Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Symmetry Breaking by Metaheuristic Search

Citation for published version:

Prestwich, S, Hnich, B, Rossi, R & Tarim, SA 2008, 'Symmetry Breaking by Metaheuristic Search'. in
Proceedings of the 8th International Workshop on Symmetry and Constraint Satisfaction Problems
(SYMCON 2008). 8th International Workshop on Symmetry and Constraint Satisfaction Problems
(SYMCON 2008), Sydney, Australia, 14 September.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version: _
Preprint (usually an early version)

Published In:
Proceedings of the 8th International Workshop on Symmetry and Constraint Satisfaction Problems (SYMCON
2008)

Publisher Rights Statement:

© Prestwich, S., Hnich, B., Rossi, R., & Tarim, S. A. (2008). Symmetry Breaking by Metaheuristic Search. In
Proceedings of the 8th International Workshop on Symmetry and Constraint Satisfaction Problems (SYMCON
2008).

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN o ACCESS

Download date: 20. Feb. 2015


https://core.ac.uk/display/28968666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/symmetry-breaking-by-metaheuristic-search(52df0ad5-f5f3-41a1-a2b6-68f8c7044aad).html

Symmetry Breaking by M etaheuristic Search*

S. D. Prestwich!, B. Hnich?, R. Rossi!, and S. A. Tarim?
!Cork Constraint Computation Centre, Ireland
2Faculty of Computer Science, Izmir University of Economibsrkey
3Department of Management, Hacettepe University, Turkey
S. prestwi ch@s. ucc.ie,brahimhnich@eu.edu.tr,
r.rossi @c. ucc.ie,armagan. tari maacettepe. edu.tr

Abstract matrix models it is common to have permutation symmetry

on both rows and columns, but breaking all such symmetries
is NP-hard and requires an exponential number of symmetry
breaking constraints. Breaking row and column symmetries
separately ouble-lex[Fleneret al,, 2004) does not break

all combined symmetries but is tractable. Another drawback
with symmetry breaking constraints is that they do not re-

spect the search heuristics: the excluded symmetricat solu
tions might have been found quickly by the search algorithm,
and those remaining might take much longer to find.

Dynamic symmetry breaking methods have been devised
that do respect search heuristi&mmetry Breaking During
Search(SBDS) was invented bfBackofen and Will, 199p
and further elucidated biGent and Smith, 2040 In SBDS
) constraints are added during search so that, after bakkitac
1 Introduction from a decision, future symmetrically equivalent decision

Many constraint satisfaction problems (CSPs) contain symare disallowed. SBDS has been implemented by combining
metries. For example the N-queens problem has 8 (each sola-constraint solver with the GAP computational group theory
tion may be rotated through 0, 90, 180 or 270 degrees, and réystem, giving GAP-SBD§Gentet al, 2003, which allows
flected) while other problems may have exponentially manyymmetries to be specified more compactly via group gener-
symmetries. The presence of symmetry implies that searc@tors. SBDS can still suffer from the problem that too many
effort is being wasted by exploring symmetrically equiva- constraints might need to be added: it can handle billions of
lent regions of the search space. By eliminating the symsymmetries but some problems require many more. A related
metry (Symmetry breakingve may speed up the search sig- method to SBDS calleBymmetry Breaking Using Stabilizers
nificantly. Several distinct methods have been reported fofSTAB) [Puget, 200Bonly adds constraints that do not affect
symmetry breaking in CSPs and a summary is provided byhe current partial variable assignment. STAB does notkorea
[Gentet al,, 2004. all symmetries but has given good results on problems with
Reformulatinga problem to eliminate its symmetries is an up to10°* symmetries.
excellent approach when possible, but in many problems it Symmetry Breaking by Dominance Detec{SBDD) was
is difficult or impossible to eliminate all symmetries. Prob independently invented bjFahleet al, 2001; Focacci and
ably the most common approach is to break symmetries biiilano, 2001 (though a similar algorithm was described ear-
adding constraintso the model. It has been shown that all lier by [Brownet al., 1988) and combined with GAP to give
symmetries can in principle be broken by this metfiedget, GAP-SBDD[Gentet al, 2004. SBDD breaks all symme-
1993, which was developed into tHex-leadermethod by  tries but does not add constraints before or during search,
[Crawfordet al, 1996. But in practice too many constraints so it does not suffer from the space problem of other meth-
might be needed if there are exponentially many symmetriessds. Instead it detects when the current search state is sym-
Good results have been obtained by adding subsets of the cometrical to a previously-explored “dominating” state, sha-
straints to obtairpartial symmetry breaking: for example in specting search heuristics. It does not need to compare the
TS, A, Tarim and B. Hnich are supported by the Scientific angeurrent search state withll previous states, only those cor-

Technological Research Council of Turkey (TUBITAK) undea@t responding to fuIIy-(_eprored SubtreM00d$ The num-

No. SOBAG-108K027. R. Rossi is supported by Science FounPer of these states is at worst linear in the number of prob-
dation Ireland under Grant No. 03/CE3/1405 as part of thet@en lem variables, and some of them can be ignored if the value
for Telecommunications Value-Chain-Driven Research (J&nd  ordering heuristic in the search algorithm is static, mgkin
Grant No. 05/IN/I886. SBDD a practicable method. Symmetry between these states

Several methods exist for breaking symmetry in

constraint problems, but most potentially suffer

from high memory requirements, high computa-

tional overhead, or both. We describe a new par-
tial symmetry breaking method that can be applied
to arbitrary variable/value symmetries. It models

dominance detection as a nonstationary optimisa-
tion problem, and solves it by resource-bounded
metaheuristic search in the symmetry group. It has
low memory requirement and computational over-

head, yet in preliminary experiments on BIBD de-

sign it breaks most symmetries.



and the current state is establisheddmminance detection A A* B

which checks whether a previous nogood can be transformed_® d d

by a symmetry then extended to the current state. Adrawback| ? | 7| ? | ? 21?21?77 o
with SBDD is that dominance detection is itself an NP-hard | ? | ? | ? | ? 21?2?77 |27
problem (equivalent to subgraph isomorphism), and solving | ? | ? | ?| ? 21?1?77 21?21?17

several such problems at each search node can be expensive. [0) (i) (iii)
However, it was shown bjPuget, 200bthat the dominance
tests can be combined into a single auxiliary CSP then solved
by standard constraint programming methods.

In this paper we describe and test a new approach to partial
symmetry breaking. It is related to SBDD but models domi- As an example, consider the 4-queens problem with the
nance detection as a nonstationary optimisation problach, a usual 8 symmetries including reflection about the vertical
solves it by resource-bounded metaheuristic search. It haaxis (the group element denoted by. Suppose that we
low time and memory requirements and, unlike other partiasolve this problem using a matrix model, in which each
symmetry breaking methods, the symmetries it fails to brealsquare on the board corresponds to a binary variable, 1 de-
are likely to be those with little effect on runtime. Section notes a queen and 0 no queen at that position. Suppose also
2 describes the new method, Section 3 presents a case stuidiyat we apply DFS with static variable ordering D for all
using local search for dominance detection, Section 4 eppli variables, and assign variables in a static row-by-row then
a memetic algorithm, and Section 5 concludes the paper. column-by-column order. Consider the partial assignment

A = (1,0,0,0,7?,...) corresponding to the board configu-
2 Dominance detection by metaheuristics ration in Figure 1(i), where a space denotes no queeh, “

. . ._denotes a queen, and “?” denotes no decision. MNéws
Suppose that we are solving a problem using depth-firsiye partial assignmerf0, 0,0, 1,7, ... .) corresponding to the

sea}rch (DFS)_with static valut_a orderings_, static or dy_n_amlcboard configuration in Figure 1(ii). Bul* <., A whatever
variable ordering, and constraint processing (or relaxatt 4,5 are chosen for the unassigned variables, so we have al
branch-and-bound). Suppose also that the problem has vagsa 4y explored the subtree undét and found no solutions,

able and/or value symmetry defined by a gr@lpWe fur- 54 4+ is a nogood. A is symmetric toA”, so A is also a
ther assume that any two variables that are symmetric U”d?{ogood and we can backtrack from it.

G have the same domain and static value ordering. We can model this dominance test as an optimisation prob-
2.1 Dominance as optimisation lem withG as_the_search space, so tha_t e_glerG_ is a search

] ) ] state. The objective function to be minimised is the lex rank
We use a different _dOfT_\Inance test than that used in SBang of A!], which can be considered as a number. On f|nd|ng
based on the following idea. If we can apply a group elemen state with sufficiently small objective value (less thaa th
g€ G tothe current partial assignmedtsuch thatd? <iex 4, |ex ranking of A) we have solved the problem, establishing
where<x meansstrictly less than under the lexicographical that A is dominated. This opens up the field of symmetry

ordering induced by domain value orderingsd A7 denotes  preaking to a wide range of metaheuristic algorithms.
the action ofg on A, then under the above assumptiot%

dominatesA in the SBDD sense and we can backtrack from2.2  Dominance as nonstationary optimisation
A.

Figure 1: Search states in 4-queens

A practical problem is: how much effort should we devote
to solving these dominance detection problems at each DFS

Proposition 1 Given a CSP with variables;, ..., v, to be  n44e? |f metaheuristic search fails to find a dominatingstat
sol\{ed by DFS W|th static value orderings. If from a p_art|al this might be because there is no such state — but it could
assignmenti of Varlat;|eSvi1 o5 i, (M <m) we canfind 5156 pe because the algorithm has not searched hard enough.
somey € G such thatA? <i.x A thenA is a nogood. Too little search might miss important symmetries, while to
Proof If A% <., A thenA¢ andA must be of the form much will slow down DFS. This is a drawback of using an
incomplete search algorithm.
A =[(vi;,a1)y -, (Vip_ysap-1), (Vip,ak), .. .] Our answer is to devote very little effort indeed at each
A9 =[(vj,,01), -y (Vj_,sar—1), (V. al), -] search node: the metaheuristic searales®urce-boundeth

. ensure low computational overhead. For example if we apply
wherek > 1 andaj < a; under the relevant static value |ocq| search then we might apply one local move per search
ordering on dorfw;, ) = dom(v;, ). Becauses, < ax, under  ee node, while if we apply an evolutionary algorithm then
the DFS assumption the search tree below partial assignmeyle might breed one new offspring per node.

/ Metaheuristic search is now being used to solve an optimi-
iy @),y iy @), (Vi 01 ] sation problem whose objective fungction changes in timpe: as
has already been explored. Therefore under the assumptioBs-S changes variable assignmedtsthe objective value of
on value ordering a subtree symmetric to that undéhas  any giveng changes because it dependsAsh This is called
also been explored. Bud is symmetric toA? so we can nonstationary optimisatiom the optimisation literature, so
backtrack fromA. O we call our metho@ymmetry Breaking by Nonstationary Op-
timisation(SBNO).



Note that if dominance is not detected at a node then itex ranking sufficiently then we will fingl9°#1°h20-- <, A,
might be detected a few nodes later. DFS can then backtrackstablishing dominance of.
possibly jumping many levels in the search tree. For exam- A local search space is connected if there exists a series
ple consider the 4-queens problem again. Suppose we diaf local moves from any state to any other state. Connect-
not manage to find group elementt search statd, butin-  edness is an important property for local search, because a
stead continued with DFS and only discovesean reaching disconnected space may prevent it from finding an optimal
search staté shown in Figure 1(jii). NowB* <. B so we  solution. It is easy to show that the search space induced by
can backtrack fromB. But as we backtrack we can check H is connected if and only if{ is a generator set fax (de-
each search statg, and if C* <., C then we can backtrack noted(H)=G).
again. This process continues until we backtrack gastnd
apart from some wasted DFS effort the effect is the same as Proposition 2 H is a generator set fot7 if and only if the
we had detected the symmetryAby findingz. To take ad-  search space induced l#y is connected.
vantage of this phenomenon, we freeze metaheuristic sear .
on discovering dominance, and restart it as soon as thenturre roof Suppose thatt] IS a generator fE){G' , We can
partial assignment is undominated under the current emmemoveﬁ{ron/w anyg to any ¢’ via elementg~" o g’ because
go(g7tog’) = (gog=t)og’ = ¢'. H is a generator so we
SBNO has the following nice feature. A symmetry that ¢&" always_flnd_la Series of elemerits, ho, . .. i"cr) that
would only save a small amount of DFS effort is unlikely to hiohso... = g~ og'. Thereforegoh ohzo... = ¢’ and
be detected, because DFS might backtrack dasefore an € Space is connected. Conversely, suppose/hat not
appropriatgy is discovered. In contrast, one that would save? generator focs. Thep t_here exists a f G such that no
a great deal of DFS effort has a long time in which to beS€Mes of elfmenfsl sa/t|sf|é§, ha, ... = g". But for anyg it
detected by metaheuristic search. Thus we hope that SBNBP!DS thaly”™ = g~ og’ for some uniquey’. Therefore there
will detect and break alimportantsymmetries: those that ©XIStS an unreachable statefrom any state. O
make a significant difference to the size of the search trde an
hence the execution time. This distinguishes it from phrtia . ‘
symmetry breaking methods such as double-lex and STA 'geable size, because any gr(_Il;lmas_a generator of size
which choose symmetries to break using other criteria. 0, (|G|) or smaller. However, in Section 3.3 we use & non-
In principle we could apply a complete algorithm to the generatort! for heyrlstlc reasons, and restore connectedness
nonstationary optimisation problem, but metaheuristizsle 0¥ &llowing occasional moves frofi \ H.
often outperforms complete search given limited time sowez 5 aAp application: BIBD design

believe that it is a more suitable approach. We could aIsQNe test SBNO on a problem with very large symmetry

apply metaheuristics to the auxiliary CSP for dominance degroups, which has been used to test several symmetry break-

tection defined ifPuget, 200F but our optimisation prob- : :
lem has an even smaller memory requirement because we d§g methods. Balanced Incomplete Block Design (BIBD)
gneration is a standard combinatorial problem, origynall

not need to store a set of search states. However, this mi A h e . ; : :
9 sed in the statistical design of experiments but since find-

25;2;iltéevs;I\L/jv:)c/)?dfegrienr;esraI|3|ng SBNO to non-DFS search 0:1:19 other applications such as cryptography. A BIBD is de-

fined as an arrangement ofdistinct objects intad blocks

- . such that each block contains exadtlgistinct objects, each
3 Dominance detection by local search object occurs in exactly different blocks, and every two dis-
To make SBNO more concrete we now show how to use lotinct objects occur together in exactiyblocks. Another way

cal search for dominance detection, and apply it to a specifiof defining a BIBD is in terms of itincidence matrixwhich

Using a generatof! can yield neighbourhoods of man-

problem. is a binary matrix withv rows, b columns,r ones per row,
i k ones per column, and scalar produdietween any pair of
3.1 Neighbourhood structure distinct rows. A BIBD is therefore specified by its paramster

We have already defined the search spd&eand objective (v, b, 7, k, A). An example is shown in Figure 2.
function (the lex ranking ofA?) in Section 2. Local search For a BIBD to exist its parameters must satisfy the condi-
also requires a neighbourhood structure defining the plessibtionsrv = bk, A(v — 1) = r(k — 1) andb > v, but these are
local moves from each search state. To impose a neighbounot sufficient conditions. Constructive methods can be used
hood structure oty we choose some subgétc G: fromany  to design BIBDs of special forms, but the general case is very
search state the possible local moves are the element&lof challenging and there are surprisingly small open problems
leading to neighbouring statgso H. Thus allG elements the smallest being (22,33,12,8,4). One source of intrditiab
are local search states, and some of thethdre also local is the very large number of symmetries: given any solution,
moves. To apply local search, from each statee try to find ~ any two rows or columns may be exchanged to obtain another
a local moveh such that the objective function is reduced: solution. The symmetry group is the direct prodfgtx S
A9°h < A9 If a series of moves$h,, ho, . ..) reduces the so there are!b! symmetries. A survey of known results is
given in [Colbourn and Dinitz, 1996and some references

1If an unassigned variable is encountered before estabtjshis  and instances are given in CSPLib (problem Qg)_
property then the<;. test fails, but we could also reason on unas-

signed variables. 2http://www.csplib.org



We make some further heuristic choices based on experi-
mentation, which do not affect the correctness of symmetry
breaking, only its effectiveness. We impose a TABU tenure
of 10: an improving move is disallowed if it reverses a move
made within the last 10 moves. The candidate improving
moves are tested in random order, and the first successful one
is used. If none is successful then we randomly exchange
either v's row or column with the next row or column in

Figure 2: A solution to the BIBD instandé, 10, 5, 3, 2) cyclic order. While searching for a pair of rows [columns]

that are out of order, with probabiliy.5 we ignore the cur-

. rent column [row] permutation: that is, we search for a pair
3.3 SBNO for BIBD design of rows [columns] that are out of order under tentitycol-
The most direct CSP model for BIBD generation representsimn [row] permutation. This represents a compromise be-
each matrix element by a binary variable. There are threéveen searching for combined row/column symmetries and
types of constraint: (i) b-ary constraints for the ones per ~pure row or column symmetries. Finally, when randomising
row, (ii) b v-ary constraints for thé ones per column, and ¢ in the above heuristic, with probability 0.5 we instead tese
(iii) v(v — 1)/2 2b-ary constraints for tha matching ones in it to the group identity element.
each pair of rows. This is the constraint model we use. We We will refer to this SBNO implementation as SBNO-
implemented a simple BIBD solver: DFS with static variable TABU. lIts heuristics are tentative and will probably be
ordering, ordered by rows then columns, and a static valuehanged in future work, but they have given reasonable re-
ordering k0. No constraint propagation at all is used in this sults.
prototype: at each search node we simply check that no con-
straint has been violated. No constraint programmer woul®.4 Symmetry breaking over head
use such a feeble algorithm but it is useful for a proof-of- ) -
concept test of SBNO, and in future work we will use a con-Runtime profiling shows that SBNO-TABU consumes ap-
straint programming system to obtain better results. proximately 90% of the total executiontime (varying betwee

The most obvious way to apply SBNO to this algorithm, BIBD mstances), which might seem to contradict our claim
and to other algorithms solving problems with row and col-that it is a low-overhead method. However, recall that our
umn symmetry, is as follows. The local search states are thg™> @lgorithm performs no constraint propagation, so the
elements of the direct produ6t= S, x Ss. The local moves t!me it spendg at each tree node is very small.. In fact the
are the group generator consisting of adjacent and first-ladime complexity of our DFS at each search node is @hly)
row and column swaps. If a pair of such rows or columns carf/nereas that of SBNO-TABU i8(vb). But constraint propa-
be found that are out of lex-order then swapping them is aigation algorithms are typically at least linear in the nurrdfe
improving move. There arepossible row swaps arichossi- problem variables, which isb in this application, so we ex-
ble column swaps, and the time to compare rows and columr&E¢t the SBNO-TABU overhead to be almost negligible when
takesO(b) or O(v) time respectively, so the time to find an it is applied to a real constraint solver. We will verify this
improving move isO(vb): linear in the number of problem future work.
variables. o

However, we obtained much better results by using a dif3-9 Performance variation

ferent neighbourhood structure. The local moves are the elere yse of local search for symmetry breaking makes the
mentsh of the group generatdi consisting ofrbitrary row  prEs ryntime and number of solutions found nondetermin-

or column swaps, but restricted to the subset of swaps iAvolVigtic. To examine how much variation SBNO-TABU causes,
ing the matrix entry corresponding to the binary variab®  rigyre 3 plots 10 runs of five different instances. The scat-
which th_e Iastk<.1CX test fallgd. Th|§ restriction keeps the time ¢qr plot shows that there is little variation in the number of
complexity of finding an improving move linear. Itis also gearch nodes needed for a complete tree search with sym-
inspired by conﬂlct-dl_rected he_unstlcs used in many sasce metry breaking. There is more variation in the number of
ful local search algorithms — it focuses search effort on thesg|ytions found, but this reduces as the problem hardness in
source of failure. creases. Harder problems are most interesting so we are jus-

A drawback of the restriction is that, by limiting moves tifieq in using a single run per instance in our experiments
to a subset of the generator, we might fail to find an approyg|ow.

priate g (recall Proposition 2). We compensate for this by
randomising; at each local move with probability/vb. The
heuristic of choosing a randognmight not be practicable for
all problems, as it is not always possible to efficiently gene Different researchers use different BIBD instances to test
ate a random group elemeltiolt et al, 2005. But in this  their algorithms, and we shall compare SBNO-TABU with
case it is easy: we simply build random permutations of theseveral reported methods using the same instances. All our
rows and columns. Even for groups in which it is hard to findresults are obtained on a 2.8 GHz Pentium (R). First a com-
a truly random element, a random factor in the search mighparison with[Frischet al, 2004 who use a constraint pro-

be sufficient. gramming system with global constraints for enforcingdexi

roOORrROR
PRPOROO
oroORPR
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RrORrOOR
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3.6 Comparison with other methods



distinct double-lex = SBNO-TABU
v b rk)A solns solns time solns time
1 7 7 331 1 T 11 5 00
100 L 1 i 610 532 1 1 10 4 0.0
- § 714 632 4 24 11 66  0.03
E y 912 431 1 8 28 12 0.02
I 3 814 743 4 92 171 81 0.1
g 6201034 4 21 10 111 0.1
S 10 b . g
+ (17331  + Table 2: Comparison with double-lex
- (13,13,4,4,1) x
(6,20,10,3,4)  *
(1636567 = distinct  GAP-SBDD  SBNO-TABU
'00 1000 10000 100000 1et06  1et07  1e+s v b rkA solns time solns time
search nodes 7 7 331 1 0.2 5 0.0
610 532 1 0.6 4 0.0
Figure 3: Variation between SBNO-TABU runs ; ig 2 g i ‘11 ig gg 882
814 743 4 66 81 0.1
. SBNO- 6201034 4 56 111 0.1
v b rk X adj all dec TABU 1111 552 1 19 23 0.04
6 5025310 1.7 1.8 11 2.1 1313 441 1 42 35 0.1
6 6030312 4.6 4.9 45 7.3 721 621 1 11 32 0.04
10 90273 6 111 120 742 158 1620 541 1 6078 151 4.5
9108363 9 84 76 73 416 1326 631 2 59344 5893 43
15 70143 2 6.2 8.4 21 0.02
12 88223 4 249 317 1154 1781 ) )
012040310 8.0 7.2 82 1007 Table 3: Comparison with GAP-SBDD
1012036 3 81316 1132 — 1722
13104243 4 398 448 1667 510

beats GAP-SBDD in search time because of the overhead of
interfacing Eclipse with GAP: for example in the last ingtan
this consumed all but a fraction of 1% of the total execution
time. But GAP-SBDD has the compensating advantage that

) . ] it requires less work from the user to implement symmetry
Cographlcal Orderlng%.Table 1 shows the time taken to find breaking (and of course it breaks all Symmetries).

a single solution for the three methodd rischet al, 2003 Finally Table 4 compares SBNO-TABU results with those
called GACLexLeq with adjacent paisadj”), GACLexLeq  for several algorithms on all but the hardest instances of
with all pairs (“all’) and Decompositior{*dec”).” Runs tak-  [pyget, 2008 which were obtained on a Pentium Ill 833

ing more than 1 hour are denoted by “—". The results ofpmHz. The methods are STAB, and different implementations
[Frischet al., 2003 were obtained on a 750 MHz Pentium IIl. of double-lex and SBDD than those [Rleneret al, 2002

SBNO-TABU is not dominated by any of the other methodsgentet al, 2003. Again we compute all solutions. These

on these instances, and is roughly comparable in executiosults are much faster than those cited above, which might

time to the Decomposition method. be the result of superior constraint handling. Here at last o
Next a comparison with the double-lex result§lieneret  non-propagating algorithm is uncompetitive, but for such a

al., 2004. Table 2 shows results computing all solutions: thetrivial algorithm it does surprisingly well.

number of distinct solutions, the number of solutions found

and the time taken. The machine usedBigneret al, 2002 4 Dominance detection by memetic search

was unspecified, but given the 6-year gap is probably a few

times slower than ours. It is clear that our execution timed.ocal search is just one way of solving nonstationary optimi

are much smaller than those of double-lex, while double-lexsation problems, and there are other metaheuristic methods

usually breaks more symmetries. for example[Stroud, 2001; Trojanowski and Michalewicz,
Next a comparison with the GAP-SBDD results[@ent 1999 use evolutionary computation. We now design a

et al, 2009 in Table 3. The table shows results computingmemetic algorithm for SBNO: a hybrid of genetic and local

all solutions: the number of distinct solutions, the numbersearch. We use a steady-state genetic algorithm with three

of solutions found and the time taken. The machine used bgeparate populations of group elements, each population ha

[Gentet al, 2003 was a 2.6 GHz Pentium IV. SBNO-TABU Ing 1000 organisms and each organism using two chromo-

somes to represent a row and a column permutation. In the

first population the row permutation is fixed to be the iden-

tity permutation, in the second population the column per-

mutation is the identity, and in the third population neittse

Table 1: Comparison with a global constraint method

A more up-to-date citation iFrischet al, 2004 but its results
are in a graph instead of a table.

“We omit the incorrectly written instance (6,70,35,3,10).



SBNO- SBNO- SBNO-
double-lex STAB SBDD TABU v b r k X TABU MEME

v b rk X solns solns time solns time time solns time 6 50 25 3 10 21 1.0

610 53 2 1 1 0 1 0 0.01 4 0.0 6 60 30 3 12 7.3 1.9
77331 1 1 0 10.01 0 5 00

620103 4 4 21 0.02 4 0.01 0.3 111 0.1 1(9) 182 gg g 8 }1?2 ig

912 43 1 1 2 0.01 10.02 0.01 12 0.02

714 632 4 12 001 7002 01 66 0.03 15 70 14 3 2 002 002

814 743 4 92 004 6003 05 81 01 12 88 22 3 4 1781 129

630153 6 6 134 01 70.04 2 1112 3.3 9 120 40 3 10 1007 29

1111 552 1 2 001 1005 0.06 23 0.04 10 120 36 3 8 1722 118

1015 64 2 3 38 0.05 4 0.05 0.8 81 0.3 13 104 24 3 4 510 25

721 93 3 10 220 0.07 24 0.05 2 845 0.7

1228233 é 1% 4924 0'83; 1%5 0'871 O'ﬁ 5332 0; Table 5: TABU vs memetic search (1)

918 84 3 11 2600 2 41 01 14 849 54

1620541 1 12 02 101 2 151 4.5 nance test using that chromosome failed, as in SBNO-TABU.
égg%égl‘é ig ?igg?s é 1%2 8'3 ig 12232 5}1% (If the chromosome is a new offspring then seleadnd c

924 83 2 36 5987 1 314 05 08 7513 14 fr_om one of its parents, choson randomly.) C_heck_each pos-
1616 66 2 3 46 06 3 05 3 333 16 Siblerow and column swap withandc respectively, in ran-
1521 752 0 0 18 0O 07 10 01416 dom order, swapping any that are out of order. The improved
1326 63 1 212800 14 21 07 11 5893 43 chromosomeis placed back into the population, regardfess o
735153 5 10933304 15 542 0.8 15596088 317 whether dominance was shown. In this way the chromosomes
1515 77 3 5 118 1 19 1 13 674 43 are continually modified to keep up with DFS. This improve-
2121551 1 12 05 1 2 0.5 1191 36 mentcan be done in linear time, as in SBNO-TABU. We will

refer to this SBNO implementation as SBNO-MEME.

Table 4: Comparison with double-lex, STAB and SBDD ~_ 1able 5 compares SBNO-MEME with SBNO-TABU on
the instances from Table 1: recall that for these instanees w
halt on finding the first solution, and report the CPU time.

fixed. We use three populations in order to treat row, columrSBNO-MEME is clearly superior to SBNO-TABU, and is
and row/column symmetries separately. In principle wedoul Sometimes more than an order of magnitude faster. Table 6
use just the third population, because row/column symesetri compares the two algorithms on the instances from Table 4:
subsume row and column symmetries, but better results werecall that for these instances we compute all solutiong Th
obtained by treating them separately. harder the problem the better SBNO-MEME performs with

Instead of making a local move at each DFS node, as ifieSpect to SBNO-TABU, both in terms of broken symmetries

SBNO-TABU, the new algorithm generates a single offspring2nd execution time, whowing that the memetic approach is
g? from two randomly chosen parents in a randomly cho-more scalable than the local search approach.

sen populatiop. We cannot use group-theoretic methods for )

generating new organisms as we did in SBNO-TABU, soweéb Conclusion

must choose genetic operators suited to the symmetry grougye described SBNO, a framework for applying metaheuris-
Here we are dealing with permutations, so we appigle  tic search to the problem of symmetry breaking in backtrack
crossover[Oliver et al, 1987 separately to the row and col- gearch, SBNO has a small memory requirement and is suit-
umn chromosomes, followed by a singlechange mutation gple for large problems with many symmetries: for exam-
[Banzhaf, 199Din each chromosome. Cycle crossover andple BIBD instance (9,120,40,3,10) in Figure 1 has more than
exchange mutation are standard operators used to apply ggy204 symmetries. It also has low computational overhead
netic algorithms to permutation problems. The new offsprin yet jn experiments breaks most symmetries, and a prototype
g% is then compared to a random population memfieand  jithout constraint propagation has already given prorgisin
if it is currently fitter (4% <., A97) theng? replacesy? in  results. In future work we will add propagation to obtain wha
populationp. The organism used for dominance detection atwe hope will be a powerful BIBD algorithm. We will also ap-
each node is the fitter of the two most recghandg? chro-  ply SBNO to other highly symmetrical problems such as the
mosomes. To avoid stagnation, if the parents are identicaocial Golfer Problem, and try to extend it to dynamic value
then we randomise one of them before applying the genetigrdering heuristics.
operators. There are few connections between metaheuristics and
Genetic algorithms can often be enhanced by applyingymmetry. [Petcu and Faltings, 20D8ised a form of sym-
local search to chromosomes, givingremetic algorithm metry (nterchangeabilityto guide a distributed local search
[Moscato, 198P We use a form of local search specifically algorithm. Symmetry breaking is often applied to genetic al
designed for nonstationary optimisation, similar to thegdi  gorithms, but here it has a different meaning, and refers to
in SBNO-TABU. Before using a chromosome for dominanceclustering of the population within a symmetric region of th
testing we improve it as follows. First select the rovand  search spackPelikan and Goldberg, 2000An alternative is
columne¢ corresponding to the variable at which the domi-to design more complex genetic operators and problem mod-



SBNO-TABU  SBNO-MEME [Banzhaf, 199D W. Banzhaf. The “molecular” traveling

v b rk A solns time solns time salesmanBiological Cybernetics64:7—14, 1990.

?19 gg 12_ g 88 fg Ooo'gg [Brownetal, 1989 C. A. Brown, Finkelstein, and P. W.

620103 4 111 0 1 396 ' 0.2 Purdom. B_acktrack searching in the presence of symme-

912 43 1 12 0 0'2 66 0 0'6 try. In Applled Algebra, Algebraic Algorithms ar_1d Error-

714 63 2 66 0'03 188 0-08 Correctlng Codesvolume 357 oﬂ__ecture Notes in Com-

814 74 3 81 6.1 101 (').2 puter Sciencgpages 99-110. Springer, 1988.

630153 6 1112 3.3 291 1.0 [Colbourn and Dinitz, 1996C. J. Colbourn and J. H. Dinitz,
1111 55 2 23 0.04 60 0.1 editors. The CRC Handbook of Combinatorial Designs
1015 64 2 81 0.03 23 0.6 CRC Press, 1996.

721 93 3 845 0.7 660 0.6 [Crawfordet al, 199§ J. Crawford, M. L. Ginsberg,
1313 44 1 35 0.1 111 0.3 E. Luks, and A. Roy. Symmetry-breaking predicates for
640203 8 5374 57 256 7.0 search problems. IRrinciples of Knowledge Representa-
918 84 3 849 54 125 3.4 tion and Reasoningpages 148-159. Morgan Kaufmann,

1620 54 1 151 45 36 3.0 1996.

gég %é g 1?) 1%%%2 5%155 15521% 453 [Fahleet al, 2007 T. Fahle, S. Schamberger, and M. Sell-

924 83 2 7513 14 1565 85 mann. Symmetry breaking. [Tth International Confer-
1616 66 2 333 16 34 9.7 ence on Principles and Practice of Constraint Program-
1521 75 2 0 1416 0 241'9 ming, volume 2239 pf_ecture Notes in Computer Science
1326 63 1 5893 43 193 11 pages 93-107. Springer, 2001.

735153 5 96088 317 5174 93 [Fleneret al, 2004 P. Flener, A. M. Frisch, B. Hnich,
1515 77 3 674 43 83 31 Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh. Break-
2121 55 1 1191 36 113 20 ing row and column symmetries in matrix models. 8t

International Conference on Principles and Practice of
Constraint Programmingvolume 2470 of_ecture Notes
in Computer Scien¢c@ages 462—476. Springer, 2002.

[Focacci and Milano, 20Q1F. Focacci and M. Milano.

Table 6: TABU vs memetic search (2)

els [Galinier and Hao, 1999 akin to the reformulation ap- Global cut framework for removing symmetries. Tith
proach to symmetry breaking mentioned in Section 1. A neg- International Conference on Principles and Practice of
ative result of Prestwich, 2003; Prestwich and Roli, 200 Constraint Programmingvolume 2239 of_ecture Notes

that some forms of symmetry breaking have a detrimental ef- in Computer Scienc@ages 77-92. Springer, 2001.
fect on local search performance. As far as we know, SBNQFocacciet al, 2003 F. Focacci, F. Laburthe, and A. Lodi.
is the first use of metaheuristic search to break symmetry. Handbook of Metaheuristicschapter Local Search and
With respect to the area of hybrid search algorithms, Constraint Programming, pages 369-403. Kluwer Aca-

SBNO-TABU is an example of an integration of local and  demic Publishers, 2003.
tree search — sdéocacciet al, 2009 for a survey of such [Fri - : s

; ' ' . [Frischet al, 2004 A. M. Frisch, B. Hnich, Z. Kiziltan,
hybrlds._ There is o_ften a trad_e-off in tree search bet‘”*’? (i I. Miguel, and T. Walsh. Global constraints for lexico-
performing expensive reasoning at each node to potentially ¢ - hic orderings.  Ir8th International Conference on
eliminate large subtrees, and (ii) processing nodes ch¢apl Principles and Practice of Constraint Programmingpl-

reduce overheads. When the reasoning is used to solve an- : :
other NP-hard problem, incomplete reasoning can be applied gan_elcz)gwgp?iﬂr;Sg;urzeocl)\lzotes In Computer Sciengmges

in the hope of finding something useful in a short time. For _~ ) ) o
exampld Sellmann and Harvey, 20D@se local search within ~ [Frischetal, 200§ A. M. Frisch, B. Hnich, Z. Kiziltan,
backtrack search to generate tight redundant constraints, |- Miguel, and T. Walsh. Propagation algorithms for lex-
approach they calheuristic propagation SBNO-TABU is icographic ordering constraints.Artificial Intelligence
another example of this type of integration. We do not know 170(10):803-834, 2006.

of any similar use of evolutionary methods other than SBNO{Galinier and Hao, 1999P. Galinier and J. K. Hao. Hybrid

MEME. evolutionary algorithms for graph coloringJournal of
Combinatorial Optimization3(4):379-397, 1999.
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