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Abstract

The T box transcription factor TBX2, a master regulator of organogenesis, is aberrantly amplified in aggressive human
epithelial cancers. While it has been shown that overexpression of TBX2 can bypass senescence, a failsafe mechanism
against cancer, its potential role in tumor invasion has remained obscure. Here we demonstrate that TBX2 is a strong cell-
autonomous inducer of the epithelial-mesenchymal transition (EMT), a latent morphogenetic program that is key to tumor
progression from noninvasive to invasive malignant states. Ectopic expression of TBX2 in normal HC11 and MCF10A
mammary epithelial cells was sufficient to induce morphological, molecular, and behavioral changes characteristic of EMT.
These changes included loss of epithelial adhesion and polarity gene (E-cadherin, ß-catenin, ZO1) expression, and abnormal
gain of mesenchymal markers (N-cadherin, Vimentin), as well as increased cell motility and invasion. Conversely, abrogation
of endogenous TBX2 overexpression in the malignant human breast carcinoma cell lines MDA-MB-435 and MDA-MB-157 led
to a restitution of epithelial characteristics with reciprocal loss of mesenchymal markers. Importantly, TBX2 inhibition
abolished tumor cell invasion and the capacity to form lung metastases in a Xenograft mouse model. Meta-analysis of gene
expression in over one thousand primary human breast tumors further showed that high TBX2 expression was significantly
associated with reduced metastasis-free survival in patients, and with tumor subtypes enriched in EMT gene signatures,
consistent with a role of TBX2 in oncogenic EMT. ChIP analysis and cell-based reporter assays further revealed that TBX2
directly represses transcription of E-cadherin, a tumor suppressor gene, whose loss is crucial for malignant tumor
progression. Collectively, our results uncover an unanticipated link between TBX2 deregulation in cancer and the acquisition
of EMT and invasive features of epithelial tumor cells.
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Introduction

The developmentally important transcription factor T box 2

(TBX2) is abnormally amplified with high prevalence in aggressive

human epidermal cancers. TBX2 maps to chromosome 17q23.2,

a region that is aberrantly amplified inover40%ofbreast cancers [1],

40% ofmelanomas [2], 40% of ovarian [3], 56% of endometrial [4],

and 60% of pancreatic cancers [5], correlating with poor clinical

outcome. In breast cancer, TBX2 gene amplification is associated

with invasivehereditaryBRCA1-andBRCA2-relatedcancers, high-

grade-sporadic breast tumors, and distant metastases [6,7,8]. TBX2

is also amplified and overexpressed in several human breast

carcinoma cell lines [6,9,10]. However, the potential role of TBX2

in malignant tumor progression has remained unclear.

TBX2 is a member of the evolutionary conserved T box

transcription factor family [11,12], a class of master regulators of

embryogenesis that share a T box DNA binding domain and

comprise many disease genes [13]. TBX2 acts mainly as a transcrip-

tional repressor [14,15,16] that has been shown to recruit Histone

Deacetylase 1 (HDAC1) to target gene promoters [2]. During

embryogenesis, TBX2 is fundamental to the regulation of cell fate

decisions, cell migration, and morphogenesis in a variety of organs

including the limbs, heart, kidney, nervous system, and eyes

[17,18,19,20,21,22]–albeit throughmechanisms that remainpoorly

understood. TBX2 is also prominently expressed in the embryonic

mammary glandswith a restricted expression inbreastmesenchymal

cells,whichgive rise to the stroma[23,24].Althoughearly embryonic

lethality of Tbx2 knockout mice, due to severe heart defects, has
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precluded analysis of TBX2 function in mammopoiesis [18], adult

heterozygous Tbx2 mouse mutants exhibit mild mammary gland

branchingdefects, suggesting thatTBX2maybe required fornormal

mammary gland morphogenesis [24].

TBX2 is also implicated in cell cycle regulation [9,25], whereby

overexpression of TBX2 in different in vivo model and cell culture

systems has shown to both promote [9,10,21,26], as well as attenuate

cellproliferation[27,28].InappropriateactivationofTBX2incancer

is thought to contribute to early tumor progression by its ability to

over-ride senescence and therefore maintain tumor growth [9].

Senescence is a permanent G1 growth arrest induced by DNA

damage or oncogenic insult that represents a failsafe mechanism

against cancer [29]. TBX2 has been shown to suppress senescence

through both p53-dependent [2,9,15,30] and p53–independent

mechanisms [10,26]. Consequently, TBX2 can cooperate with

transforming oncogenes (c-Myc, Ras) or the loss of tumor suppressor

genes (p53, Rb) in cellular transformation [9,31,32]. Moreover,

overexpression of TBX2 in human lung and skin cancer models,

although inhibitory to cell growth, has been shown to promote the

resistance of tumor cells to the anti-cancer drug cisplatin [28].Whilst

the anti-senescence activity of TBX2 has been extensively studied, it

has remained unclear whether TBX2 can also contribute to tumor

invasion, as the clinical association of TBX2 gene amplification with

invasive epidermal tumors would suggest.

There is increasing evidence that aberrant activation of the

embryonic morphogenetic program, termed the epithelial-mesen-

chymal transition (EMT), is crucially involved in tumor cell

invasion [33]. During EMT, adherent epithelial cells lose polarity,

undergo a major reorganization of the cytoskeleton and acquire

a fibroblastic (mesenchymal), highly motile phenotype [34]. EMT

is potently activated by TGFß [35], and at the transcriptional level

by a growing list of embryonic transcription factors (TFs) [33].

These include the E-cadherin repressing Zinc finger proteins Snail

(SNAI1) and Slug (SNAI2) [36,37], ZEB1 (hEF1) and ZEB2 (SIP1)

[38,39]; the basic helix-loop-helix proteins TWIST1/2 [40,41,42];

the homeodomain proteins Goosecoid, LBX1 and SIX1

[43,44,45]; and the winged-forkhead transcription factor FOXC2

[46]. Virtually all of these TFs have also been implicated as drivers

of oncogenic EMT and breast cancer metastasis [47,48,49,50].

EMT is increasingly viewed as a significant clinical problem in

cancer, as EMT is thought to promote an aggressive cancer stem

cell phenotype [51,52], therapy resistance [53], and tumor

recurrence [54], thereby contributing to poor disease outcome.

Thus, there is an urgent need for the identification and

characterization of the genes involved in this process.

Through ectopic expression of TBX2 in normal mammary

epithelial cells and RNAi-mediated silencing of endogenous TBX2

overexpression in malignant human breast carcinoma cell lines, we

demonstrate that TBX2 acts as a strong cell-autonomous inducer

of EMT. We found that TBX2 directly represses E-cadherin

transcription and promotes malignant tumor progression by

imparting an aggressive mesenchymal tumor phenotype. These

findings, together with a significant correlation between high

TBX2 expression levels in primary tumors and reduced metastasis-

free survival of breast cancer patients, suggest that TBX2 may be

an attractive new target for anti-metastatic cancer therapies.

Results

TBX2 Efficiently Induces EMT in Mammary Epithelial Cells
We were intrigued by previous observations that during mouse

embryonic development, Tbx2 is exclusively expressed in mesen-

chymal cells surrounding the mammary epithelial anlagen [23,24],

suggesting it may regulate mesenchymal cell specification in the

breast. Yet, studies examining TBX2 expression in a small number

of human breast cancers have reported TBX2 mRNA and protein

overexpression primarily in the epithelial compartment of tumors

with little or no expression in stromal cells [7,55]. We therefore

hypothesized that the apparent misexpression of TBX2 in breast

epithelial cells during carcinogenesis may confer mesenchymal

properties to these cells. To test this hypothesis, TBX2 was stably

introduced into murine HC11 and human MCF10A cells, two

spontaneously immortalized but otherwise normal mammary

epithelial cell lines, which we found lack endogenous TBX2

expression (Figure 1B, 1D and Figure S3A, S3B). To avoid clonal

selection bias, several individual polyclonal cell cultures expressing

pCDNA3-TBX2 plasmid (+TBX2) or pCDNA3 vector (+vector)
alone were established. Each of the TBX2-expressing HC11 and

MCF10A cell derivatives (n = 3 per line) showed a dramatic

change in cell morphology from the earliest passages onwards

(Figure 1A, 1C). While vector-transfected HC11 or MCF10A cells

had a typical epithelial cell structure, HC11+TBX2 cells were

abnormally enlarged and stretched out with lamelopodia-like

migratory protrusions (Figure 1A). In addition, MCF10A+TBX2

cells clearly displayed a spindle-shaped, fibroblastoid, and

scattered morphology (Figure 1C). Analysis of EMT marker

protein expression by Western Blot and immunofluorescence

revealed that the TBX2-induced morphologic changes were due to

EMT (Figure 1B, 1D, and 1E). Protein levels of the epithelial

adherence junction proteins E-cadherin and ß-catenin were

decreased in HC11+TBX2 and MCF10A+TBX2 cells, whereas

mesenchymal markers, Vimentin and N-cadherin, were markedly

upregulated as compared to the respective vector control cells

(Figure 1B, 1D, and 1E). Furthermore, whereas in confluent

HC11+vector control cells, E-cadherin, ß-catenin, and the tight

junction protein ZO1 were detected primarily at cell-to-cell

junctions, TBX2-expressing HC11 cells at the same cell density

exhibited a reduced and disrupted immunostaining for these

epithelial cell adhesion molecules at the cell periphery (Figure 1E).

A breakdown of epithelial adhesion complexes was further evident

by a significant reduction in mRNA levels for E-cadherin, ß-catenin,

ZO1, and the desmosomal component Desmoplakin by 50–70%

respectively in TBX2-overexpressing HC11 cells as determined by

quantitative realtime PCR (qPCR) (Figure 1F). Of mesenchymal

markers analyzed, N-cadherin, and the extracellular matrix

metalloproteinase Mmp3 were most significantly upregulated in

these cells (Figure 1F). A similar switch from epithelial to

mesenchymal marker gene expression was also evident in

MCF10A+TBX2 cells (Figure S1A, S1B). Thus, TBX2 efficiently

induced morphologic and molecular changes characteristic of

EMT in mammary epithelial cells.

TBX2 Promotes Mammary Epithelial Cell Motility and
Invasiveness
We next tested whether ectopic expression of TBX2 promotes

any behavioral changes associated with EMT, such as increased

motility and gain of invasiveness. Parental and vector-expressing

HC11 or MCF10A cells have a low propensity to migrate and

invade extracellular matrix (Figure 2). However, both TBX2-

overexpressing HC11 and MCF10A cells exhibited a significant

increase in cell motility in ‘‘in vitro scratch’’ assays, which was

visible as early as 4–8 hours after an experimentally induced

wound and became more pronounced between 8–32 hours,

leading to a complete wound closure by MCF10A+TBX2 cells

at 24 hours (Figure 2A, 2B). The increased movement of TBX2-

expressing mammary epithelial cells was not due to increased

proliferation since the assay was done in low serum-containing

medium (see Methods), in which these cells were growth-retarded

TBX2, a New EMT Inducer in Breast Cancer
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Figure 1. TBX2 induces epithelial-mesenchymal transition (EMT) in breast epithelial cells. (A) Bright field images (40x magnification) of
murine HC11 mammary epithelial cells stably transfected with pCDNA3 (+vector) or pCDNA3-TBX2 (+TBX2) expression plasmids showing
morphological changes in TBX2-expressing HC11. (B) Western blot analysis using whole cell lysates from HC11+vector and HC11+TBX2 cells shows
TBX2-induced downregulation of epithelial (Epi) and upregulation of mesenchymal (Mes) marker proteins. E-cad = E-cadherin; ß-cat = ß-catenin; N-
cad = N-cadherin; Vim = Vimentin. Actin (ß-actin) was used as loading control. Fold changes in protein levels quantified by densitometry and
normalized to Actin values are shown. (C) Bright field images (40X magnification) of human MCF10A mammary epithelial cells stably expressing
pCDNA3 or pCDNA3-TBX2 reveal mesenchymal transformation of MCF10A+TBX2 cells. (D) Western Blot analysis shows that ectopic expression of
TBX2 in MCF10A cells prompts a switch of EMT marker expression. (E) Immunofluorescence analysis of TBX2 (red) and EMT marker expression (40X
magnification) shows loss of membrane-associated expression of epithelial (green) with a reciprocal gain of mesenchymal (red) marker expression in
HC11+TBX2 cells as compared to HC11+vector control cells. Nuclei were stained with Hoechst 33258 (blue). (F) qPCR analysis comparing Tbx2 and
EMT marker expression in HC11+vector and HC11+TBX2 cells. E-cad = E-cadherin; ß-cat = ß-catenin; ZO1= zona occludens 1; Dsp = Desmoplakin; N-
cad = N-cadherin; Mmp3= matrix metalloprotease 3. Values were normalized to Gapdh. Fold changes as compared to vector control cells are shown.
Error bars represent the mean 6 SEM (n= 3; Student t-test). P values are indicated.
doi:10.1371/journal.pone.0041355.g001

TBX2, a New EMT Inducer in Breast Cancer
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(data not shown). To examine the role of TBX2 in the regulation

of cell invasiveness, we performed Transwell matrigel invasion

assays (Figure 2C, 2D). Both TBX2-expressing HC11 and

MCF10A cells, showed an approximately four-fold increase in

their abilities to invade through the matrigel layer towards serum-

containing media (Figure 2C, 2D). Thus, TBX2 plays a central

role in the acquisition of cell motility and invasiveness of breast

epithelial cells through induction of EMT.

TBX2 is Induced during TGFß-mediated EMT of Primary
Human Mammary Epithelial Cells
We further examined expression of endogenous TBX2 in

a cellular model of inducible EMT. We have previously shown

that treatment of primary finite-lifespan human mammary

epithelial cells (HMEC) with the cytokine TGFß efficiently induces

EMT, as well as a hierarchy of known EMT-associated

transcription factors [56]. While TBX2 was not expressed in

untreated HMEC (Figure 3A and 3C), both TBX2 mRNA and

protein were upregulated upon EMT induction by TGFß

coinciding with a decrease in epithelial and acquisition of

mesenchymal marker expression (Figure 3A–3C). A significant

induction of TBX2 mRNA expression occurred as early as 6 hours

(,1.8 fold; p,0.001) upon TGFß stimulation and further

increased to 3.3–4.3 fold by 9–12 days (p,0.001) (Figure 3B).

Notably, the rapid increase of TBX2 mRNA levels, accompanied

by a reduction in epithelial E-cadherin and an increase in

mesenchymal Vimentin mRNA expression (Figure 3B), occurred

well before any morphological changes of EMT became visible at

3 days of TGFß treatment [56]. Moreover, TBX2 protein

specifically localized to the nucleus of TGFß-treated HMEC

(Figure 3A), where it is thought to be active as a transcription

factor. These data indicate that TBX2 is also part of the

endogenous EMT program of primary HMEC and further

implicate TBX2 in EMT induction of breast epithelial cells.

TBX2 Expression in Human Breast Tumors Correlates with
EMT Features and Increased Disease Recurrence
EMT and increased invasiveness are key features of epithelial

tumor cells as they progress into malignant metastatic cancer cells

[33]. We therefore asked whether the EMT-inducing and pro-

invasive abilities of TBX2 that we observed in normal breast

epithelial cells, could also play a role in human breast cancer.

Since little is known about TBX2 expression in human breast

tumors, we performed a comprehensive meta-analysis of TBX2

Figure 2. TBX2 promotes migration and invasion of mammary epithelial cells. (A, B) In vitro ‘scratch’ assays (see Methods) monitoring the
migration of (A) murine HC11 and (B) human MCF10A cells stably expressing pCDNA3 vector (+vector) or pCDNA3-TBX2 (+TBX2) over a period of 24–
32 hours (h). Representative bright field images of cells (10x magnification) are shown in the left panel. Right panel: statistical evaluation of the
distance between the two borders (dotted lines; left panels) at different time points after ‘scratch’ (n = 3; ANOVA test). (C, D) Transwell matrigel
invasion assays show a significantly increased ability of TBX2-expressing HC11 (C) and MCF10A cells (D) to invade through a matrigel layer (n = 3,
Student’s t-test). The mean 6 S.D. is shown. P values are indicated.
doi:10.1371/journal.pone.0041355.g002

TBX2, a New EMT Inducer in Breast Cancer
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expression using an integrated gene expression database that

encompassed 1107 primary human breast tumors from six

published datasets [57]. We found that TBX2 was variably

expressed across the different molecular subtypes of breast cancer

[58] (Figure S2A), largely independent of estrogen receptor (ER)

status and tumor grade (Figure S2B, S2C), with the highest

expression levels among the rare, aggressive ‘claudin-low’ subtype

of breast cancer and lowest in basal tumors (Figure S2A).

Interestingly, the ‘claudin-low’ subtype of breast tumors has

recently been shown to be enriched for EMT features [59,60].

Another dataset showed that TBX2 was higher in poor prognosis

metaplastic breast cancers (Figure S2D), which like the ‘claudin-

low’ group exhibit an EMT gene signature and are highly

metastatic [60,61]. Expression of TBX2 was not significantly

higher in the ‘claudin-low’ tumors of this dataset, but the numbers

of tumors (n = 13) were much lower than in the in the ‘six study’

analysis (n = 34) [57].

A similar tumor subtype distribution of TBX2 overexpression

was observed in a panel of a total of 20 human breast carcinoma

cell lines using Western blot and qPCR analyses (Figures S3 and

S4). We confirmed endogenous TBX2 overexpression in three

ER-positive luminal tumor lines (MCF7, MDA-MB361, and BT-

474) (Figure S3A–C) that have previously been shown to harbor

TBX2 gene amplifications [6,9,10]. Moreover, the ER-negative

basal breast carcinoma cell line SUM52 [62] displayed abundant

TBX2 protein and mRNA expression, as well as modest gene

amplification levels (Figure S3A–3C), consistent with previous

Fluorescence In Situ Hybridization (FISH) data [6]. In addition, we

identified TBX2 overexpression in two metaplastic tumor-derived

breast carcinoma cell lines, MDA-MB-435 and MDA-MB-157

[63,64], which we found to express higher median levels of TBX2

than most other breast tumors (Figure S2D). Both of these cell lines

exhibit mesenchymal gene signatures [64], and have an increased

invasive, metastatic potential [63,65]. Comparative genomic

hybridization array (aCGH) analysis showed no significant

increases in TBX2 gene copy numbers in MDA-MB-435 and

MDA-MB-157 (Figure S3C), suggesting that overexpression of

TBX2 in these tumor cell lines is not due to gene amplification.

TBX2 gene amplification has previously been reported in

aggressive BRCA1-related breast cancers [6,7]. However none of

the four basal-subtype ER-negative BRCA1-deficient breast

carcinoma cell lines (HCC1937, MDA-MB-436, SUM149, and

SUM1315) we studied expressed TBX2 protein at detectable levels

or exhibited TBX2 gene amplification (Figure S4A, S4B).

Furthermore, TBX2 was not expressed in any normal-derived

human breast epithelial cell line (Figures S3 and 1B, 1D).

The prognostic significance of TBX2 in human breast cancer

was examined next by meta-analysis. High TBX2 transcript levels

were found to be significantly associated with a shorter time to

recurrence-free survival (Figure 4A, 4B). This was more significant

Figure 3. Endogenous TBX2 is induced during TGFß-mediated EMT of primary human mammary epithelial cells (HMEC). (A) Bright
field (40x magnification) and immunofluorescence images (63X magnification) of primary HMEC treated with 5 ng/ml TGFß1 (+TGFß) for 12 days as
compared to untreated control cells (-TGFß). TGFß induces EMT-like morphological changes and nuclear expression of TBX2 (red). Nuclei were stained
with Hoechst 33258 (blue). (B) qPCR analysis shows a time course analysis of TBX2 mRNA induction in TGFß–treated HMEC in comparison to changes
in epithelial E-cadherin (E-cad) and mesenchymal Vimentin (Vim) expression. Values were normalized to GAPDH mRNA and represent fold changes as
compared to control untreated HMEC at the indicated time points. Error bars represent SEM of each sample in triplicates. (C) Western blot analysis of
TBX2 and EMT marker expression in untreated HMEC (2) and in HMEC treated with TGFß for 12 days. E-cad = E-cadherin; ß-cat = ß-catenin; Vim =
Vimentin; N-cad = N-cadherin; Epi = epithelial; Mes = mesenchymal markers. Actin = ß-actin was used as loading control. Densitometric
quantification of fold changes in protein levels normalized to Actin values is shown.
doi:10.1371/journal.pone.0041355.g003

TBX2, a New EMT Inducer in Breast Cancer
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for ER-positive tumors and similar results were seen in the

completely independent 295-sample NKI dataset [66] (Figure 4A,

4B). Overall, these results are compatible with the notion that

TBX2 is activated in certain primary breast cancers correlating

with an EMT signature and reduced metastasis-free survival.

Silencing of TBX2 Leads to Mesenchymal-epithelial-
transition and Impedes the Invasiveness of Human Breast
Cancer Cells
To elucidate the potential role of TBX2 in malignant tumor

progression, we employed RNA interference strategies to inhibit

TBX2 in the metastatic breast carcinoma cell lines MDA-MB-435

and MDA-MB-157 (Figures 5 and 6). Efficient TBX2 knockdown

was achieved in MDA-MB-435 tumor cells by stable transduction

with lentiviruses expressing TBX2-specific shRNA (shTBX2), and

in MDA-MB-157 cells by transient transfection with TBX2-

specific siRNAs (siTBX2) (Figure 5A, 5D and 5E). Notably,

whereas MDA-MB-435 cells transduced with control non-target

shRNA (shCtrl), or MDA-MB-157 cells transiently transfected

with control scrambled siRNAs (siCtrl), had a fibroblastoid

‘spindle-like’ appearance similar to the respective parental cell

lines, TBX2-depleted MDA-MB-435 and MDA-MBA-157 tumor

cells displayed a ‘cobblestone-like’’ epithelial morphology (Fig-

ure 5B, 5C). Concordant with this phenotype, mRNA expression

Figure 4. TBX2 overexpression in primary human breast tumors is correlated with reduced metastasis-free survival. Kaplan Meier
analysis demonstrates that TBX2 mRNA overexpression is associated with shortened recurrence-free survival (A) in a meta-analysis of six combined
published microarray datasets comprising 1107 primary human breast tumors [57], and (B) in an NKI study of 295 women with early-stage invasive
breast carcinomas [66]. In both of these datasets, the optimal cut-point value of TBX2 expression was used to divide the samples into high (above
median; green) and low (below median; blue) TBX2 expression. A batch correction was performed on the six-study set (see Methods). High TBX2
expression is particularly associated with poor prognosis in estrogen receptor-positive (ER+) breast tumors (right panels). ER status was determined
by immunohistochemistry (IHC). P values are indicated.
doi:10.1371/journal.pone.0041355.g004

TBX2, a New EMT Inducer in Breast Cancer
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of epithelial E-cadherin and ZO1 was enhanced, whereas transcrip-

tion of mesenchymal genes (N-cadherin, Vimentin, Fibronectin, MMP3)

was reduced in TBX2-depleted MDA-MB-435 and MDA-MB-

157 breast cancer cells (Figure 5D, 5E). Immunofluorescence

analysis further confirmed that TBX2 inhibition resulted in the re-

expression of E-cadherin protein in MDA-MB-435 cells, which

are normally devoid of this epithelial marker (Figure 5F) [35].

Moreover, epithelial ß-catenin and ZO1 not only were increased

in levels, but also properly localized to the cell membrane in

TBX2-depleted MDA-MB-435 tumor cells (Figure 5F). In

contrast, mesenchymal markers (N-cadherin, Vimentin) were

drastically reduced and, for N-cadherin, mislocalized to the

cytoplasm in MDA-MB-435-TBX2 knockdown cells (Figure 5F).

Inhibition of TBX2 further led to reduced tumor cell migration

in both MDA-MB-435 and MDA-MB-157 breast carcinoma cell

lines (Figure 6A, 6B). Moreover, tumor cell invasion rates in

Transwell matrigel invasion assays were markedly decreased

(Figure 6D, 6E). Additionally, whereas control non-target shRNA

expressing MDA-MB-435 tumor cells formed spheroids with

extensive protrusions in three-dimensional (3D) Matrigel cultures,

reflective of their invasive nature, knockdown of TBX2 resulted in

the formation of round, non-invasive spheres (Figure 6C). Thus,

loss of TBX2 in malignant breast carcinoma cells abolished tumor

cell invasion and lead to the restitution of a more differentiated

epithelial phenotype. All experiments were done with at least two

independent cell clones from each stably shRNA transfected cell

line and three independent polyclonal cultures of cell lines

transiently transfected with siRNAs.

TBX2 is Crucial for Metastasis of Breast Carcinoma Cells
To further investigate how aberrant overexpression of TBX2

contributes to malignant tumor progression, we analyzed the

metastatic potential of TBX2-depleted MDA-MB-435 tumor cells.

MDA-MB-435 cells expressing either shCtrl or shTBX2 were

injected into the tail veins of immunocompromised nu/nu Nude

mice. Lung colonization was assessed 40 days post tumor cell

transplantation. Functional inhibition of TBX2 in MDA-MB-435

(two independent clones: shTBX2 C2 and shTBX2 C4) led to

a strong reduction in the number of lung nodules and

micrometastases as compared to MDA-MB-435+shCtrl cells

(Figure 7A, 7B). Growth rates were not significantly reduced for

shTBX2 expressing MDA-MB-435 tumor cells in culture

(Figure 7C). Moreover, mRNA expression of the cell cycle

inhibitor p21CIP1/WAF1, which is a direct transcriptional target of

TBX2 in senescence bypass [2,30], was not significantly altered in

TBX2 knockdown cells (Figure 7D), nor did these cells exhibit any

signs of senescence (data not shown). These data suggest that

TBX2 is crucial for the formation of metastases independent of

effects on tumor cell growth. Taken together, our TBX2 inhibition

studies in malignant breast carcinoma cell lines reinforce the

notion that TBX2 promotes malignant tumor progression by

imparting a highly invasive mesenchymal phenotype on breast

epithelial tumor cells.

TBX2 Represses E-cadherin Transcription
Loss of E-cadherin is an important hallmark of EMT, directly

contributing to transformation and metastatic tumor progression

[67,68]. Studies in melanoma cells have raised the possibility that

TBX2 may be implicated in E-cadherin regulation, but failed to

detect a requirement of TBX2 for E-cadherin expression in vivo [69].

Since we found overexpression of TBX2 to consistently reduce

endogenous E-cadherin levels in normal mammary epithelial cells,

and, conversely, inhibition of TBX2 to lead to enhanced E-cadherin

mRNA expression in metastatic breast cancer cell lines (Table 1,

Figures 1F and 5D, 5E), we revisited the question whether TBX2

could directly repress E-cadherin at the promoter level.

Chromatin immunoprecipitation (ChIP) analysis was performed

to determine direct in vivo binding of TBX2 to the endogenous E-

cadherin gene in mammary epithelial cells (Figure 8A, 8B). We used

three different primer sets; one covering the most proximal

promoter region of E-cadherin, including the initiator element (InR:

TGGTGT in mouse and AGTGGC in human at +1 to +6 each),

which has previously been shown to be bound by a recombinant

TBX2 DNA binding domain in vitro [69]; one set spanning

a conserved half T-box factor binding site (Half T-site:

AGGTGTTA at 2682 in mouse and TCACACCT at 2645 in

human) [69]; and one primer set in a distal region (21299/

21119) devoid of potential TBX2 binding sites (Figure 8A). PCR

amplification of these genomic sequences using immunoprecipi-

tated chromatin from HC11+vector or HC11+TBX2 cells

demonstrated that TBX2 specifically bound to the proximal E-

cadherin promoter (Figure 8B), which contains the InR element

(Figure 8A) that can serve as a putative TBX2-binding site [15,69].

To test the functional significance of in vivo TBX2 occupancy of

this E-cadherin promoter region, we transiently co-transfected

HC11 cells with a luciferase reporter construct (pEcad-luc)

containing the proximal human E-cadherin promoter (2108 to

+125) [70] and with increasing concentrations of pCDNA3-TBX2

expression plasmid (Figure 8C). As compared to empty vector

control (basal), co-expression of TBX2 led to a significant (p,0.05)

3.7 fold reduction in the activity of this promoter in a dose-

dependent manner. Together, these results indicated that TBX2

directly represses transcription of E-cadherin by binding to its

proximal promoter in vivo.

Discussion

In this study, we have identified the embryonic transcriptional

repressor and anti-senescence factor TBX2 as a novel potent

inducer of EMT that directly represses E-cadherin transcription and

promotes an aggressive, mesenchymal breast tumor phenotype

(Figure 9). Since TBX2 is aberrantly amplified with high

prevalence in a number of aggressive human epidermal cancers,

or, as we found, can be induced by TGFß (Figure 9), a promoter of

metastatic tumor progression [35], these findings are of potential

high clinical relevance. Unlike other EMT-inducing TFs [33],

TBX2 has not previously been implicated in the cell-autonomous

regulation of EMT induction during embryogenesis. Our results

therefore uncover a novel paradigm of TBX2 function that may

also be relevant for its role in normal development.

During embryogenesis, TBX2 is expressed after gastrulation

[11,23], and among other roles, controls mesenchymal cell

specification in the limb buds underlying posterior digit identity

[17], specification and morphogenesis of mesoderm-derived

cardiomyocytes in the valve forming regions of the heart

[18,71], pro-mesonephros identity during kidney development

[19], and cell migration processes during brain and eye

morphogenesis [20,22]. However, the consequences of inappro-

priate gain-of-function of this morphogenetic TF in epithelial

tumor cells during carcinogenesis have been poorly explored. By

modeling aberrant gain-of-function of TBX2 in breast cancer

through ectopic expression of TBX2 in non-malignant mammary

epithelial cell lines (HC11, MCF10A), we demonstrated that

TBX2 alone is sufficient to induce EMT and cell invasion.

Since EMT has been implicated in tumor recurrence [53,54],

and we found high levels of TBX2 expression to be significantly

correlated with disease recurrence in a meta-analysis of over 1,000

primary human breast tumors (Figure 4), we further investigated
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Figure 5. TBX2 imparts a mesenchymal phenotype on human breast cancer cells. (A) Western blot analysis shows efficient TBX2
knockdown in human MDA-MBA-435 tumor cells stably expressing TBX2-specific shRNA (shTBX2) as compared to cells expressing non-target shRNA
(shCtrl). Actin was used as loading control. (B) Depletion of TBX2 in MDA-MB-435 tumor cells leads to a loss of the mesenchymal morphology
characteristic for this breast carcinoma cell line. Representative images of high-density cell cultures are shown (40X magnification). (C) Inhibition of
TBX2 in human MDA-MB-157 breast carcinoma cells through transient transfection with TBX2-targeted siRNAs (siTBX2) induces a ‘cobblestone’-like
epithelial cell morphology. In contrast, MDA-MB-157 cells transiently transfected with scrambled siRNA control (siCtrl) exhibit a profound ‘spindle-like’
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whether the EMT-inducing ability of TBX2 could play a role in

malignant tumor progression. Congruent with our TBX2 over-

expression results in normal breast epithelial cells, RNAi-mediated

silencing of TBX2 in two aggressive mesenchymal human breast

carcinoma cell lines with endogenous TBX2 overexpression

(MDA-MB-435, MDA-MB-157) led to the restitution of a differ-

entiated epithelial tumor phenotype. This was most evident by re-

expression of E-cadherin, ß-catenin, and ZO1, and the concom-

itant loss of mesenchymal N-cadherin, Vimentin, and Fibronectin

expression (Figure 5). Importantly, we found that inhibition of

TBX2 also abolished tumor cell migration, invasion and pro-

foundly diminished the capacity of MDA-MB-435 cancer cells to

form pulmonary metastases in a xenograft in vivo mouse model.

These effects appeared to be independent of the anti-senescence

activity of TBX2, as cell proliferation and expression of the growth

control gene p21CIP1/WAF1 were unchanged in MDA-MB-435-

shTBX2 cells (Figure 7). The observed pro-invasive activity of

TBX2 was likely due to specific induction of MMP3, which unlike

other matrix metalloproteases (MMP2, MMP9) was most consis-

tently upregulated by TBX2 in our cellular systems (Figures 1, 4,

S1; data not shown). Together, these results suggest that TBX2 is

strongly implicated in malignant tumor progression by promoting

an aggressive mesenchymal tumor phenotype.

Interestingly, we found that TBX2 is induced by the EMT-

promoting cytokine TGFß, which is often excessively produced by

invasive breast cancer cells and has been associated with metastatic

tumor progression [35]. Because of the rapid kinetics of TBX2

induction in HMEC upon TGFß treatment, it is tempting to

mesenchymal phenotype. Representative images of high-density cultures (40x magnification) of tumor cells three days post siRNA transfection are
shown. (D, E) qPCR analysis of TBX2 and EMT marker expression in (D) MDA-MB-435 cells expressing shCtrl or shTBX2, and in (E) MDA-MB-157 cells
3 days post transfection with siCtrl or siTBX2. TBX2 knockdown leads to an upregulation of epithelial adhesion and tight junction genes (E-cad = E-
cadherin; ZO1= zona occludens 1), whereas it results in loss of mesenchymal marker expression: N-cad = N-cadherin; VIM = Vimentin; FN1 =
Fibronectin, and MMP3= matrix metalloprotease 3. Values were normalized to GAPDH and fold changes compared to the respective control groups
are shown. Data represent the mean 6 SEM (n= 3; Student t-test); p-values: *p,0.05; **p= 0.003; ***p,0.001. (F) Immunofluorescence analysis (40X
magnification) confirms the re-expression of epithelial (green) E-cadherin, ß-catenin, and ZO1, and the loss and/or mislocalization of mesenchymal
(red) markers (N-cadherin, Vimentin) in TBX2-depleted MDA-MB-435 cells. Nuclei were stained with Hoechst 33258 (blue).
doi:10.1371/journal.pone.0041355.g005

Figure 6. Knockdown of TBX2 in metastatic human breast cancer cell lines abrogates tumor cell invasion. (A, B) Inhibition of TBX2
significantly reduces cell motility rates of (A) MDA-MB-435 tumor cells in in vitro scratch assays, and (B) of MDA-MB-157 breast cancer cells in
Transwell migration assays (see Methods). Data represent the mean 6 S.D. (n = 3; ANOVA test). (C) MDA-MB-435 cells stably expressing TBX2-specific
shRNA (+shTBX2) grow as non-invasive spheres in three-dimensional (3D) Matrigel, whereas MDA-MB-435 control tumor cells expressing non-target
shRNA (+shCtrl) grow as spheroids that invade the surrounding extracellular matrix. (D, E) Transwell matrigel assays showing that knockdown of TBX2
significantly reduces invasion rates of (D) MDA-MB-435, and (E) MDA-MB-157 breast tumor cells. Data represent mean6 S.D. (n = 3; Student’s t-test). P
values are indicated.
doi:10.1371/journal.pone.0041355.g006
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speculate that TGFß signaling controls TBX2 expression at the

transcriptional level. This notion is further supported by studies

demonstrating that BMPs, which are TGFß homologues,

positively regulate Tbx2 expression during cardiogenesis via

functional SMAD binding sites in the Tbx2 gene promoter [72].

Thus, apart from chromosome 17q23 amplification, TBX2

induction by TGFß may represent a novel mechanism underlying

the aberrant overexpression of TBX2 in invasive cancers (Figure 9).

Through ChIP analysis and cell-based promoter-reporter

assays, we further demonstrate that TBX2 binds directly to and

represses the activity of the proximal E-cadherin promoter, in-

dicating that E-cadherin is a direct TBX2 target gene. Given that E-

cadherin acts as a tumor suppressor, whose loss is causally

implicated in EMT and metastatic tumor progression [67,68],

transcriptional repression of E-cadherin by TBX2 may provide

a possible mechanistic explanation for the observed EMT-

inducing and pro-metastatic activities of TBX2 in breast cancer

cells. We note that there was little correlation between TBX2

expression and E-cadherin status in established breast cancer cell

lines (Figure S3) [90], a finding, which has also been reported for

the EMT-inducing transcription factor LBX1 [44]. This could

suggest that efficient repression of E-cadherin by TBX2 might

require cooperation with other transcriptional repressors that may

not be present in all TBX2-overexpressing breast tumor cell lines.

Moreover, established tumor cell lines do not necessarily reflect

the situation in primary breast tumors, in which EMT is

histopathologically difficult to detect due to its transient nature

[73].

Figure 7. Knockdown of TBX2 reduces pulmonary metastasis of human MDA-MB-435 breast carcinoma cells. (A) Representative
images of lungs harvested from athymic nu/nu Nude mice forty days after tail vein injection with MDA-MB-435 tumor cell clones expressing either
control non-target shRNA (shCtrl) or TBX2-specific shRNA (shTBX2). Top panel: India ink staining of lungs shows the absence of surface lung
metastases in mice injected with shTBX2-expressing MDA-MBA-435 tumor cells (Magnification 7x). Only the control group produced macroscopic
lung nodules (asterixes) and an elevated number of micrometastases (white arrows). Bottom panel: H&E stained paraffin-sections of representative
lungs from each study group (Magnification: 40X). Dotted lines highlight lung metastases in the control group. (B) Quantification of total lung
metastasis burden in the same sets of mice as in (A). Average numbers of lung surface metastases are shown; white column = mean of 5 control
mice analyzed: black column = mean of 10 mice injected with two MDA-MB435-shTBX2 tumor cell clones. Data represent the mean 6 S.D. (n$5;
Student t-test). (C) Inhibition of TBX2 does not significantly affect cell proliferation of MDA-MB-435 tumor cells. Equal numbers of control non-target
shRNA and shTBX2-expressing cells were grown under sub-confluent conditions and counted every 3 days over a 9-day period. Error bars represent
the mean 6 S.D. (n = 3; Student t-test). (D) qPCR showing that stable knockdown of TBX2 does not significantly alter p21 mRNA expression levels in
MDA-MB-435 tumor cells. Values were normalized to GAPDH and fold changes compared to the shRNA control group are shown. Error bars represent
the mean 6 SEM (n= 3; Student t-test). NS = not significant.
doi:10.1371/journal.pone.0041355.g007
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In discrepancy with our results, previous studies have indicated

that TBX2 knockdown in MCF7 breast carcinoma and human

melanoma cell models did not diminish tumor cell invasion

[69,74] or repress endogenous E-cadherin expression [69]. Howev-

er, TBX3, a close TBX2 homolog with similar oncogenic

functions [75] not yet implicated in EMT regulation, exerted

these effects in both of those systems [69,74]. A possible

explanation for these conflicting results could be that invasion of

the inherently low-invasive MCF7 cell line in the previous study

was induced by phorbol esters [74], which might have altered

Table 1. Overexpression of TBX2 in normal breast epithelial cell lines results in reduced expression of E-cadherin and knockdown
of TBX2 in breast carcinoma cell lines leads to an increase of E-cadherin expression.

Cell line Percentage relative mRNA expression (TBX2)
Percentage relative mRNA expression
(E-cadherin)

HC11+vector 100 100

HC11+TBX2 3882 30

MCF10A+vector 100 100

MCF10A+TBX2 305 64

MDA-MB-435+shCtrl 100 100

MDA-MB-435+shTBX2 3 226

MDA-MB-157+siCtrl 100 100

MDA-MB-157+siTBX2 14 207

doi:10.1371/journal.pone.0041355.t001

Figure 8. TBX2 bind to the E-cadherin promoter in vivo and represses E-cadherin transcription. (A) Schematic of the E-cadherin/CDH1
promoter depicting the location of potential TBX2 binding sites [10]: half T-site (black box) and InR = Initiator element (hatched box), and of ChIP
primers used in (B). (B) ChIP analysis shows in vivo binding of exogenous TBX2 to the most proximal region of the endogenous E-cadherin gene
promoter in HC11 mammary epithelial cells. DNA derived from sheared chromatin fragments from HC11+vector and HC11+TBX2 was
immunoprecipitated with two antibodies specific to TBX2 (#1 = Millipore AB4147; #2 = SC-17880x), an antibody specific to acetyl Histone 3, or
normal rabbit IgG and quantified by semi-quantitative PCR. As a control,,1% of input chromatin was used in the PCR analysis. The bar graph on the
bottom panel shows a quantification of the TBX2-specific ChIPs for the proximal (2131/+61) E-cadherin promoter as a function of the percentage of
input chromatin. (C) Transient reporter assays of HC11 cells transiently co-transfected with a human E-Cadherin promoter (2108 to +125) luciferase
reporter construct (pEcad-luc) in combination with pCDNA3 vector (basal) or increasing concentrations of pCDNA3-TBX2 (+TBX2), as indicated. One
representative experiment of n = 3 biological replicates is shown; P-value: *p,0.05 (triplicate samples; Student t-test).
doi:10.1371/journal.pone.0041355.g008
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cellular signaling involved in TBX2-mediated EMT induction.

Alternatively, there could be cell-type specific differences in the

activities of TBX2 and TBX3 that may depend on phosphory-

lation status or the differential availability of protein partners.

TBX2 has been shown to be phosphorylated by external stimuli

that alters its cellular localization and, thereby, its activity as

a transcription factor [12]. Furthermore, senescence suppression

by TBX2 in human cells depends on the physical interaction of

TBX2 with tumor suppressive TFs, for example EGR1 in breast

cancer cells [10], and PML in fibroblasts [26]. Interestingly, recent

studies have indicated that transcriptional repression of the

senescence-associated tumor suppressor p14ARF by TBX2

[9,15], requires the association of TBX2 with NRAGE, a protein

that is released from the cell membrane upon EMT induction

[76]. To rule out the possibility that TBX3, which is primarily

overexpressed in luminal E-cadherin-positive breast cancer lines

and estrogen receptor-positive breast tumors [77,78], contributed

to the pro-invasive effects elicited by TBX2, we investigated TBX3

expression in our TBX2-dependent breast epithelial model

systems (Figure S5). We found a reciprocal expression of these

T-box factors, with TBX3 downregulated in TBX2-expressing

HC11 cells but upregulated in TBX2-depleted HC11+TBX2 and

MDA-MB-435 tumor cells (Figure S5A, S5B), which is reminiscent

of the mutually exclusive expression patterns of TBX2/3 in

normal mammary gland tissues [23,79], Thus, the TBX2-induced

EMT phenotypes were not due to a possible interference by TBX3

but rather may reflect the poorly explored role of TBX2 as

a mesenchymal and baso-myoepithelial transcription factor in

breast development [23,24]. In contrast, TBX3 functions as

a master regulator of mammary epithelial cell fate [80,81], and in

the adult breast is specifically expressed in differentiated luminal

breast epithelial cells [79].

Significantly, a role of TBX2 in oncogenic EMT and malignant

breast cancer progression is further suggested by our finding that

TBX2 mRNA levels in clinical human breast cancer specimen

were highest in rare EMT-enriched tumors of the ‘claudin-low’

and metaplastic breast tumor subtypes. These tumors represent

one of the most aggressive and treatment-resistant forms of breast

cancer [59,60,61]. Moreover, we found high TBX2 transcript

levels to be significantly associated with reduced metastasis-free

survival of breast cancer patients, which is in keeping with the

correlation of TBX2 gene amplification data with poor clinical

outcome [6,8]. Since tumor tissues used for expression profiling

are subjected to histology and only included if they contain

a reasonable percentage of tumor cells it is unlikely that the

observed correlations are due to expression of TBX2 in tumor

associated stroma. It was perhaps surprising that TBX2 expression

was predictive of poor prognosis but independent of ER status and

that basal subtype and high-grade breast tumors had slightly lower

average levels of TBX2 expression (Figure S2). However, these

findings are consistent with TBX2 having a similar pattern of gene

expression across subtypes as other EMT-inducing TFs, e.g. Twist,

ZEB1, ZEB2, and SNAI2 (Slug) [60]. Furthermore, recent clinical

population studies have shown that even breast tumors in the

lowest risk category (ER+, early stage, small tumor size, node-

negativity) and despite adjuvant treatment can have relatively high

relapse rates [82,83]. Thus, TBX2 may prove to have a unique

value as a novel prognostic marker.

Collectively, our work suggests that TBX2 is a key driver of

malignant tumor progression through induction of EMT and

tumor cell invasiveness. Although previous mouse developmental

genetic studies have indicated that TBX2 can indirectly promote

EMT of endocardial cells during cardiac valve formation through

induction of paracrine TGFß2 signaling in surrounding valve-

forming myocardium [72], our work is the first to demonstrate that

TBX2 can also activate EMT in a cell-autonomous manner.

Further experiments are under way to identify the signaling

mechanisms, potential interacting partners, and target genes of

TBX2 in EMT induction and epithelial tumor invasion. Finally,

our discovery that TBX2, an established anti-senescence factor, is

a strong inducer of EMT lends further support to the notion that

EMT and senescence bypass may rely on some of the same

molecular mechanisms [41,42]. We anticipate our studies to be

a starting point for evaluating TBX2 as a new marker for breast

cancer diagnosis and potential target for anti-metastatic cancer

drug development.

Methods

Ethics Statement
All experiments including the use of mice were approved by the

University of Miami IACUC (protocol number 10–226, In-

stitutional assurance number for the University of Miami A-3224-

01). For the studies we describe, there are no suitable alternative

approaches, and care was taken to minimize animal distress.

Cell Lines
The HC11 mouse mammary epithelial cell line [84] (kindly

provided by Dr. Kermit Carraway, University of Miami) was

grown in complete growth medium (RPMI containing 10% FBS,

1% penicillin-streptomycin, 1 mg/ml EGF (Invitrogen) and 5 mg/
ml insulin (Sigma-Aldrich). Human MCF10A mammary epithelial

cells were obtained from the American Type Cell Collection

(ATCC) and grown in HuMEC medium (Invitrogen). Linearized

pCDNA3 or pCDNA3-TBX2 expression plasmids [85] (kindly

provided by Dr. Roni Bollag, Medical College of Georgia,

Augusta, GA, USA) were introduced into cells by Lipofectamin

2000 transfection (Invitrogen) and stable transfectants were

selected in 200–300 mg/ml G418 for 9–11 days. Primary HMEC

were from Cambrex Bio Science and cultured in HuMEC

medium. TGFß induction experiments using 5 ng/ml of recom-

binant TGFß1 (R&D Systems) were performed as described [56].

Figure 9. Proposed model for TBX2 regulation of EMT. TGFß
signaling, or amplification of human chromosomal region 17q23 lead to
aberrant TBX2 expression in differentiated breast epithelial cells, which
normally lack TBX2 expression. TBX2 directly represses transcription of
the epithelial differentiation marker E-cadherin and downregulates
other epithelial markers. In contrast, TBX2 induces expression of
mesenchymal markers, thereby resulting in EMT and invasion of normal
and malignant breast epithelial cells.
doi:10.1371/journal.pone.0041355.g009
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All human breast carcinoma cell lines, except the SUM lines

(Asterand), were from ATCC and cultured according to the

distributors’ recommendations. Specifically, MDA-MB-435 and

MDA-MB-157 cells were grown in DMEM plus 10% FBS and

1% Penicillin-Streptomycin, hereafter referred to as complete

growth medium. All cell lines were maintained in a 5% CO2-

humidified incubator at 37uC.

Western Blot Analysis
Immunoblotting used 20 mg of total cell extracts and was

performed as described [86]. Primary antibodies were to TBX2

1:1,000 (sc-17880x; Santa Cruz Biotechnology), E-cadherin

1:1,000 (610181; BD Biosciences), ß-catenin 1:500 (610153; BD),

vimentin 1:2,000 (VIM 13.2; Sigma), N-cadherin 1:1,000 (610920;

BD), or ß-actin 1:10,000 (AC-15; Sigma). Secondary antibodies

were HRP-conjugated anti-goat and anti-mouse IgG (Invitrogen).

Protein bands were detected by enhanced chemiluminescence

using the Femto Western Blot kit (Pierce). Densitometry to

quantify protein expression levels was performed using ImageJ

software (NCBI).

Immunofluorescence
Fluorescence immunocytochemistry on cultured cells was

performed as previously described [56]. Primary antibodies were

to TBX2 (1:200; AB4147; Upstate-Millipore), E-cadherin (1:1,000;

BD), ß-catenin (1:200; BD), ZO1 (1:500; 61–7300; Zymed), N-

cadherin (1:500; BD), vimentin (1:500; Sigma), followed by

incubation with Alexa Fluor 488- or Alexa Fluor 594-conjugated

secondary antibodies (1:200; Invitrogen). Nuclei were stained with

50 mg/ml Hoechst 33258 (Sigma) in PBS and cells were visualized

on a Leitz Axiovert microscope after mounting in Prolong Gold

anti-fade reagent (Invitrogen).

Quantitative Real-Time PCR (qPCR)
qPCR analysis was performed as previously described [56,86]

using SYBR Green PCR Master Mix (New England Biolabs) and

a CFX96 Real Time PCR thermocycler (Biorad). Sequences of

qPCR primers are shown in Table S1. Triplicate samples were

performed and average Ct values were normalized to the values of

GAPDH.

In vitro Scratch Assay
Scratch assays were performed as described [87] with the

following modifications. 16106 cells were plated on a 60 mm dish

and cultured in complete growth media 24 h before the assay.

When cells reached confluence, a p200 pipette tip was used to

scrape a straight line through the cell monolayer. Cells were

washed once with growth medium to remove cell debris and to

smoothen the edge of the scratch. The culture medium was then

replaced with growth medium with a lower FBS content (5% FBS)

to minimize cell proliferation during the duration of the assay.

Images were taken at different time points after scratch on a Leica

DMIL inverted microscope using a Q-Imaging digital camera

(Micropublisher) and analyzed using ImageJ software (NCBI).

Acquisition of same field images was achieved by making reference

points using an ultra fine tip marker.

Transwell Migration and Matrigel Invasion Assays
Cells (1–26104) were resuspended in 100 ml of serum-free

growth medium and plated into uncoated or Matrigel-coated 8-

mm transwell filter inserts (Corning) of 24-well plates in triplicates.

For invasion assays, filters were pre-coated with 10 ml of matrigel

(BD) diluted 1:4 in ice-cold serum-free medium and allowed to

solidify for 1 h at 37uC before use. The bottom wells contained

500 ml of growth medium with 10% FBS as chemoattractant.

After incubation of cells for 16 h for migration or for 48 h for

invasion assays, cells on the upper surface of the filter were

removed with a cotton swab and cells on the bottom side were

fixed in 100% methanol and stained with 1% Toluidine Blue in

1% Borax. Cells were counted in three random fields on

microscopic images taken at 10x or 40x magnification.

RNAi, Lentiviral shRNA Transduction
HC11+TBX2 murine mammary epithelial and human MDA-

MB-157 breast tumor cells were transiently transfected with

scrambled control or TBX2 gene-specific Smartpool siRNAs

(Dharmacon) at a final concentration of 100 nM using Dharma-

fect #1 transfection reagent according to manufacturer’s protocol.

Changes in EMT marker expression and cell motility/invasion

were evaluated 3–4 days post siRNA transfection. For stable

TBX2 knockdown, MDA-MB-435 cells were initially transduced

with 5 different TBX2-specific shRNAs (Mission shRNA lentiviral

particles; Sigma, TRCN0000232146-150) or control non-target

shRNA (Sigma, SHC002V) at MOI= 5. TBX2 shRNA

TRCN0000232147 (59CCGGTGAGATGCCCAAACGCATG-

TACTCGAGTACATGCGTTTGGGCATCTCATTTTTG-39)

yielded the highest TBX2 knockdown efficiency in qPCR and WB

analysis and was used to generate stable TBX2 knockdown cells.

Individual MDA-MB-435 cell clones stably expressing TBX2

shRNA or control shRNA were obtained by selection in 1 mg/ml

puromycin for 10 days.

3-D Matrigel Assays
Single cell suspensions of 26104 MDA-MB-435 cells in 100 ml

of complete growth media containing ice cold Matrigel (BD) (1:1)

were plated in triplicates on a 96-well plate. Plates were incubated

at 5% CO2, 37uC for 30 min to allow the matrigel to solidify, after

which 100 ml of complete media was added to each well. The

culture media was changed every 3 days. Ten to 14 days after

plating, pictures were taken under bright field at 20X magnifica-

tion using a Leica DMIL inverted microscope.

Tail Vein Metastasis Assays
Six week-old Nude (nu/nu) mice (Charles River Laboratories)

were inoculated with 16106 MDA-MB-435 tumor cells/mouse (in

150 ml of PBS) via tail vein injection. Forty days after tumor cell

inoculation, animals were euthanized, and lungs were inflated with

India ink, as described [88]. Surface lung nodules and micro-

metastases were scored in a genotype-blinded fashion using a Leica

MZ16 stereomicroscope. Lungs were then paraffin-embedded,

and 5 mM sections were stained with hematoxylin-eosin.

Cell Proliferation Assays
MDA-MBA-435 cells (1.56105) were seeded in triplicates on 12

well plates on day 0. Cells were grown under subconfluent

conditions in complete growth medium containing 1 mg/ml

puromycin and split at a ratio of 1:3 every 3 days. Cell numbers

were counted at the time of passaging over a total period of 9 days.

Chromatin Immunoprecipitation (ChIP)
Cells were grown to 80% confluence and cross-linked with 1%

formaldehyde at RT for 10 min. ChIP assays were performed as in

[86], except that sonication of cell lysates was performed for 15

pulses of 10 sec with 1 min interval each on ice at 20% power on

a Misonix sonicator. Sheared chromatin was immunoprecipitated

with 5 mg of antibodies to TBX2 (AB4147; Upstate-Millipore and
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sc-17880x; Santa Cruz), anti-acetyl Histone 3, or normal rabbit

IgG (Upstate-Millipore). PCR primers for amplification of

different regions of the mouse E-cadherin/Cdh1 promoter are listed

in Table S1.

Luciferase Reporter Assays
HC11 were seeded in 12-well tissue culture plates at a density of

26105 the day prior to transfection. Cells were cotransfected using

Lipofectamine 2000 (Invitrogen) with 500 ng of pCDNA3 or

pCDNA3-TBX2 expression vectors, 500 ng of pGL2Basic-

EcadK1 luciferase reporter construct (containing wild type human

E-Cadherin/CDK1 promoter sequences from 2108 to +125/
Addgene) [70], and 25 ng of pRL-CMV Renilla plasmid

(Promega), which served as normalization control. Forty-eight

hours after transfection, cells were harvested and subjected to

a Promega Dual Luciferase assay using a Veritas Luminometer.

Analysis of Published Gene Expression Datasets
Microarray data representing a total of 1107 primary breast

tumors from six previously published Affymetrix studies were

downloaded from repositories (E-TABM-158, GSE7390,

GSE4922, GSE1456, GSE2990, GSE2034) and integrated as

described previously using a mean-batch centering method [57].

The NKI [66] and [61] datasets were retrieved from http://

microarray-pubs.stanford.edu/would_NKI/explore.html and

NCBI GEO (GSE10885). The x-tile method was used to

determine the optimal cut-point in Kaplan Meier analysis while

correcting for the use of minimum P statistics [89].

Statistical Analysis
All other data represented in graphs were analyzed by two-sided

Student’s t or ANOVA tests using GraphPad Prism software. P-

values of ,0.05 were considered significant.

Supporting Information

Figure S1 Ectopic TBX2 induces EMT of MCF10A
mammary epithelial cells. (A) Immunofluorescence analysis

of EMT marker expression (40X magnification) shows a reduction

and loss of membrane-associated expression of epithelial (green)

markers (E-cadherin, ß-catenin, ZO1) with a concomitant gain of

mesenchymal (red) marker (N-Cadherin, Vimentin) expression in

MCF10A cells stably expressing pCDNA3-TBX2 (+TBX2) as

compared to cells expressing pCDNA3 vector (+vector) only. (B)
qPCR analysis of TBX2 and EMT marker gene expression using

cDNA from the same cells as in (A). Values were normalized to

GAPDH and fold changes are compared to vector control. The

mean 6 SEM is shown (n= 3; Student t-test). P- values: *p,0.05.

(TIF)

Figure S2 TBX2 expression in published microarray
datasets of primary human breast cancers. Gene profiling

expression data for TBX2 classified by (A) intrinsic molecular

subtypes; (B) Estrogen Receptor alpha (ER) status, as determined

by immunohistochemistry; and (C) histological grade, in 1107

tumors from six combined published microarray datasets [57]. (D)

TBX2 expression in the Hennessy et al. dataset comprising 219

tumors including aggressive metaplastic breast tumors [59,60,61].

The number of samples in each class and p-values are indicated.

NS = not significant; v = versus.

(TIF)

Figure S3 Expression and gene amplification of TBX2
in human breast cancer cell lines. (A–C) Tumor lines are

grouped into luminal and basal tumor subtypes according to Neve

et al. [90]. (A) Western blot analysis confirms TBX2 protein

expression in breast cancer cell lines with known TBX2 gene

amplification (open triangle): the luminal Estrogen Receptor

(ER)2positive (+) lines MCF7, MDA-MB-361, and BT474; and

the basal subtype ER-negative (underlined) breast tumor cell line

SUM52. Note that SUM52 is listed as luminal ER+ in the Neve

et al. dataset [90] but has been re-classified as basal-subtype triple-

negative [62]. Furthermore, TBX2 is overexpressed in the highly

invasive basal subgroup metaplastic breast tumor cell lines MDA-

MB-157, MDA-MB-435, and weakly in basal subgroup medullary

(asterix) HCC1569 tumor cells. (B) qPCR analysis quantifies TBX2

mRNA expression levels in the tumor cell lines shown in (A).

Values were normalized to GAPDH mRNA levels and represent

fold change as compared to normal human mammary epithelial

cells (HMEC). Error bars represent the mean 6 SEM (n= 3;

Student t-test). (C) Comparative genomic hybridization array

(aCGH) analysis shows relative gains and losses of the chromo-

somal region of TBX2 (17q23) in the selected breast cancer cell

lines from two published aCGH studies. Dark grey = [90]; light

grey = [91]. Not all cell lines were represented in both studies,

however the relative gains/losses for the TBX2 region between the

two studies was significantly correlated (Pearson, R=0.6,

p = 0.001) across the overlapping breast tumor cell lines.

(TIF)

Figure S4 Absence of TBX2 expression in existing
BRCA1-deficient breast carcinoma cell lines. (A) Western

blot analysis of endogenous TBX2 protein expression in four

BRCA12/2 breast carcinoma cell lines [92], as indicated. (B)

Comparative genomic hybridization array (aCGH) analysis shows

no consistent relative gains of the chromosomal region of TBX2

(17q23) in the selected BRCA12/2 breast cancer cell lines from two

published aCGH studies (Pearson, R= 0.6, p = 0.001). Dark grey

= [90]; light grey = [91].

(TIF)

Figure S5 Reciprocal expression of TBX2 and TBX3 in
normal and neoplastic breast epithelial cell lines. (A)

qPCR analysis of Tbx2 and Tbx3 mRNA expression in

HC11+vector and HC11+TBX2 cells, and in HC11+TBX2 cells

transiently transfected with scrambled siRNAs (siCtrl) or TBX2

siRNAs (siTBX2) three days post siRNA transfection. Note that, in

contrast to TBX2, TBX3 is abundantly expressed in control HC11-

vector (+vector) cells. Ectopic expression of TBX2 in HC11 cells

(+TBX2) leads to a marked reduction in Tbx3mRNA levels, which

is reversed by knockdown of exogenous TBX2. (B) qPCR analysis

of MDA-MB-435 tumor cells stably expressing non-target control

shRNA (shCtrl) or TBX2-specific shRNA (shTBX2) shows low

levels of TBX3 mRNA in endogenously TBX2-overexpressing

MDA-MB-435 control cells and upregulation of TBX3 upon

TBX2 knockdown. Values were normalized to GAPDH. The mean

6 SEM is shown (n= 3; Student t-test).

(TIF)

Table S1 List of oligonucleotide sequences separated by
assay type.

(DOC)
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