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Abstract

The presence of symmetry in constraint satisfaction
problems can cause a great deal of wasted search
effort, and several methods for breaking symme-
tries have been reported. In this paper we re-
visit a recent method called Symmetry Breaking
by Nonstationary Optimisation (SBNO) which in-
terleaves incomplete search in the symmetry group
with backtrack search on the constraint problem.
We provide a more accurate characterisation of
SBNO, extend it to arbitrary symmetries and con-
straint solvers, reimplement it in a real constraint
solver, combine it with double-lex symmetry break-
ing, and show that this combination is one of the
most scalable known methods for a class of highly
symmetric problems. We believe that SBNO is
most useful as a method for boosting other partial
symmetry breaking methods on highly symmetric
problems, because of its potential use of the en-
tire symmetry group, low memory requirement and
computational overhead.

1 Introduction
Many constraint satisfaction problems (CSPs) contain sym-
metries, defined as bijections on decision variables that pre-
serve solutions and non-solutions. For example the N-queens
problem has 8 (each solution may be rotated through 90, 180
or 270 degrees, and reflected) while other problems may have
exponentially many symmetries. The presence of symmetry
implies that search effort is being wasted by exploring sym-
metrically equivalent regions of the search space. By elimi-
nating the symmetry (symmetry breaking) we may speed up
the search significantly. Several distinct methods have been
reported for symmetry breaking in CSPs.

Symmetry Breaking by Nonstationary Optimisation
(SBNO) is a recent approach to partial symmetry breaking
that interleaves local search[19] or evolutionary search[18]
with backtrack search in order to detect broken symmetry.

∗This material is based in part upon works supported by the Sci-
ence Foundation Ireland under Grant No. 05/IN/I886. B. Hnich is
supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) under Grant No. SOBAG-108K027.

The local or evolutionary search is performed in the sym-
metry group associated with the constraint problem, and
only limited time and memory are devoted to this search.
We previously showed that a prototype of SBNO was
competitive on all but the largest balanced incomplete block
design benchmarks used in the literature. The prototype was
implemented in C and used only trivial constraint handling.

In this paper we revisit the idea of SBNO, provide a more
accurate characterisation in terms of generalised lex-leader
constraints, extend it to arbitrary symmetries and constraint
solvers, implement it in a real constraint solver, combine it
with double-lex symmetry breaking, and show that this com-
bination is very competitive on the largest balanced incom-
plete block designs. Rather than using SBNO in isolation, we
believe that it is most useful as a method for boosting other
partial symmetry breaking methods.

The paper is organised as follows. Section 2 describes the
SBNO method, Section 3 presents a case study, Section 4 re-
ports experimental results, Section 5 discusses related work,
and Section 6 concludes the paper. We assume a basic knowl-
edge of group theory (see[13] or any standard textbook on
the subject) and its application to symmetry breaking in con-
straint programming (see the works cited above).

2 Detecting violated lex-leader constraints

In this section we describe the SBNO method. This partly re-
iterates previous material[18; 19] but we now characterise it
more accurately in terms of generalised lex-leader constraints
(it was previously characterised as a form of SBDD).

Suppose that we wish to solve a CSP using a standard
constraint solver with depth-first search (DFS) and constraint
processing. Suppose also that the problem has symmetry de-
fined by a groupG. [25] shows that any form of symmetry
can be broken by addinggeneralised lex-leader constraints
X �lex Xg for all g ∈ G, whereX is a total assignment on
a fixed ordering of the problem variables,Xg is the image of
X underg, Xg is admissible(a valid total assignment), and
�lex is the standard lexicographical ordering relation. These
constraints prune all solutions except the canonical (lex-least)
ones. But in general an exponential number of the constraints
are needed, making the method impractical for problems with
large symmetry groups.
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Figure 1: Search states in 4-queens

2.1 The detection problem
We now characterise SBNO in terms of generalised lex-leader
constraints. To show that it is valid for all forms of symme-
try and all constraint solvers, we use the results of[25]. At a
search tree node with partial assignmentA, if we can find a
group elementg∈G such thatAg is admissible (a valid partial
assignment) andAg ≺lex A, then we can backtrack because
A violates a lex-leader constraint. Lex-ordering is easily ex-
tended to partial assignments: if completely-assigned prefixes
P, P ′ of Ag, A respectively have the property thatP ≺lex P ′

then the constraint is violated.
As an example, consider the 4-queens problem with the

usual 8 symmetries including reflection about the vertical
axis: the group element denoted byx. Suppose that we solve
this problem using a matrix model in which each square on
the board corresponds to a binary variable, 1 denotes a queen
and 0 no queen at that position. Suppose also that we ap-
ply DFS and assign variables in a static row-by-row then
column-by-column order. Consider the partial assignment
A = (1, 0, 0, 0, ?, . . .) corresponding to the board configu-
ration in Figure 1(i), where a space denotes no queen, “•”
denotes a queen, and “?” denotes no decision. NowAx is
the partial assignment(0, 0, 0, 1, ?, . . .) corresponding to the
board configuration in Figure 1(ii). ButAx≺lex A whatever
values are chosen for the unassigned variables, soA is sym-
metric to the lex-smaller nodeAx and backtracking can occur
from A. Note that it is also possible to reason on unassigned
variables — for example(1, 0, x, 0, 0) ≺lex (1, 0, 1, y, 1)
whatever the values of the unassigned binary variablesx and
y — but in experiments we found this to be unnecessary.

We shall apply local search to the auxiliary problem of
finding ag that causes generalised lex-leader violation. The
method is justified by the following proposition:

Proposition 1 Suppose that we have a full set of unposted
generalised lex-leader constraints, under some fixed variable
ordering. At a search tree node with partial assignmentA, if
we can find ag ∈ G such thatAg is admissible andAg ≺lex

A under the same variable ordering, thenA violates a lex-
leader constraint.

Proof If Ag is admissible andAg ≺lex A then
θ(Ag) ≺lex θ(A) for any assignmentθ of the unassigned
variables inA leading to an admissible total assignment (at
least one suchθ always exists). Therefore for each suchθ the
lex-leaderθ(A)�lex θ(Ag) is violated byA. 2

Conversely, all symmetries can in principle be detected by
search on the symmetry group:

Proposition 2 If A violates a generalised lex-leader con-
straint then there existsg ∈ G such thatAg is admissible
andAg≺lex A.

Proof Suppose thatA violates a lex-leader constraint
X�lex Xg for someg ∈ G. ThereforeXg≺lex X atA, so it
must also be true thatAg≺lexA. 2

These results do not depend on the details of the constraint
solver (for example its value and variable ordering heuristics,
or its propagation algorithms) and apply to all forms of sym-
metry. However, lex-leader violation will be detected most
often if the constraint solver uses the same fixed variable or-
dering that was used to define the lex-leader constraints. The
value ordering used by the constraint solver also has an effect:
pruning by lex-leader violation does not necessarily respect
the constraint solver search heuristics, and might therefore
search more of the tree to find a first solution. It is possible to
make the search heuristics respect lex-leader violation byus-
ing lexicographical value orderings, but in this paper we are
interested only in all-solution search (modulo symmetry) so
the issue does not arise.

2.2 Detection as nonstationary optimisation
We can model the detection problem as an optimisation prob-
lem withG as the search space, so that eachg∈G is a search
state. The objective function ofg to be minimised is the lex
ranking of Ag. On finding an elementg with sufficiently
small objective value we have solved the detection problem.
This opens up the field of symmetry breaking to a wide range
of metaheuristic algorithms.

A practical question here is: how much effort should we
devote to detection at each DFS node? If an incomplete
search algorithm fails to find an appropriateg, this might be
because there is no such element — but it could also be be-
cause the algorithm has not searched hard enough. Too lit-
tle search might miss important symmetries, while too much
will slow down DFS. Our solution is to expend limited effort
at each search node to ensure reasonable computational over-
head. For example if we apply local search then we might
apply one or a few local moves per search tree node, or only
at some nodes. The optimisation problem now has an objec-
tive function that changes in time: as DFS changes variable
assignmentsA, the objective value of any giveng changes
because it depends onAg. This is callednonstationary op-
timisation in the optimisation literature, so the framework
is calledSymmetry Breaking by Nonstationary Optimisation
(SBNO).

Note that even if detection fails at a node, it might succeed
a few nodes later. DFS can then backtrack, possibly jumping
many levels in the search tree. For example consider the 4-
queens problem again. Suppose we did not manage to find
group elementx at search stateA, but instead continued with
DFS and only discoveredx on reaching search stateB shown
in Figure 1(iii). NowBx ≺lex B so we can backtrack from
B. On successful detection we backtrack until it is no longer
the case thatAg ≺lex A for the current partial assignmentA.
Apart from some wasted DFS effort (during which we might
find additional non-canonical solutions) the effect is the same



as if we had detected the symmetry immediately. Thus SBNO
effectively continues to try to break symmetry at a node until
DFS backtracks past that node. This gives it an interesting
property: a symmetry that would only save a small amount
of DFS effort is unlikely to be detected, because DFS might
backtrack pastA before an appropriateg is discovered; in
contrast, one that would save a great deal of DFS effort has a
long time in which to be detected by local search. So SBNO
should detect and break theimportantsymmetries, which we
define to be those that make a significant difference to the
total execution time. This adaptive behaviour distinguishes it
from other partial symmetry breaking methods such as lex2

and STAB.

2.3 Detection by local search
To make SBNO more concrete we now show how to use lo-
cal search for detection, though in principle any metaheuristic
algorithm can be used. We have already defined the search
space (G) and objective function (the lex ranking ofAg).
Local search also requires a neighbourhood structure defin-
ing the possible local moves from each search state. To im-
pose a neighbourhood structure onG we choose some subset
H ⊂ G: from any search stateg the possible local moves
are the elements ofH leading to neighbouring statesg ◦H .
Thus allG elements are local search states, and some of them
(H) are also local moves. To apply hill climbing, from each
stateg we try to find a local moveh such that the objective
function is reduced (Ag◦h ≺lex Ag). If a series of moves
(h1, h2, . . .) reduces the lex ranking sufficiently then we will
find Ag◦h1◦h2◦...≺lexA and can backtrack fromA.

There is a relationship between local search and group gen-
erators. Ageneratorfor a group is a subsetH of the group
G that can be used to generate all elements ofG (denoted
〈H〉 = G). A local search space isconnectedif there ex-
ists a series of local moves from any state to any other state.
Connectedness is an important property for local search, be-
cause a disconnected space may prevent it from finding an
optimal solution. It is easy to show that the search space in-
duced byH is connected if and only ifH is a generator set
for G, as follows. Suppose thatH is a generator forG. We
can move from anyg to anyg′ via elementg−1◦g′ because
g ◦ (g−1 ◦ g′) = (g ◦ g−1) ◦ g′ = g′. H is a generator so
we can always find a series of elementsh1, h2, . . . such that
h1 ◦h2◦ . . . = g−1 ◦g′. Thereforeg◦h1◦h2◦ . . . = g′ and
the space is connected. Conversely, suppose thatH is not a
generator forG. Then there exists ag∗∈G such that no series
of elements satisfiesh1, h2, . . . = g∗. But for anyg it holds
thatg∗ = g−1◦g′ for some uniqueg′. Therefore there exists
an unreachable stateg′ from any stateg.

Thus if a non-generatorH is used then the local search can
become trapped in a subspace that does not contain an ap-
propriateg, so random moves fromG \ H must be used to
counteract this. Random restarts are a well-known technique
for both local and backtrack search, but ifH is not a gen-
erator then they are necessary not only for heuristic reasons
but because the space is disconnected. In our experiments we
first used a generatorH . This is a natural approach which can
yield neighbourhoods of manageable size, because any group
G has a generator of size log

2
(|G|) or smaller[13]. However,

we found better results using a non-generatorH and restoring
connectedness by allowing occasional random moves.

We use the following simple local search algorithm. Ini-
tialise g to be any group element (we use the identity ele-
ment). At each search tree nodeA call the following proce-
dure:

procedure SBNO(g,A)
if Ag≺lex A

backtrack to the first nodeB such that
Bg≺lexB cannot be proved

else if A is a local minimum
g ← RANDOMISE(g)

else
g ← IMPROVE(g)
SBNO(g,A)

This procedure performs hill-climbing until either (i) finding
a solution that enables backjumping, or (ii) reaching a local
minimum, in which case it applies random moves. The IM-
PROVE function applies an improving local move tog, that is
a moveh such thatAg◦h≺lex Ag. The neighbourhood is ex-
plored in random order to find these moves. If no such move
exists then the state is a local minimum and we exit after call-
ing the RANDOMISE function, which (wholly or partially)
randomisesg.

An important property of our method is that it has a very
low memory requirement: it maintains just one dynami-
cally changing group elementg representing the current local
search state, and adds no constraints to the constraint store.

3 Application to BIBDs

We test SBNO on a problem with very large symmetry
groups, which has been used to test several symmetry break-
ing methods. Balanced Incomplete Block Design (BIBD)
generation is a standard combinatorial problem, originally
used in the statistical design of experiments but finding other
applications such as cryptography. A BIBD is defined as an
arrangement ofv distinct objects intob blocks such that each
block contains exactlyk distinct objects, each object occurs
in exactlyr different blocks, and every two distinct objects
occur together in exactlyλ blocks. Another way of defining
a BIBD is in terms of itsincidence matrix, which is a binary
matrix withv rows,b columns,r ones per row,k ones per col-
umn, and scalar productλ between any pair of distinct rows.
A BIBD is therefore specified by its parameters(v, b, r, k, λ).
An example is shown in Figure 2.

For a BIBD to exist its parameters must satisfy the condi-
tionsrv = bk, λ(v − 1) = r(k − 1) andb ≥ v, but these are
not sufficient conditions. Constructive methods can be used
to design BIBDs of special forms, but the general case is very
challenging and there are surprisingly small open problems,
the smallest being (22,33,12,8,4). One source of intractability
is the very large number of symmetries: given any solution,
any two rows or columns may be exchanged to obtain another
solution. The symmetry group is the direct productSv × Sb

so there arev! b! symmetries. A survey of known results is
given in [4] and some references and instances are given in
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Figure 2: A solution to BIBD instance(6, 10, 5, 3, 2)

CSPLib1 (problem 28).
We use the most direct CSP model for BIBD generation,

which represents each matrix element by a binary variable.
There are three types of constraint: (i)v b-ary constraints
for ther ones per row, (ii)b v-ary constraints for thek ones
per column, and (iii)v(v − 1)/2 2b-ary constraints for theλ
matching ones in each pair of rows.

BIBDs have matrix symmetry, so the rows and/or columns
of any solution can be permuted arbitrarily to find another
solution. For matrix symmetry the SBNO local move neigh-
bourhood we use is the set of row or column swaps involving
the matrix entry corresponding to the binary variablevf at
which the last≺lex test failed. This heuristic is inspired by
conflict-directed heuristics used in many local search algo-
rithms — it focuses search effort on the source of failure. A
drawback is that by using a non-generator ofG we might fail
to find an improving local move. But using random moves at
local minima compensates for this.

The RANDOMISE function of SBNO exchanges ran-
domly chosen pairs of rows and columns. We found best
results with a variable numberi + 1 of row and column ex-
changes, choosing each valuei = 0, 1, 2, . . . with probability
pi(1 − p) wherep = 0.1. Choosing a random moveg might
not be practicable for all problems, as it is not always possible
to efficiently generate a random group element[13]. But in
the case of matrix symmetry it is easy: we simply exchange
randomly selected rows or columns. Because we use an un-
bounded number of random moves at each local minimum,
the local search algorithm isprobabilistically approximately
complete[14]: it is guaranteed to find a solution given suffi-
cient time. This property might seem unnecessary for a non-
stationary problem because changes to the objective function
can cause escape from local minima, but because of the expo-
nential nature of backtrack search the required changes might
not occur for a long time.

4 Experiments
We implemented SBNO in the ECLiPSe constraint logic pro-
gramming system[1]. When combining symmetry break-
ing methods care must be taken that not all solutions are
excluded, but this combination is correct because lex2 con-
straints can be derived from the lexicographically-smallest
property of SBNO solutions.

Different researchers use different BIBD instances to test
their algorithms. We use those of[21] which are the hard-
est instances used for all-solution search in the literature, and

1http://www.csplib.org

contain most other problem sets. Table 1 compares STAB,
lex2 alone, SBNO alone and lex2+SBNO, in terms of the
number of solutions found (the column “asym” shows the
number of non-symmetrical solutions). All our results use
a single run despite the nondeterminism of SBNO, because
in experiments we found that the variation in results de-
creased with problem hardness. Best results are shown in
bold and unknown results are denoted “—”: unreported in
the case of lex2 and aborted after 1 hour in the case of SBNO.
(lex2+SBNO ran for more than 1 hour in some cases, but we
aborted SBNO after only 1 hour because it is clearly uncom-
petitive alone.)

SBNO alone is a fairly weak partial symmetry breaking
method: weaker than lex2 and the SBNO prototypes of[18;
19] (results not shown here). In fact the new simplified SBNO
procedure is weaker than the prototypes because it is designed
for use with lex2, so it does not need to detect pure row or
pure column symmetries. But the lex2+SBNO combination
is stronger than either method alone, and also stronger than
previous SBNO versions. STAB[21] is currently the leading
partial symmetry breaking method for BIBDs, breaking more
symmetries than other partial methods and solving larger in-
stances than complete methods, but lex2+SBNO breaks more
symmetries than STAB in almost all cases. The two methods
are implemented on different systems (STAB on ILOG Solver
and lex2+SBNO on ECLiPSe) so a comparison of runtimes is
not possible at present.

It is interesting to compare these results with those of
GAPLex [16] which has much in common with SBNO.
GAPLex is also based on the detection of violated lex-leader
constraints, but instead of using local search for detection it
uses the GAP computational group theory system. Despite
this similarity GAPLex gave poor results on BIBD problems,
solving only the first two instances of Table 1 (though it
performs well on other problems). This is presumably be-
cause GAPLex is a complete symmetry breaking method,
and shows the computational advantage of treating symmetry
breaking as a nonstationary optimisation problem. Complete
methods can pay a high price in computational effort, which
is a motivation for studying partial methods.

The runtime overhead of SBNO is low: profiling shows
that only1

3
of the total runtime is spent on SBNO processing,

which is dwarfed by the improvement in total runtime. In
Figure 3 we compare the runtimes of lex2 and lex2+SBNO.
As problem hardness increases the runtime advantage of
lex2+SBNO increases. The difference is up to a factor of 26,
making it considerably faster than current complete methods:
the leading complete symmetry breaking method for BIBDs
is currently SBDD+STAB[22] but the lex2 results in the same
paper are often faster, and lex2+SBNO is much faster than
lex2. Figure 3 shows two versions of SBNO: the version
described above (“SBNO1”), and a version that only calls
SBNO at only half the DFS nodes, and performs at most one
local move at each call (“SBNO2”). This further reduces the
runtime overhead so that adding SBNO to lex2 can speed it
up by a factor of up to 40, and improves the average run-
time. This version breaks fewer symmetries than STAB in
most cases (not shown) but still far more than lex2. Which
version of SBNO is recommended depends on whether we



lex2+
v b r k λ asym STAB lex2 SBNO SBNO
6 10 5 3 2 1 1 1 1,098 1
7 7 3 3 1 1 1 1 5,856 1
6 20 10 3 4 4 4 21 26,412 4
9 12 4 3 1 1 1 2 2,988 1
7 14 6 3 2 4 7 12 5,856 5
8 14 7 4 3 4 6 92 11,438 5
6 30 15 3 6 6 7 134 281,764 6

11 11 5 5 2 1 1 2 9,443 1
10 15 6 4 2 3 4 38 33,290 3
7 21 9 3 3 10 24 220 44,932 14

13 13 4 4 1 1 1 2 18,388 1
6 40 20 3 8 13 15 494 3,191,087 15
9 18 8 4 3 11 41 2,600 139,999 34

16 20 5 4 1 1 1 12 561,879 1
7 28 12 3 4 35 116 3,209 343,393 68
6 50 25 3 10 19 26 1,366 — 23
9 24 8 3 2 36 344 5,987 706,648 311

16 16 6 6 2 3 3 46 1,482,986 7
15 21 7 5 2 0 0 0 — 0
13 26 6 3 1 2 21 12,800 706,648 101
7 35 15 3 5 109 542 33,304 2,109,417282

15 15 7 7 3 5 19 118 — 19
21 21 5 5 1 1 1 12 — 1
25 30 6 5 1 1 1 864 — 5
10 18 9 5 4 21 302 8,031 1,402,133139
7 42 18 3 6 418 2,334 250,878 —1,247

22 22 7 7 2 0 0 0 — 0
7 49 21 3 7 1,508 8,821 1,460,332 —4,353
8 28 14 4 6 2,310 17,890 2,058,523 —11,424

19 19 9 9 4 6 71 6,520 — 17
10 30 9 3 2 960 24,563 724,662 —15,169
31 31 6 6 1 1 1 864 — 2
7 56 24 3 8 5,413 32,038 6,941,124 —14,428
9 36 12 3 3 22,521 315,531 14,843,772 —85,605
7 63 27 3 9 — 105,955 28,079,394 —43,259

15 35 7 3 1 80 6,782 32,127,296 — 35,183
21 28 8 6 2 0 0 0 — 0
13 26 8 4 2 2461 83,337 3,664,243 —31,323
11 22 10 5 4 4393 106,522 6,143,408 —32,908
12 22 11 6 5 — 228,146 — —76,572
25 25 9 9 3 — 17,016 — —1,355
16 24 9 6 3 — 769,482 — —76,860

Table 1: Number of solutions found by partial methods
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Figure 3: Runtime scatter plots: lex2 vs lex2+SBNO

are interested in minimising the number of solutions or the
runtime.

In conclusion, SBNO greatly boosts the power of lex2, so
much so that lex2+SBNO is one of the most scalable symme-
try breaking methods for BIBDs. It is perhaps surprising that
such a weak method becomes so strong when combined with
lex2, but this shows that the two partial methods are comple-
mentary: lex2 efficiently breaks pure row and column sym-
metries, while SBNO is rather inefficient but can potentially
break any symmetry.

Figure 4 illustrates the effect of SBNO on an all-solution
search tree. The first search tree is for instance (8,14,7,4,3)
using lex2 alone while the second also uses SBNO. The tri-
angles in the latter tree indicate where SBNO caused back-
tracking. The search tree for this problem shows two main
branches after an initial fixed assignment. On the left SBNO
dramatically reduces the size of the tree, while on the right
only a few nodes are removed, reflecting SBNO’s nondeter-
ministic nature. Most of the removed nodes on the right are
solutions, which are cut off only when all variables have been
assigned. In contrast, on the left large subtrees are cut off,
containing the majority of the removed solutions. We can
also observe some chains of failure, in which a useful sym-
metry group element discovered at a lower level in the tree is
immediately applied to prune higher nodes.

5 Related work
A popular approach to symmetry breaking is to add con-
straints to the model. It has been shown that all symmetries
can in principle be broken by this method[20], which was de-
veloped into thelex-leadermethod for Boolean variables and
variable symmetries by[5], extended to non-Boolean vari-
ables and independent variable and value symmetries by[17;
23], and to arbitrary symmetries by[25]. But in practice too
many constraints might be needed if there are exponentially
many symmetries. Instead of explicitly adding lex-leader
constraints to a model, a computational group theory sys-
tem such as GAP[10] can be used during search to find rel-
evant (unposted) constraints, as in the GAPLex method[16].
Good results have been obtained by adding subsets of the con-
straints to obtainpartial symmetry breaking. For example in
matrix models it is common to have permutation symmetry
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Figure 4: Effect of SBNO on a search tree



on both rows and columns, but breaking all such symmetries
is NP-hard[5] and requires an exponential number of sym-
metry breaking constraints. Breaking row and column sym-
metries separately (double-lexor lex2) [7] does not break all
combined symmetries but is tractable and quite powerful.

Symmetry Breaking During Search(SBDS) was invented
by [2] and further elucidated by[12]. In SBDS constraints
are added during search so that, after backtracking from a
decision, future symmetrically equivalent decisions are dis-
allowed. SBDS has been implemented by combining a con-
straint solver with the GAP system, giving GAP-SBDS[11],
which allows symmetries to be specified more compactly via
group generators. SBDS can still suffer from the problem
that too many constraints might need to be added: it can han-
dle billions of symmetries but some problems require many
more. A related method to SBDS calledSymmetry Break-
ing Using Stabilizers(STAB) [21] only adds constraints that
do not affect the current partial variable assignment, and has
other optimisations to reduce the arity and number of con-
straints. It does not break all symmetries but has given very
good results on problems with up to1091 symmetries.

Symmetry Breaking by Dominance Detection(SBDD) was
independently invented by[6; 9] (a similar algorithm was
also described by[3]) and combined with GAP to give GAP-
SBDD [11]. SBDD breaks all symmetries but does not add
constraints before or during search, so it does not suffer
from the space problem of some methods. Instead it detects
when the current search state is symmetrical to a previously-
explored “dominating” state. A potential drawback with
SBDD is that dominance detection is itself an NP-hard prob-
lem (equivalent to subgraph isomorphism), and solving sev-
eral such problems at each search node can be expensive.
However, it was shown by[22] that the dominance tests can
be combined into a single auxiliary CSP then solved by stan-
dard constraint programming methods.

Among symmetry breaking methods, SBNO is most
closely related to GAPLex[16]. Both methods backtrack
away from non-canonical solutions by detecting unposted
lex-leader constraints that are currently violated. But whereas
GAPLex uses computational group theory software to guar-
antee detection and is a complete method, SBNO uses
resource-bounded local search and is incomplete. GAPLex
turns out to be unsuited for breaking symmetry in BIBDs and
is able to solve only the first two instances of Table 1 in a
reasonable time. This shows the advantage of using incom-
plete optimisation algorithms for partial symmetry breaking.
GAPLex has also been defined only for variable symmetries,
though it can be extended to arbitrary symmetries by using
generalised lex-leader constraints.

There is often a trade-off in tree search between (i) per-
forming expensive reasoning at each node to potentially elim-
inate large subtrees, and (ii) processing nodes cheaply to re-
duce overheads. Partial reasoning can be applied in the hope
of finding something useful in a short time: for example[24]
use local search within backtrack search to generate tight re-
dundant constraints, an approach they callheuristic propaga-
tion. SBNO is another example of this type of integration, but
its novel architecture allows it to continue reasoning about a
search tree node long after leaving it behind. With respect to

the general area of hybrid search algorithms, SBNO is a new
integration of local and tree search.[8] survey such hybrids
but we believe that the nonstationary optimisation aspect of
SBNO is unique. SBNO can also be seen as a form oflifting:
representing a large set (the lex-leader constraints) by anab-
straction, and searching the abstraction instead of the set. [15]
apply symmetry breaking to lifted SAT-encoded CSPs but are
more concerned with detecting symmetry, and in SBNO only
the lex-leader constraints are lifted.

6 Conclusion

This paper presented a new characterisation and more pow-
erful implementation of SBNO, a recently developed frame-
work for applying metaheuristic search to symmetry breaking
during backtrack search. Other symmetry breaking methods
have used constraint programming or computational group
theory algorithms to solve auxiliary problems arising in sym-
metry breaking, but as far as we know SBNO is the first use
of metaheuristics for this purpose. This connection between
symmetry breaking and metaheuristics is likely to be fruitful
for constraint programming. The small memory requirement
(a single group element) and modest computational overhead
of SBNO make it suitable for handling very large symme-
try groups. In experiments on balanced incomplete block de-
signs, SBNO with lex2 broke more symmetries than two other
partial symmetry breaking methods (lex2 and STAB) and was
faster than complete symmetry breaking methods.

In our previous work SBNO was used with simple back-
track search without constraint propagation, breaking sym-
metry by TABU search[19] and a memetic algorithm[18].
It did quite well, but the experiments in this paper confirm
our earlier speculation that lack of propagation was the factor
that prevented it from solving the hardest BIBD instances.
In previous versions it was also found necessary to mod-
ify the search algorithms to make them more likely to de-
tect pure row and column symmetries; in this paper lex2 is
used to break the pure symmetries, freeing SBNO to detect
the more general combined symmetries. Finally, in previ-
ous work SBNO was not characterised as a lex-leader-based
method, but as a variant of SBDD. The new characterisation
is more correct and shows that SBNO can be used with any
symmetry and any constraint solver.

In future work we will experiment with other metaheuris-
tics and applications, especially to problems with value sym-
metry and conditional symmetry. We also hope to combine
SBNO with partial symmetry breaking methods other than
lex2, in particular STAB. Combining two good techniques
does not always yield further improvement but STAB and
SBNO are to some extent orthogonal: STAB breaks sym-
metry among the unlabelled variables to increase constraint
propagation, while SBNO breaks symmetry among the la-
belled variables and is closer to an intelligent backtracking
technique. In fact SBNO can potentially boost the perfor-
mance ofany partial symmetry breaking method, as it may
discover any violated generalised lex-leader constraint (see
Proposition 2 above). SBNO could also be extended to con-
ditional symmetry breaking by exploiting the results of[25].
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