
distances from a given node, and take the sum of the lengths. For problems where there
is no well-defined source or sink node, we can use the Floyd-Warshall algorithm to
compute all shortest path lengths in the network and sum them, though this would incur
higher overhead. SP researchers have recently exploredrisk-aversedisaster planning in-
cluding transportation networks [21]. FEP can use risk-averse objective functions such
as conditional value-at-risk, as was done in [17]. Or we can use a chance constraint to
ensure a minimum service-level (the probability that thereexists a path from A to B).
All these variations can easily be implemented in FEP.

5 Related work

Several SCSP solution methods have been proposed in the literature. [36] presented
two complete algorithms based on backtracking and forward checking and suggested
some approximation procedures, while [2] described an arc-consistency algorithm. In
the method of [34] an SCSP is transformed into adeterministic equivalentCSP and
solved by standard CP methods. It is also extended to handle multiple chance constraints
and multiple objective functions. This method gives much better performance on the
book production planning problem of [36] compared to the tree search methods. To



reduce the size of the CSPscenario reductionmethods are proposed, as used in SP.
These choose a small but representative set of scenarios. However, it might not always
be possible to find a small representative set of scenarios, and in some cases choosing
an inappropriate set of scenarios can yield an unsolvable CSP. Moreover, using even a
modest number of scenarios leads to a CSP that is several times larger than the original
SCSP. [8] modify a standard backtracking algorithm to one that can handle multiple
chance constraints and uses polynomial space, but is inefficient in time. For the special
case of SCP with linear recourse, [35] propose a Bender’s decomposition algorithm.
[15, 31] proposed a cost-based filtering technique for SCP, and [14] generalised this
problem-specific approach to global constraints. The design of local search algorithms
for SCP was suggested in order to improve scalability [36], but this idea does not seem
to have been pursued further.

Stochastic Boolean Satisfiability (SSAT) is related to SCP.A recent survey of the
SSAT field is given in [23], on which we base this discussion. An SSAT problem can be
regarded as an SCSP in which all variable domains are Boolean, all constraints are ex-
tensional and may be non-binary, and all constraints are treated as a single chance con-
straint (there are also restricted and extended versions).Our method therefore applies
immediately to SSAT problems. SSAT algorithms fall into three classes: systematic, ap-
proximation, and non-systematic. Systematic algorithms are based on the standard SAT
backtracking algorithm and correspond roughly to some current SCP algorithms. Ap-
proximation algorithms work well on restricted forms of SSAT but less well on general
SSAT problems. For example the APPSSAT algorithm [22] considers scenarios in de-
creasing order of probability to construct a partial tree, but does not work well when all
scenarios have similar probability. A non-systematic algorithm for SSAT is randevalssat
[20], which applies local search to the decision (existential) variables in a random set
of scenarios. This algorithm also suffers from memory problems because it must build
a partial tree.

FEP useshybrid metaheuristics, in which metaheuristics are hybridised with other
techniques (such as constraint filtering, dynamic programming or other metaheuris-
tics) in order to improve performance on some class of problems. A survey of hybrid
metaheuristics (for non-stochastic problems) can be foundin [6], including a section
on metaheuristic/constraint programming hybrids. Regarding this survey, FEP is most
closely related to hybrids such as [18, 26, 27] in which the search space consists of
consistent partial variable assignments. In the special case of an SCP problem with no
stochastic variables the problem reduces to a CP problem, and FEP performs a hybrid
search that uses filtering while building partial assignments whose values are guided by
a metaheuristic; in this sense FEP generalises some existing hybrid CP methods to SCP
by generalising a partial assignment to a partial policy tree.

Metaheuristics have been applied to stochastic problems many times. The field is too
large to cover here but a recent survey is given in [4]. EP can be seen as an adaptation
of such methods to SCP. A major aspect of this work is the efficient computation or
approximation of the objective function. We have not addressed this issue in EP or FEP,
instead computing the objective exhaustively by traversing the policy tree, but in future
work we will use these important techniques.



6 Conclusion

We propose EP, a method for solving Stochastic Constraint Programming problems
by metaheuristics. EP is the first incomplete algorithm thatis applicable to SCP models
without scenario expansion, though as noted in Section 1 onecan also apply incomplete
searchindirectlyvia a deterministic equivalent model. Experiments show that on some
problems EP is faster than current complete methods. We alsoproposed FEP, a hybrid
of EP and constraint filtering that can greatly outperform EPon problems with hard
constraints. Finally, we extended SCP and our method to include a form of endoge-
nous uncertainty, which allows it to model and solve more problems in a direct and
natural way. We suggest that this extended language be called Endogenous Stochastic
Constraint Programming.

All these features contribute to the power of SCP as a framework for modelling and
solving problems involving uncertainty. The use of metaheuristics makes the method
more scalable than complete methods to problems with many decision variables. How-
ever, for problems with many stochastic variables the cost of traversing the policy tree
becomes very high, and our method alone is too weak. For such problems we must use
other techniques such as scenario sampling, and this will bethe subject of future work.
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