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Abstract
Several methods exist for breaking symmetry in
constraint problems, but most potentially suffer
from high memory requirements, high computa-
tional overhead, or both. We describe a new par-
tial symmetry breaking method that can be applied
to arbitrary variable/value symmetries. It models
dominance detection as a nonstationary optimisa-
tion problem, and solves it by resource-bounded
metaheuristic search in the symmetry group. It has
low memory requirement and computational over-
head, yet in preliminary experiments on BIBD de-
sign it breaks most symmetries.

1 Introduction
Many constraint satisfaction problems (CSPs) contain sym-
metries. For example the N-queens problem has 8 (each solu-
tion may be rotated through 0, 90, 180 or 270 degrees, and re-
flected) while other problems may have exponentially many
symmetries. The presence of symmetry implies that search
effort is being wasted by exploring symmetrically equiva-
lent regions of the search space. By eliminating the sym-
metry (symmetry breaking) we may speed up the search sig-
nificantly. Several distinct methods have been reported for
symmetry breaking in CSPs and a summary is provided by
[Gentet al., 2006].

Reformulatinga problem to eliminate its symmetries is an
excellent approach when possible, but in many problems it
is difficult or impossible to eliminate all symmetries. Prob-
ably the most common approach is to break symmetries by
adding constraintsto the model. It has been shown that all
symmetries can in principle be broken by this method[Puget,
1993], which was developed into thelex-leadermethod by
[Crawfordet al., 1996]. But in practice too many constraints
might be needed if there are exponentially many symmetries.
Good results have been obtained by adding subsets of the con-
straints to obtainpartial symmetry breaking: for example in
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matrix models it is common to have permutation symmetry
on both rows and columns, but breaking all such symmetries
is NP-hard and requires an exponential number of symmetry
breaking constraints. Breaking row and column symmetries
separately (double-lex[Fleneret al., 2002]) does not break
all combined symmetries but is tractable. Another drawback
with symmetry breaking constraints is that they do not re-
spect the search heuristics: the excluded symmetrical solu-
tions might have been found quickly by the search algorithm,
and those remaining might take much longer to find.

Dynamic symmetry breaking methods have been devised
that do respect search heuristics.Symmetry Breaking During
Search(SBDS) was invented by[Backofen and Will, 1999]
and further elucidated by[Gent and Smith, 2000]. In SBDS
constraints are added during search so that, after backtracking
from a decision, future symmetrically equivalent decisions
are disallowed. SBDS has been implemented by combining
a constraint solver with the GAP computational group theory
system, giving GAP-SBDS[Gentet al., 2002], which allows
symmetries to be specified more compactly via group gener-
ators. SBDS can still suffer from the problem that too many
constraints might need to be added: it can handle billions of
symmetries but some problems require many more. A related
method to SBDS calledSymmetry Breaking Using Stabilizers
(STAB) [Puget, 2003] only adds constraints that do not affect
the current partial variable assignment. STAB does not break
all symmetries but has given good results on problems with
up to1091 symmetries.

Symmetry Breaking by Dominance Detection(SBDD) was
independently invented by[Fahleet al., 2001; Focacci and
Milano, 2001] (though a similar algorithm was described ear-
lier by [Brownet al., 1988]) and combined with GAP to give
GAP-SBDD[Gentet al., 2002]. SBDD breaks all symme-
tries but does not add constraints before or during search,
so it does not suffer from the space problem of other meth-
ods. Instead it detects when the current search state is sym-
metrical to a previously-explored “dominating” state, thus re-
specting search heuristics. It does not need to compare the
current search state withall previous states, only those cor-
responding to fully-explored subtrees (nogoods). The num-
ber of these states is at worst linear in the number of prob-
lem variables, and some of them can be ignored if the value
ordering heuristic in the search algorithm is static, making
SBDD a practicable method. Symmetry between these states



and the current state is established bydominance detection
which checks whether a previous nogood can be transformed
by a symmetry then extended to the current state. A drawback
with SBDD is that dominance detection is itself an NP-hard
problem (equivalent to subgraph isomorphism), and solving
several such problems at each search node can be expensive.
However, it was shown by[Puget, 2005] that the dominance
tests can be combined into a single auxiliary CSP then solved
by standard constraint programming methods.

In this paper we describe and test a new approach to partial
symmetry breaking. It is related to SBDD but models domi-
nance detection as a nonstationary optimisation problem, and
solves it by resource-bounded metaheuristic search. It has
low time and memory requirements and, unlike other partial
symmetry breaking methods, the symmetries it fails to break
are likely to be those with little effect on runtime. Section
2 describes the new method, Section 3 presents a case study
using local search for dominance detection, Section 4 applies
a memetic algorithm, and Section 5 concludes the paper.

2 Dominance detection by metaheuristics
Suppose that we are solving a problem using depth-first
search (DFS) with static value orderings, static or dynamic
variable ordering, and constraint processing (or relaxation in
branch-and-bound). Suppose also that the problem has vari-
able and/or value symmetry defined by a groupG. We fur-
ther assume that any two variables that are symmetric under
G have the same domain and static value ordering.

2.1 Dominance as optimisation
We use a different dominance test than that used in SBDD,
based on the following idea. If we can apply a group element
g∈G to the current partial assignmentA such thatAg ≺lexA,
where≺lex meansstrictly less than under the lexicographical
ordering induced by domain value orderingsandAg denotes
the action ofg on A, then under the above assumptionsAg

dominatesA in the SBDD sense and we can backtrack from
A.

Proposition 1 Given a CSP with variablesv1, . . . , vn to be
solved by DFS with static value orderings. If from a partial
assignmentA of variablesvi1 , . . . , vim

(m < n) we can find
someg∈G such thatAg ≺lexA thenA is a nogood.

Proof If Ag ≺lexA thenAg andA must be of the form

A = [(vi1 , a1), . . . , (vik−1
, ak−1), (vik

, ak), . . .]
Ag = [(vj1 , a1), . . . , (vjk−1

, ak−1), (vjk
, a′

k), . . .]

wherek ≥ 1 and a′

k < ak under the relevant static value
ordering on dom(vik

) = dom(vjk
). Becausea′

k < ak, under
the DFS assumption the search tree below partial assignment

[(vi1 , a1), . . . , (vik−1
, ak−1), (vik

, a′

k), . . .]

has already been explored. Therefore under the assumptions
on value ordering a subtree symmetric to that underAg has
also been explored. ButA is symmetric toAg so we can
backtrack fromA. 2

A Ax B
•
? ? ? ?
? ? ? ?
? ? ? ?

•
? ? ? ?
? ? ? ?
? ? ? ?

•
•

• ? ?
? ? ? ?

(i) (ii) (iii)

Figure 1: Search states in 4-queens

As an example, consider the 4-queens problem with the
usual 8 symmetries including reflection about the vertical
axis (the group element denoted byx). Suppose that we
solve this problem using a matrix model, in which each
square on the board corresponds to a binary variable, 1 de-
notes a queen and 0 no queen at that position. Suppose also
that we apply DFS with static variable ordering 0<1 for all
variables, and assign variables in a static row-by-row then
column-by-column order. Consider the partial assignment
A = (1, 0, 0, 0, ?, . . .) corresponding to the board configu-
ration in Figure 1(i), where a space denotes no queen, “•”
denotes a queen, and “?” denotes no decision. NowAx is
the partial assignment(0, 0, 0, 1, ?, . . .) corresponding to the
board configuration in Figure 1(ii). ButAx ≺lex A whatever
values are chosen for the unassigned variables, so we have al-
ready explored the subtree underAx and found no solutions,
andAx is a nogood.A is symmetric toAx, so A is also a
nogood and we can backtrack from it.

We can model this dominance test as an optimisation prob-
lem withG as the search space, so that eachg∈G is a search
state. The objective function to be minimised is the lex rank-
ing of Ag, which can be considered as a number. On finding
a state with sufficiently small objective value (less than the
lex ranking ofA) we have solved the problem, establishing
that A is dominated. This opens up the field of symmetry
breaking to a wide range of metaheuristic algorithms.

2.2 Dominance as nonstationary optimisation
A practical problem is: how much effort should we devote
to solving these dominance detection problems at each DFS
node? If metaheuristic search fails to find a dominating state,
this might be because there is no such state — but it could
also be because the algorithm has not searched hard enough.
Too little search might miss important symmetries, while too
much will slow down DFS. This is a drawback of using an
incomplete search algorithm.

Our answer is to devote very little effort indeed at each
search node: the metaheuristic search isresource-boundedto
ensure low computational overhead. For example if we apply
local search then we might apply one local move per search
tree node, while if we apply an evolutionary algorithm then
we might breed one new offspring per node.

Metaheuristic search is now being used to solve an optimi-
sation problem whose objective function changes in time: as
DFS changes variable assignmentsA, the objective value of
any giveng changes because it depends onAg. This is called
nonstationary optimisationin the optimisation literature, so
we call our methodSymmetry Breaking by Nonstationary Op-
timisation(SBNO).



Note that if dominance is not detected at a node then it
might be detected a few nodes later. DFS can then backtrack,
possibly jumping many levels in the search tree. For exam-
ple consider the 4-queens problem again. Suppose we did
not manage to find group elementx at search stateA, but in-
stead continued with DFS and only discoveredx on reaching
search stateB shown in Figure 1(iii). NowBx ≺lex B so we
can backtrack fromB. But as we backtrack we can check
each search stateC, and ifCx ≺lex C then we can backtrack
again. This process continues until we backtrack pastA, and
apart from some wasted DFS effort the effect is the same as if
we had detected the symmetry atA by findingx. To take ad-
vantage of this phenomenon, we freeze metaheuristic search
on discovering dominance, and restart it as soon as the current
partial assignment is undominated under the current element
g.

SBNO has the following nice feature. A symmetry that
would only save a small amount of DFS effort is unlikely to
be detected, because DFS might backtrack pastA before an
appropriateg is discovered. In contrast, one that would save
a great deal of DFS effort has a long time in which to be
detected by metaheuristic search. Thus we hope that SBNO
will detect and break allimportant symmetries: those that
make a significant difference to the size of the search tree and
hence the execution time. This distinguishes it from partial
symmetry breaking methods such as double-lex and STAB,
which choose symmetries to break using other criteria.

In principle we could apply a complete algorithm to the
nonstationary optimisation problem, but metaheuristic search
often outperforms complete search given limited time so we
believe that it is a more suitable approach. We could also
apply metaheuristics to the auxiliary CSP for dominance de-
tection defined in[Puget, 2005], but our optimisation prob-
lem has an even smaller memory requirement because we do
not need to store a set of search states. However, this might
be the best way of generalising SBNO to non-DFS search or
dynamic value orderings.

3 Dominance detection by local search
To make SBNO more concrete we now show how to use lo-
cal search for dominance detection, and apply it to a specific
problem.

3.1 Neighbourhood structure
We have already defined the search space (G) and objective
function (the lex ranking ofAg) in Section 2. Local search
also requires a neighbourhood structure defining the possible
local moves from each search state. To impose a neighbour-
hood structure onG we choose some subsetH⊂G: from any
search stateg the possible local moves are the elements ofH
leading to neighbouring statesg ◦ H . Thus allG elements
are local search states, and some of them (H) are also local
moves. To apply local search, from each stateg we try to find
a local moveh such that the objective function is reduced:
Ag◦h ≺lex Ag.1 If a series of moves(h1, h2, . . .) reduces the

1If an unassigned variable is encountered before establishing this
property then the≺lex test fails, but we could also reason on unas-
signed variables.

lex ranking sufficiently then we will findAg◦h1◦h2◦...≺lexA,
establishing dominance ofA.

A local search space is connected if there exists a series
of local moves from any state to any other state. Connect-
edness is an important property for local search, because a
disconnected space may prevent it from finding an optimal
solution. It is easy to show that the search space induced by
H is connected if and only ifH is a generator set forG (de-
noted〈H〉=G).

Proposition 2 H is a generator set forG if and only if the
search space induced byH is connected.

Proof Suppose thatH is a generator forG. We can
move from anyg to any g′ via elementg−1 ◦ g′ because
g◦(g−1◦g′) = (g◦g−1)◦g′ = g′. H is a generator so we
can always find a series of elementsh1, h2, . . . such that
h1 ◦h2◦ . . . = g−1 ◦g′. Thereforeg◦h1◦h2◦ . . . = g′ and
the space is connected. Conversely, suppose thatH is not
a generator forG. Then there exists ag∗ ∈ G such that no
series of elements satisfiesh1, h2, . . . = g∗. But for anyg it
holds thatg∗ = g−1◦g′ for some uniqueg′. Therefore there
exists an unreachable stateg′ from any stateg. 2

Using a generatorH can yield neighbourhoods of man-
ageable size, because any groupG has a generator of size
log

2
(|G|) or smaller. However, in Section 3.3 we use a non-

generatorH for heuristic reasons, and restore connectedness
by allowing occasional moves fromG \ H .

3.2 An application: BIBD design
We test SBNO on a problem with very large symmetry
groups, which has been used to test several symmetry break-
ing methods. Balanced Incomplete Block Design (BIBD)
generation is a standard combinatorial problem, originally
used in the statistical design of experiments but since find-
ing other applications such as cryptography. A BIBD is de-
fined as an arrangement ofv distinct objects intob blocks
such that each block contains exactlyk distinct objects, each
object occurs in exactlyr different blocks, and every two dis-
tinct objects occur together in exactlyλ blocks. Another way
of defining a BIBD is in terms of itsincidence matrix, which
is a binary matrix withv rows, b columns,r ones per row,
k ones per column, and scalar productλ between any pair of
distinct rows. A BIBD is therefore specified by its parameters
(v, b, r, k, λ). An example is shown in Figure 2.

For a BIBD to exist its parameters must satisfy the condi-
tionsrv = bk, λ(v − 1) = r(k − 1) andb ≥ v, but these are
not sufficient conditions. Constructive methods can be used
to design BIBDs of special forms, but the general case is very
challenging and there are surprisingly small open problems,
the smallest being (22,33,12,8,4). One source of intractability
is the very large number of symmetries: given any solution,
any two rows or columns may be exchanged to obtain another
solution. The symmetry group is the direct productSv × Sb

so there arev! b! symmetries. A survey of known results is
given in [Colbourn and Dinitz, 1996] and some references
and instances are given in CSPLib (problem 28).2

2http://www.csplib.org
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Figure 2: A solution to the BIBD instance(6, 10, 5, 3, 2)

3.3 SBNO for BIBD design
The most direct CSP model for BIBD generation represents
each matrix element by a binary variable. There are three
types of constraint: (i)v b-ary constraints for ther ones per
row, (ii) b v-ary constraints for thek ones per column, and
(iii) v(v − 1)/2 2b-ary constraints for theλ matching ones in
each pair of rows. This is the constraint model we use. We
implemented a simple BIBD solver: DFS with static variable
ordering, ordered by rows then columns, and a static value
ordering 1<0. No constraint propagation at all is used in this
prototype: at each search node we simply check that no con-
straint has been violated. No constraint programmer would
use such a feeble algorithm but it is useful for a proof-of-
concept test of SBNO, and in future work we will use a con-
straint programming system to obtain better results.

The most obvious way to apply SBNO to this algorithm,
and to other algorithms solving problems with row and col-
umn symmetry, is as follows. The local search states are the
elements of the direct productG = Sv ×Sb. The local moves
are the group generator consisting of adjacent and first-last
row and column swaps. If a pair of such rows or columns can
be found that are out of lex-order then swapping them is an
improving move. There arev possible row swaps andb possi-
ble column swaps, and the time to compare rows and columns
takesO(b) or O(v) time respectively, so the time to find an
improving move isO(vb): linear in the number of problem
variables.

However, we obtained much better results by using a dif-
ferent neighbourhood structure. The local moves are the ele-
mentsh of the group generatorH consisting ofarbitrary row
or column swaps, but restricted to the subset of swaps involv-
ing the matrix entry corresponding to the binary variablev at
which the last≺lex test failed. This restriction keeps the time
complexity of finding an improving move linear. It is also
inspired by conflict-directed heuristics used in many success-
ful local search algorithms — it focuses search effort on the
source of failure.

A drawback of the restriction is that, by limiting moves
to a subset of the generator, we might fail to find an appro-
priateg (recall Proposition 2). We compensate for this by
randomisingg at each local move with probability1/vb. The
heuristic of choosing a randomg might not be practicable for
all problems, as it is not always possible to efficiently gener-
ate a random group element[Holt et al., 2005]. But in this
case it is easy: we simply build random permutations of the
rows and columns. Even for groups in which it is hard to find
a truly random element, a random factor in the search might
be sufficient.

We make some further heuristic choices based on experi-
mentation, which do not affect the correctness of symmetry
breaking, only its effectiveness. We impose a TABU tenure
of 10: an improving move is disallowed if it reverses a move
made within the last 10 moves. The candidate improving
moves are tested in random order, and the first successful one
is used. If none is successful then we randomly exchange
either v’s row or column with the next row or column in
cyclic order. While searching for a pair of rows [columns]
that are out of order, with probability0.5 we ignore the cur-
rent column [row] permutation: that is, we search for a pair
of rows [columns] that are out of order under theidentitycol-
umn [row] permutation. This represents a compromise be-
tween searching for combined row/column symmetries and
pure row or column symmetries. Finally, when randomising
g in the above heuristic, with probability 0.5 we instead reset
it to the group identity element.

We will refer to this SBNO implementation as SBNO-
TABU. Its heuristics are tentative and will probably be
changed in future work, but they have given reasonable re-
sults.

3.4 Symmetry breaking overhead

Runtime profiling shows that SBNO-TABU consumes ap-
proximately 90% of the total execution time (varying between
BIBD instances), which might seem to contradict our claim
that it is a low-overhead method. However, recall that our
DFS algorithm performs no constraint propagation, so the
time it spends at each tree node is very small. In fact the
time complexity of our DFS at each search node is onlyO(v)
whereas that of SBNO-TABU isO(vb). But constraint propa-
gation algorithms are typically at least linear in the number of
problem variables, which isvb in this application, so we ex-
pect the SBNO-TABU overhead to be almost negligible when
it is applied to a real constraint solver. We will verify thisin
future work.

3.5 Performance variation

The use of local search for symmetry breaking makes the
DFS runtime and number of solutions found nondetermin-
istic. To examine how much variation SBNO-TABU causes,
Figure 3 plots 10 runs of five different instances. The scat-
ter plot shows that there is little variation in the number of
search nodes needed for a complete tree search with sym-
metry breaking. There is more variation in the number of
solutions found, but this reduces as the problem hardness in-
creases. Harder problems are most interesting so we are jus-
tified in using a single run per instance in our experiments
below.

3.6 Comparison with other methods

Different researchers use different BIBD instances to test
their algorithms, and we shall compare SBNO-TABU with
several reported methods using the same instances. All our
results are obtained on a 2.8 GHz Pentium (R). First a com-
parison with[Frischet al., 2002] who use a constraint pro-
gramming system with global constraints for enforcing lexi-
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SBNO-
v b r k λ adj all dec TABU
6 50 25 3 10 1.7 1.8 11 2.1
6 60 30 3 12 4.6 4.9 45 7.3

10 90 27 3 6 111 120 742 158
9 108 36 3 9 8.4 7.6 73 416

15 70 14 3 2 6.2 8.4 21 0.02
12 88 22 3 4 249 317 1154 1781
9 120 40 3 10 8.0 7.2 82 1007

10 120 36 3 8 1316 1132 — 1722
13 104 24 3 4 398 448 1667 510

Table 1: Comparison with a global constraint method

cographical orderings.3 Table 1 shows the time taken to find
a single solution for the three methods in[Frischet al., 2002]
calledGACLexLeq with adjacent pairs(“adj”), GACLexLeq
with all pairs (“all”) and Decomposition(“dec”).4 Runs tak-
ing more than 1 hour are denoted by “—”. The results of
[Frischet al., 2002] were obtained on a 750 MHz Pentium III.
SBNO-TABU is not dominated by any of the other methods
on these instances, and is roughly comparable in execution
time to the Decomposition method.

Next a comparison with the double-lex results of[Fleneret
al., 2002]. Table 2 shows results computing all solutions: the
number of distinct solutions, the number of solutions found
and the time taken. The machine used by[Fleneret al., 2002]
was unspecified, but given the 6-year gap is probably a few
times slower than ours. It is clear that our execution times
are much smaller than those of double-lex, while double-lex
usually breaks more symmetries.

Next a comparison with the GAP-SBDD results of[Gent
et al., 2003] in Table 3. The table shows results computing
all solutions: the number of distinct solutions, the number
of solutions found and the time taken. The machine used by
[Gentet al., 2003] was a 2.6 GHz Pentium IV. SBNO-TABU

3A more up-to-date citation is[Frischet al., 2006] but its results
are in a graph instead of a table.

4We omit the incorrectly written instance (6,70,35,3,10).

distinct double-lex SBNO-TABU
v b rkλ solns solns time solns time
7 7 3 3 1 1 1 1.1 5 0.0
610 5 3 2 1 1 1.0 4 0.0
714 6 3 2 4 24 11 66 0.03
912 4 3 1 1 8 28 12 0.02
814 7 4 3 4 92 171 81 0.1
62010 3 4 4 21 10 111 0.1

Table 2: Comparison with double-lex

distinct GAP-SBDD SBNO-TABU
v b r k λ solns time solns time
7 7 3 3 1 1 0.2 5 0.0
6 10 5 3 2 1 0.6 4 0.0
7 14 6 3 2 4 5.0 66 0.03
9 12 4 3 1 1 1.9 12 0.02
8 14 7 4 3 4 66 81 0.1
6 20 10 3 4 4 56 111 0.1

11 11 5 5 2 1 19 23 0.04
13 13 4 4 1 1 42 35 0.1
7 21 6 2 1 1 11 32 0.04

16 20 5 4 1 1 6078 151 4.5
13 26 6 3 1 2 59344 5893 43

Table 3: Comparison with GAP-SBDD

beats GAP-SBDD in search time because of the overhead of
interfacing Eclipse with GAP: for example in the last instance
this consumed all but a fraction of 1% of the total execution
time. But GAP-SBDD has the compensating advantage that
it requires less work from the user to implement symmetry
breaking (and of course it breaks all symmetries).

Finally Table 4 compares SBNO-TABU results with those
for several algorithms on all but the hardest instances of
[Puget, 2003], which were obtained on a Pentium III 833
MHz. The methods are STAB, and different implementations
of double-lex and SBDD than those in[Fleneret al., 2002;
Gentet al., 2003]. Again we compute all solutions. These
results are much faster than those cited above, which might
be the result of superior constraint handling. Here at last our
non-propagating algorithm is uncompetitive, but for such a
trivial algorithm it does surprisingly well.

4 Dominance detection by memetic search
Local search is just one way of solving nonstationary optimi-
sation problems, and there are other metaheuristic methods:
for example[Stroud, 2001; Trojanowski and Michalewicz,
1999] use evolutionary computation. We now design a
memetic algorithm for SBNO: a hybrid of genetic and local
search. We use a steady-state genetic algorithm with three
separate populations of group elements, each population hav-
ing 1000 organisms and each organism using two chromo-
somes to represent a row and a column permutation. In the
first population the row permutation is fixed to be the iden-
tity permutation, in the second population the column per-
mutation is the identity, and in the third population neither is



SBNO-
double-lex STAB SBDD TABU

v b rk λ solns solns time solns time time solns time
610 5 3 2 1 1 0 1 0 0.01 4 0.0
7 7 3 3 1 1 1 0 1 0.01 0 5 0.0
62010 3 4 4 21 0.02 4 0.01 0.3 111 0.1
912 4 3 1 1 2 0.01 1 0.02 0.01 12 0.02
714 6 3 2 4 12 0.01 7 0.02 0.1 66 0.03
814 7 4 3 4 92 0.04 6 0.03 0.5 81 0.1
63015 3 6 6 134 0.1 7 0.04 2 1112 3.3

1111 5 5 2 1 2 0.01 1 0.05 0.06 23 0.04
1015 6 4 2 3 38 0.05 4 0.05 0.8 81 0.3
721 9 3 3 10 220 0.07 24 0.05 2 845 0.7

1313 4 4 1 1 2 0.03 1 0.07 0.03 35 0.1
64020 3 8 13 494 0.7 15 0.1 11 5374 57
918 8 4 3 11 2600 2 41 0.1 14 849 5.4

1620 5 4 1 1 12 0.2 1 0.1 2 151 4.5
72812 3 4 35 3209 1 116 0.2 19 9842 15
65025 310 19 1366 3 26 0.2 4518694 545
924 8 3 2 36 5987 1 344 0.5 28 7513 14

1616 6 6 2 3 46 0.6 3 0.5 3 333 16
1521 7 5 2 0 0 18 0 0.7 10 0 1416
1326 6 3 1 212800 14 21 0.7 11 5893 43
73515 3 5 10933304 15 542 0.8 15596088 317

1515 7 7 3 5 118 1 19 1 13 674 43
2121 5 5 1 1 12 0.5 1 2 0.5 1191 36

Table 4: Comparison with double-lex, STAB and SBDD

fixed. We use three populations in order to treat row, column
and row/column symmetries separately. In principle we could
use just the third population, because row/column symmetries
subsume row and column symmetries, but better results were
obtained by treating them separately.

Instead of making a local move at each DFS node, as in
SBNO-TABU, the new algorithm generates a single offspring
gp

o from two randomly chosen parents in a randomly cho-
sen populationp. We cannot use group-theoretic methods for
generating new organisms as we did in SBNO-TABU, so we
must choose genetic operators suited to the symmetry group.
Here we are dealing with permutations, so we applycycle
crossover[Oliver et al., 1987] separately to the row and col-
umn chromosomes, followed by a singleexchange mutation
[Banzhaf, 1990] in each chromosome. Cycle crossover and
exchange mutation are standard operators used to apply ge-
netic algorithms to permutation problems. The new offspring
gp

o is then compared to a random population membergp
r , and

if it is currently fitter (Agp
o ≺lex Agp

r ) thengp
o replacesgp

r in
populationp. The organism used for dominance detection at
each node is the fitter of the two most recentgp

o andgp
r chro-

mosomes. To avoid stagnation, if the parents are identical
then we randomise one of them before applying the genetic
operators.

Genetic algorithms can often be enhanced by applying
local search to chromosomes, giving amemetic algorithm
[Moscato, 1989]. We use a form of local search specifically
designed for nonstationary optimisation, similar to that used
in SBNO-TABU. Before using a chromosome for dominance
testing we improve it as follows. First select the rowr and
columnc corresponding to the variable at which the domi-

SBNO- SBNO-
v b r k λ TABU MEME
6 50 25 3 10 2.1 1.0
6 60 30 3 12 7.3 1.9

10 90 27 3 6 158 16
9 108 36 3 9 416 16

15 70 14 3 2 0.02 0.02
12 88 22 3 4 1781 129
9 120 40 3 10 1007 29

10 120 36 3 8 1722 118
13 104 24 3 4 510 25

Table 5: TABU vs memetic search (1)

nance test using that chromosome failed, as in SBNO-TABU.
(If the chromosome is a new offspring then selectr and c
from one of its parents, chosen randomly.) Check each pos-
sible row and column swap withr andc respectively, in ran-
dom order, swapping any that are out of order. The improved
chromosome is placed back into the population, regardless of
whether dominance was shown. In this way the chromosomes
are continually modified to keep up with DFS. This improve-
ment can be done in linear time, as in SBNO-TABU. We will
refer to this SBNO implementation as SBNO-MEME.

Table 5 compares SBNO-MEME with SBNO-TABU on
the instances from Table 1: recall that for these instances we
halt on finding the first solution, and report the CPU time.
SBNO-MEME is clearly superior to SBNO-TABU, and is
sometimes more than an order of magnitude faster. Table 6
compares the two algorithms on the instances from Table 4:
recall that for these instances we compute all solutions. The
harder the problem the better SBNO-MEME performs with
respect to SBNO-TABU, both in terms of broken symmetries
and execution time, whowing that the memetic approach is
more scalable than the local search approach.

5 Conclusion
We described SBNO, a framework for applying metaheuris-
tic search to the problem of symmetry breaking in backtrack
search. SBNO has a small memory requirement and is suit-
able for large problems with many symmetries: for exam-
ple BIBD instance (9,120,40,3,10) in Figure 1 has more than
10204 symmetries. It also has low computational overhead
yet in experiments breaks most symmetries, and a prototype
without constraint propagation has already given promising
results. In future work we will add propagation to obtain what
we hope will be a powerful BIBD algorithm. We will also ap-
ply SBNO to other highly symmetrical problems such as the
Social Golfer Problem, and try to extend it to dynamic value
ordering heuristics.

There are few connections between metaheuristics and
symmetry. [Petcu and Faltings, 2003] used a form of sym-
metry (interchangeability) to guide a distributed local search
algorithm. Symmetry breaking is often applied to genetic al-
gorithms, but here it has a different meaning, and refers to
clustering of the population within a symmetric region of the
search space[Pelikan and Goldberg, 2000]. An alternative is
to design more complex genetic operators and problem mod-



SBNO-TABU SBNO-MEME
v b r k λ solns time solns time
6 10 5 3 2 4 0.0 59 0.02
7 7 3 3 1 5 0.0 18 0.008
6 20 10 3 4 111 0.1 396 0.2
9 12 4 3 1 12 0.02 66 0.06
7 14 6 3 2 66 0.03 188 0.08
8 14 7 4 3 81 0.1 101 0.2
6 30 15 3 6 1112 3.3 291 1.0

11 11 5 5 2 23 0.04 60 0.1
10 15 6 4 2 81 0.03 23 0.6
7 21 9 3 3 845 0.7 660 0.6

13 13 4 4 1 35 0.1 111 0.3
6 40 20 3 8 5374 57 256 7.0
9 18 8 4 3 849 5.4 125 3.4

16 20 5 4 1 151 4.5 36 3.0
7 28 12 3 4 9842 15 1521 4.6
6 50 25 3 10 18694 545 510 59
9 24 8 3 2 7513 14 1565 8.5

16 16 6 6 2 333 16 34 9.7
15 21 7 5 2 0 1416 0 2419
13 26 6 3 1 5893 43 193 11
7 35 15 3 5 96088 317 5174 93

15 15 7 7 3 674 43 83 31
21 21 5 5 1 1191 36 113 20

Table 6: TABU vs memetic search (2)

els [Galinier and Hao, 1999], akin to the reformulation ap-
proach to symmetry breaking mentioned in Section 1. A neg-
ative result of[Prestwich, 2003; Prestwich and Roli, 2005] is
that some forms of symmetry breaking have a detrimental ef-
fect on local search performance. As far as we know, SBNO
is the first use of metaheuristic search to break symmetry.

With respect to the area of hybrid search algorithms,
SBNO-TABU is an example of an integration of local and
tree search — see[Focacciet al., 2003] for a survey of such
hybrids. There is often a trade-off in tree search between (i)
performing expensive reasoning at each node to potentially
eliminate large subtrees, and (ii) processing nodes cheaply to
reduce overheads. When the reasoning is used to solve an-
other NP-hard problem, incomplete reasoning can be applied
in the hope of finding something useful in a short time. For
example[Sellmann and Harvey, 2002] use local search within
backtrack search to generate tight redundant constraints,an
approach they callheuristic propagation. SBNO-TABU is
another example of this type of integration. We do not know
of any similar use of evolutionary methods other than SBNO-
MEME.
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