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a  b  s  t  r  a  c  t

Farm  animals  remain  at risk  of  endemic,  exotic  and  newly  emerging  viruses.  Vaccination
is often  promoted  as the best  possible  solution,  and  yet  for many  pathogens,  either  there
are no  appropriate  vaccines  or those  that  are  available  are far from  ideal.  A complementary
approach  to  disease  control  may  be  to  identify  genes  and  chromosomal  regions  that  underlie
genetic  variation  in disease  resistance  and  response  to  vaccination.  However,  identification
of the  causal  polymorphisms  is  not  straightforward  as  it generally  requires  large  numbers  of
animals  with  linked  phenotypes  and  genotypes.  Investigation  of  genes  underlying  complex
traits  such  as  resistance  or response  to viral  pathogens  requires  several  genetic  approaches
including  candidate  genes  deduced  from  knowledge  about  the  cellular  pathways  leading
to protection  or  pathology,  or unbiased  whole  genome  scans  using  markers  spread  across
the  genome.

Evidence for  host  genetic  variation  exists  for a  number  of viral  diseases  in  cattle  includ-
ing  bovine  respiratory  disease  and  anecdotally,  foot  and  mouth  disease  virus  (FMDV).
We  immunised  and  vaccinated  a cattle  cross  herd  with  a 40-mer  peptide  derived  from
FMDV  and  a  vaccine  against  bovine  respiratory  syncytial  virus  (BRSV).  Genetic  variation
has been  quantified.  A  candidate  gene  approach  has  grouped  high  and  low  antibody  and
T cell  responders  by  common  motifs  in  the  peptide  binding  pockets  of the  bovine  major
histocompatibility  complex  (BoLA)  DRB3  gene.  This  suggests  that  vaccines  with  a  minimal
number  of  epitopes  that are  recognised  by most  cattle  could  be designed.  Whole  genome
scans using  microsatellite  and  single  nucleotide  polymorphism  (SNP)  markers  has  revealed
many novel  quantitative  trait loci (QTL)  and SNP  markers  controlling  both  humoral  and
cell-mediated  immunity,  some  of  which  are  in genes  of  known  immunological  relevance
including  the  toll-like  receptors  (TLRs).

The sequencing,  assembly  and  annotation  of  livestock  genomes  and  is  continuing  apace.
In addition,  provision  of  high-density  SNP  chips  should  make  it possible  to link phenotypes
with  genotypes  in  field  populations  without  the need  for structured  populations  or  pedigree
information.  This  will  hopefully  enable  fine  mapping  of  QTL  and  ultimate  identification  of
the causal  gene(s).  The  research  could  lead  to  selection  of animals  that  are  more  resistant
to disease  and  new  ways  to improve  vaccine  efficacy.

© 2011 Elsevier B.V. All rights reserved.
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1. Genetic variation in disease resistance and
vaccine response

Endemic and exotic pathogens continue to have a
significant effect on livestock with high economic costs
and welfare implications worldwide. In addition emerging
pathogens are increasingly recognised as a threat to
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biosecurity and zoonotic pathogens and chemical usage
still cause food safety hazards. These concerns remain
despite increasing regulation and control measures such
as good management and the availability of vaccines
at least to some pathogens. Globalisation of trade and
climate change bring new urgency to find ways to reduce
the impact of infectious disease which remains a barrier
to further improvement in livestock efficiency in both the
developed and developing world.

One potential solution is to breed livestock that
are inherently more resistant or tolerant to prevailing
pathogens. However it is not easy to identify markers and
genes that would enable selection of such desirable traits,
partly because of the cost and logistics of collecting appro-
priate large-scale data either from the field or experimental
challenges. Thus there is a phenotype gap. Furthermore
resistance or tolerance traits are likely to be underpinned
by many genes of small effect, making it more difficult to
identify them. Another solution would be to design more
effective vaccines. After the foot and mouth disease virus
(FMDV) outbreak in the U.K. in 2001, the Royal Society
stated that research should concentrate on developing an
ideal vaccine that would be “safe, synthetic, induce ster-
ile immunity, in one shot, be cost effective and protect all
animals” (Royal Society, 2002). It is debatable whether any
livestock vaccine would meet all of these criteria. In addi-
tion for many diseases there are no appropriate vaccines.

Generally, most research into vaccines has focused on
the pathogens and the identification of pathogen-encoded
vaccine candidates, and less on the host response. Yet, in
most vaccine studies, evidence of variation in response
has been reported, with varying proportions of non-
responders, even after several immunisations, as well as
individuals with adverse reactions. However this varia-
tion has mainly been ignored, or considered as inevitable
animal-to-animal variation. On the other hand this sug-
gests that at least some of the observed variation may
be genetic and understanding what leads to non- or low-
response, or pathology at the other extreme might identify
new targets both for immunomodulators as well as for
immunotherapeutics. These genes may  also highlight new
pathways that regulate the response to pathogens and be
of more general importance. Genetic variability in response
to vaccination is likely to become an even more signif-
icant factor in designing ideal “safe, synthetic” vaccines.
The genes identified might also be important for disease
resistance traits, and could potentially provide the tools
to select “good responders”, as originally suggested by
Wilkie and Mallard (1999) and more recently by Gay et al.
(2007).  However, the genes underlying variation in vaccine
response have not been greatly explored in either humans
(Poland et al., 2008) or livestock (Glass, 2004).

Probably the most complex issue in aims to identify
genes controlling disease resistance or vaccine response
relates to the choice of phenotype(s). Depending on the
pathogen, the goal may  be to prevent infection completely
or more likely to reduce the consequences of infection,
particularly those that impact on performance traits
such as growth, milk and meat quality. Although it has
been reported that selecting for performance has had
a detrimental effect on resistance to infectious disease,

for example milk yield and mastitis (Heringstad et al.,
2005), the relationship between performance and disease
resistance can show beneficial correlations. Susceptibility
to Mycobacterium bovis is negatively genetically correlated
with milk yield (Brotherstone et al., 2010) as well as
survival (Bermingham et al., 2010) and susceptibility to
M. avium subspecies paratuberculosis (MAP) is negatively
correlated with several productivity traits including a
combined productivity score, Net Merit (Attalla et al.,
2010). Although these results need confirmation in other
populations, they would suggest that selection for disease
resistance and improved performance is a realistic goal.
Furthermore the livestock industry routinely selects for
a number of different criteria using a selection index of
weighted traits (for example, Haile-Mariam et al., 2010).
Thus, it should be possible to incorporate both disease
resistance and performance as goals for selection. How-
ever, identifying relevant phenotypes for both infectious
disease resistance and vaccine response is not straight-
forward, as in many cases the correlates of protection are
unclear and/or difficult to measure.

We  have undertaken a number of approaches to begin to
address the hypothesis that small sequence changes (poly-
morphisms) in key host immune response genes, results in
much greater changes in immune outcome. The first steps
in trying to identify these genes is to determine if there is in
fact any variation in phenotype – in this case in vaccine or
immune responsiveness – and if so, to determine if any phe-
notypic variance can be accounted for by genetics. Usually
this involves a large number of animals and linked pheno-
types, in which the observed variation is partitioned into
“environmental effects” (i.e. year of sampling, farm, etc.)
and genetic effects (i.e. sire, line, breed, etc.) using mul-
tivariate statistical methods such as restricted maximum
likelihood (REML) methods. The proportion of variance in
the population being tested attributed to genetic factors
is referred to as “heritability” or “h2′′

. In general, most
disease resistance studies based on field studies report rela-
tively low heritability e.g. mastitis studies typically report
h2 ∼ 0.05 (Rupp and Boichard, 2003). However, these are
likely to be underestimates as they are often based on treat-
ment records or outcome at slaughter and are thus not very
accurate. They are also based on all animals in a study and
it is often unknown whether all the animals were exposed
or not. This is particularly important as in many cases the
resistance or tolerance phenotype is only expressed fol-
lowing exposure. Thus low estimates of heritability should
not necessarily be viewed as a stumbling block to further
investigation (Bishop and Woolliams, 2010). In addition
heritability depends on the population and its environ-
ment, and does not describe the nature of the underlying
genes, their number or impact on phenotype.

Generally, once variation has been established, two
main types of study in which the phenotype is correlated
with the genotype are undertaken. These involve linkage
(in which the phenotypes are linked to markers inherited
within family groups) or association (in which unrelated
individuals are divided according to phenotype and the
frequencies of markers within each group are compared).
Investigation into the complexities of immune or vac-
cine responsiveness can take complementary approaches:
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either candidate genes previously determined by knowl-
edge of mechanisms leading to protection or pathology, or
whole genome approaches which do not rely on a priori
discoveries and use markers distributed across the entire
genome. In the past, association studies have mainly relied
on candidate gene polymorphisms, whereas whole genome
studies have employed linkage analysis with microsatellite
markers to identify chromosomal regions that affect the
phenotype: so called quantitative trait loci (QTL). Only a
limited number of studies in livestock have identified QTL
for disease resistance and even fewer for immune/vaccine
response. Until recently, these have mainly involved a
relatively limited number of microsatellite markers, and
the chromosomal regions identified as having significant
impact on the traits have been very broad and contained
large numbers of candidate genes. However with the
advent of livestock genome sequences and identification
of very large numbers of single nucleotide polymorphisms
(SNPs), it is now possible to conduct association analyses
with thousands of SNPs as markers spread across genomes
which should make it easier to identify causal genes
(reviewed by Fan et al., 2010). For example, using the Illu-
mina Bovine 50 Bead chip which contains approximately
50,000 SNPs, several studies have recently reported multi-
ple loci controlling infection with or antibody response to
MAP  (Settles et al., 2009; Minozzi et al., 2010; Pant et al.,
2010; Kirkpatrick et al., 2011). However, there is only lim-
ited concordance between the studies in terms of identified
loci, some of which may  relate to differences in MAP  trait
definitions. Higher density SNP arrays are now available
for cattle containing over ten times the number of SNPs in
the Illumina Bovine 50 Bead chip which in theory means
that details of pedigree structures are probably no longer
necessary, and should make genetic studies more tractable
for livestock. Nonetheless although there has been con-
siderable investment in the technology and resources for
large-scale genotyping in cattle and other domestic species,
the issues surrounding the “phenotype” gap remain to be
solved.

Control of viral pathogens poses particular problems
for livestock management because of their very nature.
Their ability to proliferate, mutate and to modulate the host
immune response might suggest that host species could not
evolve counter-measures fast enough to become resistant,
yet there is considerable evidence indicating that genes
involved in host defence are extremely diverse both within
and between species (Barreiro and Quintana-Murci, 2010).
Evidence for host genetic variation exists for viral diseases
in many host species including cattle (Glass et al., 2010)
and the remainder of this article will focus on the genet-
ics of bovine respiratory disease and vaccine responses in
cattle.

2. Bovine respiratory disease

Bovine respiratory disease (BRD) is a major welfare and
economic burden affecting both beef and dairy cattle, and
costing around $750 million per annum in the United States
(Snowder et al., 2006; Miles, 2009). BRD is a complex of
diseases with many viral and bacterial infectious agents.
The most common viral pathogens which are known to

contribute to the development of BRD include bovine res-
piratory syncytial virus (BRSV), parainfluenza virus (PIV)-3,
bovine herpes virus (BHV)-1 and bovine viral diarrhoea
virus (BVDV) (Fulton, 2010). Often infection with viral
respiratory pathogens results in secondary bacterial infec-
tions, including Mannheimia haemolytica, Histophilus somni
and Pasteurella multocida (Griffin et al., 2010). Currently
the control methods for BRD include good management,
antibiotics and vaccination against the viral pathogens,
BHV-1, BVDV, BRSV and PIV-3 (Bowland and Shewen, 2000)
as well as vaccination against the bacterial pathogens, M.
haemolytica and P. multocida associated with BRD (Fulton,
2010), although the efficacy of these vaccines has mainly
not been subject to controlled challenge studies (Bowland
and Shewen, 2000). The pathogens involved in BRD have
co-evolved with their hosts and developed strategies for
manipulating and evading the host immune response and
this enables these pathogens to persist, and may  be at least
partly responsible for the failure of current vaccines to con-
trol BRD (Srikumaran et al., 2007).

A number of studies have indicated that different
breeds of cattle have different degrees of susceptibility
to BRD and heritability has been estimated to be around
0.04–0.08 (Muggli-Cockett et al., 1992; Snowder et al.,
2005, 2006, 2007; Heringstad et al., 2007). It is possible that
susceptibility to BRD is greater than estimated for the rea-
sons described above, especially as the specific pathogens
causing BRD are often unknown. In any case the genes
underlying any genetic differences between animals or
breeds are unknown.

3. Bovine respiratory syncytial virus

One of the major pathogens causing BRD as well as
bovine shipping fever is considered to be BRSV which is a
large enveloped, negative sense single stranded RNA Pneu-
movirus of the Paramyxoviridae family. It is ubiquitous in
both dairy and beef cattle worldwide. Different strains
of RSV also infect sheep, goats and humans. The clinical
signs of BRSV include severe infection of the lower res-
piratory tract, resulting in coughing and nasal discharge
and abnormal breathing sounds (Antonis et al., 2003).
However, its effect on the host is variable from mild to
severe; BRSV causes high morbidity in young animals and
is the most important cause of lower respiratory tract
infection in young calves (Valarcher and Taylor, 2007).
By nine months of age over 70% of calves are estimated
to have been infected with BRSV. Intensification of farm-
ing has probably increased the prevalence of BRSV in
livestock. Thus this pathogen alone has high economic
impact.

Currently the control of BRSV infection is mainly
through management practices that reduce the level of cir-
culating pathogen as well vaccination with modified live
virus (MLV) or killed virus vaccines (Meyer et al., 2008).
However, there is little concensus about which vaccines
are the most efficacious as most studies conducted have
been experimental trials and there are few field studies
demonstrating clinical protection or reduction in clinical
disease with any BRSV vaccine (Meyer et al., 2008). One of
the most common MLV  vaccines used in Europe is Rispoval
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RS (Pfizer) which is based on strain RB-94 (1969 Belgian
isolate) (Zygraich, 1982).

Infection with BRSV, as with its human counterpart,
HRSV, does not induce long lasting immunity (Meyer et al.,
2008) and often calves are repeatedly infected before they
become essentially immune to further infection. Similarly
BRSV vaccines have limited protective capacity. Further-
more calves are particularly at risk as maternal antibody
begins to wane. Yet, it is clear that this passively acquired
antibody inhibits responses induced by vaccination (O’Neill
et al., 2007; Meyer et al., 2008) and clearance of antibody is
variable and at least in part genetically determined (O’Neill
et al., 2006), making the timing of effective vaccination dif-
ficult to achieve. It is generally considered that neutralising
antibody is the most important protective mechanism, and
particularly mucosal antibody, but the precise role of dif-
ferent subclasses of immunoglobulin, in clearance of virus,
maintenance of protection and induction of pathology is
less clear (Meyer et al., 2008). In cattle, as in mice and
humans, it appears that protection is associated with both
a Th1 type response involving interferon-� (IFN-�) as well
as the corresponding IgG subclass, IgG2 (Mapletoft et al.,
2006), and a Th2 type response involving IgG1 (Kalina et al.,
2005). BRSV infection induces bovine major histocompati-
bility complex (MHC) (BoLA) class II restricted CD4+ and
BoLA class I restricted CD8+ T cells (Taylor et al., 1995;
Gaddum et al., 1996; Fogg et al., 2001) and depletion of T
cells in the respiratory tract leads to delayed BRSV clear-
ance in calves (Taylor et al., 1995), suggesting that cell
mediated immunity must also be important for protection
in cattle.

Although BRSV is cytopathic in vivo and is associated
with pathology involving innate and adaptive immune
cells, in vitro, cell death does not necessarily occur and
depends on the cell type infected (Valarcher and Taylor,
2007). Furthermore, pathology does not correlate with viral
load (Gershwin, 2007). These findings suggest that the
pathology seen in cattle is related more to the host immune
response than to the virus (Gershwin, 2007; Ellis, 2009).

There are no licensed vaccines for human RSV, partly
because formalin inactivated vaccines administered to
babies, resulted in higher levels of pathology following nat-
ural infection with HRSV (Meyer et al., 2008). It has been
suggested that these vaccines induced a non-protective
Th2 biased response and that this was then invoked by nat-
ural infection and caused the observed pathology (Meyer
et al., 2008). Similarly, experimental administration of
inactivated BRSV vaccines can result in pathology following
challenge with live BRSV, which appears to be medi-
ated by an exacerbated Th2 mediated response including
eosinophilia and IgE and suppressed IFN-� (Th1) response
(Gershwin, 2007). Nonetheless, these type of vaccines for
cattle have been in use for many years and generally not
found to result in such disease enhancement (Meyer et al.,
2008). Thus it currently remains difficult to draw firm con-
clusions about the likelihood of inactivated BRSV vaccines
inducing protective or pathogenic responses to natural
BRSV infection. As with all BRSV vaccine responses, it seems
likely that both vaccine and host factors such as strain of
BRSV, dose, differences in adjuvants, maternal antibody
and age, may  account for some of the variation between

animals and experimental studies. However, the role of
host genetics in BRSV vaccine induced pathology and pro-
tection in cattle has up to now not been explored.

4. The role of genetics in determining the outcome
of BRSV infections and vaccination

Although a role for genetics in variability in clinical out-
come for RSV infection has been evinced in human studies
(Janssen et al., 2007; Miyairi and DeVincenzo, 2008; Glass
et al., 2010), such evidence is lacking for cattle and BRSV.
However as the pathology in BRSV and HRSV shows many
similarities, it seems likely that genetics must play a role
(Glass et al., 2010). Furthermore, the evidence of genetics
playing a role in BRD (see above) and the strong correlation
of seropositivity for BRSV with BRD might also indicate a
role for genetics in the bovine response to natural infection
with BRSV. In addition, variation in the clearance of circu-
lating maternal antibody was  also shown to have a genetic
component (O’Neill et al., 2006).

In contrast to the genetics of natural infection with
BRSV, the response to vaccination with a MLV  BRSV vaccine
(Rispoval RS) has been linked to genetics. BRSV-specific
IgG1 and IgG2 levels were measured prior to and follow-
ing vaccination of approximately 500 young calves, and
found to be highly variable between animals. These param-
eters were chosen as potential indicators of Th2 and Th1
responses in cattle respectively (Estes and Brown, 2002)
as it has been hypothesised that genetic control of these
pathways may  underlie susceptibility and resistance to
many pathogens. Furthermore both isotypes appear to be
important for protection against BRSV (Kalina et al., 2005;
Mapletoft et al., 2006). Heritabilities for serum IgG1 and
IgG2 responses to vaccination were estimated to be as high
as 0.36 at day 35 following vaccination, and significant sire
effects were also discovered (O’Neill et al., 2006). This study
exploited an experimental second generation cross popula-
tion of dairy (Holstein) and beef (Charolais) cattle for which
pedigrees were established. This population was  also geno-
typed for 165 microsatellite markers and also for BoLA class
II DRB3 alleles by a modified sequence based typing method
of the polymorphic second exon of DRB3 (Baxter et al.,
2008). QTL studies on production related traits on this pop-
ulation have revealed many QTL (Gutierrez-Gil et al., 2007,
2008a,b, 2009, 2010), and in addition several immune-
related studies have now been carried out. In addition to
the BRSV study (O’Neill et al., 2006), a genetic component to
the T cell response to a mastitis causing pathogen, Staphy-
lococcus aureus,  has been reported (Young et al., 2005).
Furthermore, following immunisation of this herd with a
40-mer peptide derived from foot-and-mouth disease virus
(FMDV), a large number of QTL (Leach et al., 2010) and
BoLA DRB3 polymorphisms (Baxter et al., 2009) have been
associated with antibody responses to this peptide.

We have now found that, as with the response to the
FMDV peptide (Leach et al., 2010), many regions of the
bovine genome are strongly associated with the levels pre-
and post-vaccination with the BRSV vaccine (summarised
in Table 1). The variance in the phenotypic traits (total BRSV
specific IgG, BRSV specific IgG1 and BRSV specific IgG2)
explained by each QTL was  around 2–3%. It can be seen that
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Table 1
The sequential influence of significant quantitative trait loci (QTL) associated with BRSV specific antibody levels pre- and post-vaccination across time.

Daya/Traitb Chromosome number (BTAc)

3 17 2 10 15 8 18 7 9 23 24 14

Pre-vaccination
−14 Xd XX X
0:  Totale IgG X
0:  IgG1 X X
0: IgG2 X

Post-vaccination
0–14 X X X
14:  Total IgG X X
I4:  IgG1 X
14: IgG2 X X X X X X
0–49  X
49: Total IgG X X X
49:  IgG1 X
Overallf IgG1 X X
Overall IgG2 X

a Day is relative to vaccination at day 0.
b Trait = BRSV specific antibody level, measured by ELISA as detailed in (O’Neill et al., 2006).
c BTA = Bos taurus autosome. The order shown attempts to reflect the influence of different QTL across the time course, with those loci which influence

the  response at the earliest time point being shown first.
d Each X represents the presence of a significant QTL (p < 0.05); XX represents two QTL on the same chromosome.
e Total refers to IgG1 and IgG2 levels.
f Overall refers to the total amount of IgG isotype generated across time (calculated as “area under the curve” by the Trapezoidal rule). All QTL are at

least  5% chromosome wide significant

some chromosomal regions (on BTA 10 and 15) only influ-
enced the clearance of maternally derived antibody and not
the response to vaccination whereas others (on BTA 7, 8, 9,
14, 18, 23 and 24) only influenced the response to vacci-
nation and not the level of antibody prior to vaccination.
Only two chromosomes (BTA 2 and 17) harboured genes
that influenced the level of antibody both pre- and post-
vaccination. Interestingly, the level of variation of IgG2 at
14 days post vaccination appears to be the most polygenic
trait, with six different chromosomal regions significantly
associated with this trait, in contrast to the variation in
the IgG1 levels at the same time point, where only a sin-
gle QTL was detected. Since IgG1 and IgG2 are believed to
be controlled by Th2 and Th1 cells, respectively (Estes and
Brown, 2002), these results suggest that these pathways
are influenced by different genes. It is also apparent that
the early and later responses to vaccination are controlled
by different genes. It is worth noting that the QTL on BTA23
whilst they have broad confidence intervals, do cover the
bovine MHC  region suggesting that the bovine MHC may
be involved in determining the level of antibody response
to the BRSV vaccine (and see below).

In almost every immune-related study for which there
is evidence for a genetic component, the MHC  has been
identified as playing a role (Glass, 2004). Given the likely
important role for cell mediated immunity in BRSV infec-
tion, including CD4+ and CD8+ Tells (Taylor et al., 1995),
it would seem likely that polymorphisms in MHC  genes
would affect both the outcome from infection and also vac-
cination. However, although many candidate genes have
been associated with outcome of HRSV infection in human
studies, none have reported MHC  associations for human
or bovine RSV infection or vaccination (Janssen et al., 2007;
Miyairi and DeVincenzo, 2008; Glass et al., 2010), although
a very recent study in congenic strains of mice has shown
that MHC  haplotypes play a role in the susceptibility of

Table 2
Significant BoLA DRB3 alleles associated with BRSV-specific IgG levels pre-
and post-vaccination.

DRB3 allelea Pre-vaccination Post-vaccination

*0801 <0.05b N.S.
*0901 N.S.c <0.05
*1002 N.S. <0.05
*1701 N.S. <0.05

a DRB3 alleles determined by a sequence based typing method of the
2nd  exon of BoLA DRB3, as described in Baxter et al. (2008).

b p values determined by Wald test.
c N.S. = not significant.

neonatal mice (Tregoning et al., 2010). We have now dis-
covered a number of significant associations between BoLA
class II DRB3 polymorphisms and both the circulating level
of antibody prior to vaccination as well as the antibody
response to the BRSV vaccine (Tables 2 and 3). Although
a few DRB3 alleles were significantly associated with both
pre-vaccination and post-vaccination levels of anti-BRSV
antibody (Table 2), there were very few animals in the herd
that carried these alleles and the results must be treated
with caution, and require verification in other populations.

Table 3
Peptide binding pockets significantly associated with BRSV-specific IgG
levels pre- and post-vaccination.

DRB3 Pocketa Pocket position Pre-vaccination Post-vaccination

4 �13 <0.05b N.S.c

4 �70 N.S. <0.05
4  �74 N.S. <0.001
7  �28 N.S. <0.05
7  �30 N.S. <0.05
9  �37 <0.05 N.S.

a DRB3 Pockets determined as described in Baxter et al. (2009).
b p values determined by Wald test.
c N.S. = not significant.
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However, the majority of polymorphisms found in MHC
class II DRB genes are concentrated in exon 2 and par-
ticularly in the sequences encoding the peptide binding
pockets. These are the major binding anchors for presented
peptides. Thus BoLA DRB3 alleles can be grouped into a
series of peptide binding pocket motifs (Sharif et al., 2000;
Baxter et al., 2009). Several individual positions within
three of these pockets were significantly associated with
the pre- and post-vaccination antibody levels to BRSV
(Table 3). It is striking that none of the associations were
significant for both the pre- and post-vaccination BRSV spe-
cific antibody levels. Perhaps not surprisingly this suggests
that the rate of clearance of maternal antibody is con-
trolled by different mechanisms from those operating in
the induction of an adaptive response. The relative paucity
of significant associations reported here are in marked
contrast to those found with the FMDV peptide (Baxter
et al., 2009) where several alleles and pocket positions were
highly significantly associated with response. There are
likely to be many reasons for this, not least that the FMDV
40-mer peptide has a limited number of epitopes whereas
BRSV is likely to have many different epitopes recognised
by the host immune system. In addition, the BRSV anti-
body levels are confounded with the pre-vaccination levels
of circulating antibody. Nonetheless it is interesting that
the pocket with the greatest associations was pocket 4 and
this mirrors the findings with the FMDV peptide response
(Baxter et al., 2009). Pocket 4 is located centrally within
the peptide binding groove of DR molecules and has been
implicated as playing a significant role in human immune
responsiveness (Ou et al., 1998). This might indicate that in
terms of vaccine design for any pathogen, ensuring that the
vaccine includes epitopes that bind strongly to the major
pocket 4 variants of DRB3 would ensure that all animals
within herds would be protected.

Of course in terms of candidate genes for the vaccine
response to BRSV, it is unlikely that only the MHC  region
would be important. As we (Clapperton et al., 2009; Glass
et al., 2010) have argued elsewhere, genes expressed in
the innate immune system are strong candidate genes for
infectious disease associated traits in livestock as (a) acti-
vation of the innate immune system is essential and indeed
determines the nature of the acquired immune response,
(b) the genes involved are present in the germ-line, are
highly polymorphic and code for molecules involved in
the initial interactions of pathogens and the host defence
system and (c) these molecules include pattern recogni-
tion receptors and soluble molecules (PRR and PRM) that
sense a wide range of pathogens. PRMs and PRRs inter-
act with pathogen associated molecular patterns (PAMPs)
which are conserved on pathogens but generally not found
in host species. The most well known PRRs are the Toll-like
receptors (TLRs), but more recently a number of other PRR
families have been described including the RNA helicase-
type retinoic acid-inducible gene-1 receptors (RIG-1-like
helicases) and NOD-like receptors which appear to be rel-
evant for host detection of viruses (reviewed by Brennan
and Bowie, 2010). Many candidate gene variants have been
associated with severe humans RSV infections including
PRMs – collectins, surfactant proteins A–D and mannose
binding lectin (MBL), and the PRRs – TLR4 and TLR8 (Janssen

et al., 2007; Miyairi and DeVincenzo, 2008; Glass et al.,
2010). Although TLR2, TLR3 and RIG-1 have all been impli-
cated in host interactions with RSV, no genetic associations
in human studies have been reported. In cattle, a number of
distinct collectin genes form a cluster on BTA28 (Gjerstorff
et al., 2004), and some have been associated with viral
pathogen interactions (Lillie et al., 2005). Polymorphisms
have been described in bovine MBL  (Wang et al., 2011) and
bovine conglutinin levels are heritable (Holmskov et al.,
1998). Similarly, bovine viral recognition TLRs (Cargill and
Womack, 2007), and NOD2 (also known as CARD15) har-
bour polymorphisms (Taylor et al., 2006) and a single SNP
has been reported in bovine RIG-1 (Cargill et al., 2006).
Some associations of TLR variants with bacterial but not
viral diseases have been reported in cattle. We  have argued
that TLRs and their intracellular down-stream signalling
components may  be the most likely candidates for many
infectious disease traits in livestock species (Jann et al.,
2009; Werling et al., 2009). Furthermore, as adjuvants are
essential to invoke responses to vaccine components by
triggering innate immunity, we  suggest that gene vari-
ants encoding innate immune system proteins may  also
influence vaccine responsiveness. Although many SNPs in
candidate genes have been proposed, very few studies in
livestock have reported significant associations and this
may  in some cases be because the SNPs have no functional
consequences. Determining whether individual SNPs are
functionally relevant requires complex molecular biology
and we  have proposed that a simpler approach to nar-
row down the candidates is to consider only those SNPs
that are both non-synonymous and positively selected
(Jann et al., 2008). Of course this excludes SNPs that are
non-coding and we accept that it is likely that SNPs in pro-
moter regions can change expression levels and therefore
could also have functional consequences. However even in
human populations the relative importance of coding SNPs
and non-coding SNPs in determining complex disease is as
yet unknown, although it is clear that there is consider-
able inter-individual variation in gene expression across
the human genome (Cookson et al., 2009; Skelly et al.,
2009). With the advent of massive parallel sequencing for
transcriptomics the contribution of inherited variation in
gene expression to complex traits should become clearer
(Majewski and Pastinen, 2011).

However we  decided to test whether our proposal has
merit and investigated whether any non-synonymous and
positively selected SNPs in bovine TLRs were associated
with the response to the BRSV vaccine and also to the FMDV
peptide. In addition, the maximum number of microsatel-
lite markers per chromosome in the QTL study was six,
and thus as discussed above large confidence intervals
were obtained which contain hundreds of candidate genes.
Clearly this limits both the power and accuracy of the study,
and in order to narrow the regions, we  added additional
SNP markers within some of the QTL. We  found that a
number of SNPs on different chromosomes were signifi-
cantly associated with the response to the BRSV vaccine
(Table 4) and also to the FMDV peptide (results not shown).
The variance of the phenotypic trait accounted for by indi-
vidual SNPs was  in general much higher than for the QTL
study, with some explaining over 10% of the phenotypic
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Table 4
The sequential influence of significant SNPs associated with BRSV specific antibody levels at vaccination day and post-vaccination.

Traita Dayb Chromosome number (BTAc)

12 16 22 24 6 7 19 25 X 21 27 29 8

IgG2 0 Xd X X X
14 X X
35 X X X
49  X X

IgG1 14 X X X X
35 X X
49

Overalle IgG1 X
Overall IgG2 X

a Trait = BRSV specific antibody level, measured by ELISA as detailed in (O’Neill et al., 2006).
b Day is relative to vaccination at day 0.
c BTA = Bos taurus autosome. The order shown attempts to reflect the sequential influence of different SNP across the time course, with those loci which

influence the response at the earliest time point being shown first.
d Each X represents the presence of a significant SNP (p < 0.05).
e Overall refers to the total amount of IgG isotype generated across time (calculated as “area under the curve” by the Trapezoidal rule).

Fig. 1. Schematic diagram illustrating the potential role of genetics in the variation in outcome following natural infection or vaccination with BRSV.
Understanding the relationship that genetics has with outcome may lead to improvements in host disease resistance and/or vaccine efficacy.

variance. However the majority of SNPs were not on the
same chromosomes as the QTL, and this may  well reflect
the size of the study (∼500 animals) and the fact that
the phenotypes were measured on a F2 generation which
means that little recombination will have occurred. How-
ever as with the QTL study it is clear that both time and
isotype of antibody must be under different genetic con-
trol. Although we tested for association of bovine SNPs in
all ten TLRs, we only found two associated with response
to the BRSV vaccine. Of particular interest, one of the most
significant SNPs was on BTA 8, which influenced the IgG1
and IgG2 response to the BRSV vaccine and was  located
within the TLR4 gene. Further analysis determined that
this SNP was non-synonymous and positively selected. Two
further highly significant non-synonymous and positively
selected SNPs were located in TLR8 and influenced the
response to both BRSV vaccine and also the FMDV pep-
tide. It is possible that both TLR4 and TLR8 are involved in

the recognition of BRSV as there is evidence that HRSV F
protein binds to TLR4 (Kurt-Jones et al., 2000) and BRSV
induces a TLR4-dependent NFkB response in bovine TLR
transfected cells (Lizundia et al., 2008). In addition TLR8
senses ssRNA and RSV is an RNA virus although no direct
interactions between TLR8 and RSV have been reported. In
humans polymorphisms in TLR4 and TLR8 have been asso-
ciated with severity of BRSV infection (Janssen et al., 2007).

5. Concluding remarks

In conclusion, genetics clearly influences both the
response to vaccination and also to infection. In addition,
genetics also plays a key role in the rate of clearance of
maternal antibody. Although we have identified a number
of candidate variants, which include BoLA DRB3 and TLRs
4 and 8 as playing a significant role, we have also identified
many regions that may  harbour novel genes that are
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important in determining the response to vaccination.
Because of the strong linkage between genes in the BoLA
region, we currently cannot disentangle whether our data
supports the role of BoLA DRB3 or is linked to polymor-
phisms in other classical class II genes (DQA and/or DQB)
or indeed class I genes. However, the pocket 4 associations
would strongly suggest that BoLA DRB3 is playing an
important role in the observed variation in antibody
response. We  and others have demonstrated the impor-
tance and complexity of DQ molecules in T cell responses
in cattle (Glass et al., 2000; Norimine and Brown, 2005;
Gerner et al., 2009), and further exploration of the role of
DQ in bovine responses to BRSV is warranted. We  found
three non-synonymous, positively selected SNPs in two
TLRs providing some support to our hypotheses relating to
the involvement of innate immune genes in disease resis-
tance and vaccine responsiveness. The lack of evidence for
association with SNPs in other candidate genes does not of
course rule out a role for them, as it could simply be that the
study was too small to detect their influence and/or other
polymorphisms may  not be represented in the study herd.
Although the uncertainty surrounding the correlates of
protection for BRSV remains to be solved, our initial studies
suggest that another significant factor in observed variation
in protection and pathology following natural infection
and vaccination in cattle may  be host genetics. However,
in order to investigate further, the QTL and SNPs require
validation in new and larger populations as well as more
detailed molecular studies, for example cells transfected
with different TLR variants may  reveal the underlying
mechanisms. Future studies that improve our understand-
ing of the role of genetics in immune responsiveness and
disease resistance have the potential to improve vaccine
efficacy as well as provide selectable markers that breeders
could use to improve livestock disease resistance as well
as vaccine responsiveness (Fig. 1).
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