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SUMMARY

The presence of ribonucleotides in genomic DNA is
undesirable given their increased susceptibility to
hydrolysis. Ribonuclease (RNase) H enzymes that
recognize and process such embedded ribonucleo-
tides are present in all domains of life. However, in
unicellular organisms such as budding yeast, they
are not required for viability or even efficient cellular
proliferation, while in humans, RNase H2 hypo-
morphic mutations cause the neuroinflammatory
disorder Aicardi-Goutières syndrome. Here, we
report that RNase H2 is an essential enzyme in
mice, required for embryonic growth from gastrula-
tion onward. RNase H2 null embryos accumulate
large numbers of single (or di-) ribonucleotides
embedded in their genomic DNA (>1,000,000 per
cell), resulting in genome instability and a p53-
dependent DNA-damage response. Our findings
establish RNase H2 as a key mammalian genome
surveillance enzyme required for ribonucleotide
removal and demonstrate that ribonucleotides are
the most commonly occurring endogenous nucleo-
tide base lesion in replicating cells.

INTRODUCTION

DNA is believed to have evolved from an ancestral RNA world as

a more stable store of genetic information (Alberts et al., 2002;

Cech, 2011). Ribonucleotides differ from deoxynucleotides by

the presence of a single reactive hydroxyl group at the 20 position
of the ribose sugar, rendering RNA�100,000-fold more suscep-

tible to spontaneous hydrolysis under physiological conditions

(Li and Breaker, 1999). The presence of ribonucleotides in

genomic DNA is therefore undesirable, as it renders DNA more

sensitive to strand breakage. It has long been thought that

such misincorporation is prevented by the stringent selectivity

of replicative DNA polymerases, favoring deoxynucleoside

triphosphate (dNTP) over ribonucleoside triphosphate (rNTP)

substrates (Joyce, 1997). However, recent in vitro experiments

have demonstrated that, under physiologically relevant condi-

tions in which rNTPs substantially exceed dNTPs, such DNA

polymerases may incorporate a ribonucleotide base every few

thousand base pairs (Nick McElhinny et al., 2010a). Budding

yeast expressing a less selective replicative polymerase only

displayed widespread ribonucleotide incorporation when ribo-

nuclease (RNase) H2 activity was genetically abolished (Nick

McElhinny et al., 2010b). This directly implicated RNase H2 in

the removal of such ribonucleotides.

RNase H enzymes hydrolyze the RNA strand of RNA/DNA

hybrids (Stein and Hausen, 1969). Such hybrids form during

many cellular processes, including DNA replication (Machida

et al., 1977), telomere elongation (Förstemann and Lingner,

2005), and transcription (Huertas and Aguilera, 2003; Li and

Manley, 2005). Eukaryotes have two types of RNase H with

distinct biochemical properties and substrate specificity (re-

viewed in Cerritelli and Crouch, 2009). RNase H1 is a processive

monomeric enzyme that requires interaction with 20-OH groups

from four consecutive ribonucleotides for efficient substrate

cleavage (Nowotny et al., 2007). Mammalian RNase H1 has

two isoforms: a nuclear isoform of undefined function and a

mitochondrial isoform that is essential for mitochondrial DNA

replication (Cerritelli et al., 2003). However, the predominant

source of RNase H activity in mammalian cells is RNase H2

(Büsen, 1980). Like RNase H1, it digests the RNA strand of

RNA/DNA hybrids in a processive manner (Chon et al., 2009),

but it also recognizes single ribonucleotides in a DNA duplex

and cleaves the 50-phosphodiester bond of the ribonucleotide

(Eder et al., 1993). In eukaryotes, RNase H2 is a multimeric

complex consisting of three subunits: RNASEH2A, RNASEH2B,

and RNASEH2C (Crow et al., 2006a; Jeong et al., 2004). The

RNASEH2A subunit contains the catalytic center, whereas the

closely intertwined auxiliary RNASEH2B andC subunits are likely

involved in interactions with other proteins (Figiel et al., 2011; Re-

ijns et al., 2011; Shaban et al., 2010). A PIP box motif at the C

terminus of the RNASEH2B subunit guides the interaction
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between RNase H2 and PCNA (Chon et al., 2009) and its

localization to replication foci (Bubeck et al., 2011), consistent

with a role for the RNase H2 enzyme in DNA replication and/or

repair.

Mutations in all three genes that encode the RNase H2

subunits cause the autosomal-recessive disorder Aicardi-

Goutières syndrome (AGS) (Crow et al., 2006a). This early-onset

neuroinflammatory condition mimics congenital viral infection

and has immunological similarities to the autoimmune disease

systemic lupus erythematosus (Ramantani et al., 2010). RNase

H2 mutations that cause AGS result in partial rather than

absolute loss of RNase H2 enzyme function (Reijns et al.,

2011; Rice et al., 2007). Two further enzymes have been

implicated in AGS: the 30/50 DNA exonuclease TREX1 (Crow

et al., 2006b) and a dNTP triphosphohydrolase, SAMHD1 (Rice

et al., 2009). Innate immune-mediated inflammation is thought

to result from the accumulation of endogenous nucleic acid

species that are usually degraded by these enzymes, e.g., during

DNA replication/repair (Yang et al., 2007) or suppression of

endogenous retroelements (Manel and Littman, 2011; Stetson

et al., 2008).

The nucleic acids that may accumulate as a consequence of

impaired RNase H2 function are yet to be defined, and although

RNase H2 enzyme activity has been studied for more than

40 years (Stein and Hausen, 1969), its cellular functions are

poorly understood. Initially, RNase H2 was proposed to act in

removal of the RNA oligonucleotides that prime Okazaki

fragment synthesis during lagging-strand replication. In vitro

biochemical studies indicate that sequential action of RNase

H2 and FEN1 are sufficient to complete this process (Goulian

et al., 1990; Turchi et al., 1994). However, primer removal

through flap processing by FEN1/DNA2 has become the

predominant model for Okazaki fragment maturation (Burgers,

2009; Rossi and Bambara, 2006). RNase H2 may also be impor-

tant for the resolution of R loops that arise during transcription

(El Hage et al., 2010) or for the repression of endogenous retro-

elements (Cerritelli and Crouch, 2009). Finally, the distinctive

property that allows RNase H2 to recognize and cleave single

ribonucleotides that are embedded in DNA duplexes suggests

a role in the removal of such nucleotides from genomic DNA

(Rydberg and Game, 2002).

Here, we performed targeted mutagenesis of the mouse

Rnaseh2b gene to gain insight into the in vivo role of themamma-

lian RNase H2 enzyme. Ablation of Rnaseh2b in mice leads to

early embryonic lethality due to elevated DNA damage and

reduced cellular proliferation during gastrulation. We establish

that the growth arrest is the consequence of a p53-dependent

DNA damage response associated with the accumulation of

single ribonucleotides in genomic DNA. Thus, we demonstrate

that removal of ribonucleotides to preserve genome integrity is

an essential cellular function of RNase H2 in mammals.

RESULTS

Rnaseh2b Is a Developmentally Essential Gene
Rnaseh2bE202X embryonic stem (ES) cells with a premature

stop codon in exon 7 of Rnaseh2b were generated by targeted

homologous recombination (Figure 1A). Correct recombination

of both arms of the targeting cassette was confirmed by

Southern blotting and long-range PCR (Figures 1A and 1B) and

the presence of a nonsense mutation at codon 202 (E202X)

established by sequencing (Figure 1C). ES cells were injected

into C57BL/6J host blastocysts to generate germline chimeras

and subsequently heterozygous Rnaseh2bE202X/+ mice. Inter-

crossing of Rnaseh2bE202X/+ animals failed to yield live-born

homozygous null mice (p < 0.001; Figures 1D and 1E). Similarly,

homozygotes were not present (p < 0.001) in litters of a second

independent line, Rnaseh2btm1a, derived from EUCOMM

‘‘knockout-first’’ ES cells.

As no viable homozygous animals were obtained from either of

these alleles, we concluded that Rnaseh2b was likely to be an

essential gene that is required for embryonic viability. At embry-

onic day 6.5 (E6.5), Rnaseh2bE202X/E202X embryos were present

at Mendelian ratios and were almost indistinguishable in size

fromwild-type littermates, suggestingnormalprogressionof early

embryogenesis (Figures 2A and 2B). However, by E7.5, therewas

a 23%and32%decrease in embryonic height andwidth, respec-

tively (p < 0.005; Figure 2B), suggesting a failure to increase the

rate of proliferation in the epiblast that normally occurs at the

onset of gastrulation (MacAuley et al., 1993;Snow, 1977). Though

all mutants proceeded through gastrulation, the embryos re-

mained reduced in size and were developmentally retarded (Fig-

ure 2A). By E9.5 (n = 23), they were frequently truncated (57%)

with few or very small postcervical somites (52%) and defects in

allantois development (48%). At E10.5, histology demonstrated

increased numbers of cells with condensed or fragmented

nuclei, and at E11.5, a terminal phenotype was evident with loss

of tissue morphology and integrity (data not shown).

Rnaseh2bE202X Results in Absolute Loss of RNase H2
Complex Function
To examine the effect of the Rnaseh2bE202X mutation on the

RNase H2 enzyme, immunoblotting was performed with

affinity-purified antibodies. As the premature stop codon is not

in the final Rnaseh2b exon, it is expected to cause nonsense-

mediated decay of the transcript. Consistent with this, we did

not detect a truncated RNASEH2BE202X protein (Figure S1B

available online). Also, full-length RNASEH2A, B, and C subunits

were all undetectable in E9.5 Rnaseh2bE202X/E202X embryo

lysates (Figure 2C), indicating that RNASEH2B is required for

in vivo stability of the heterotrimeric complex. Furthermore,

type 2 RNase H activity against a DNA duplex oligonucleotide

with an embedded ribonucleotide was undetectable inRnaseh2-

bE202X/E202X embryos (Figure 2D). In contrast, general RNase H

activity was retained, albeit at <10% of wild-type embryo levels

(Figure 2D), consistentwith retentionof normalRNaseH1activity.

Given that RNase H2 is absent from Rnaseh2bE202X/E202X

embryos, we hereafter refer to these embryos and their derivative

cells as RNaseH2null and their genotype as Rnaseh2b�/�. Signif-
icantly, such embryos entirely lack detectable enzyme activity

against isolated ribonucleotides embedded in DNA.

RNase H2 Is Highly Expressed in Proliferating Cells
The anti-RNase H2 antibody specifically detected RNase H2

when used for immunofluorescence microscopy, as staining

was absent in null embryos (Figures S2A and S2B). Endogenous
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Figure 1. Targeted Inactivation of the Rnaseh2b Gene Causes Embryonic Lethality

(A) Schematic depicting targeted mutagenesis of exon 7 of the Rnaseh2b gene. (Top) A 7 kb segment of the Rnaseh2b genomic locus; exons 6 (ex6) and

7 (ex7) are indicated by black boxes, flanked by EcoRI sites (R). (Middle) NotI (N)-SalI (S) restriction fragment of the final targeting construct, comprising

4.5 kb of genomic DNA and a Neomycin selection cassette (Neo) flanked by Cre recombinase loxP sites (triangles). (Bottom) Successfully targeted

endogenous locus containing the mutagenized exon 7 (ex7*). Red arrowheads indicate primers used to amplify arm I and arm II to confirm correct

targeting.

(B) Southern blotting and long-range PCR confirm successful targeting by homologous recombination. The introduction of an additional EcoRI site results in

a restriction fragment of 4.1 kb detected on Southern blotting with the 400 bp probe (red bar in A) for the targeted ES cells (E202X/+) that is not present in parental

DNA (+/+). Arm I (4.7 kb) and arm II (2.2 kb) fragments are amplified by PCR in correctly targeted ES cells only.

(C) Sequencing traces for Rnaseh2b+/+, Rnaseh2bE202X/+, and Rnaseh2E202X/E202X DNA show the introduced nonsense mutation (red box).

1010 Cell 149, 1008–1022, May 25, 2012 ª2012 Elsevier Inc.



RNase H2 exhibited nuclear localization in early embryos,

consistent with proposed roles in DNA replication and repair.

Expression was observed in blastocysts (Figure 3A) and in all

three embryonic layers during gastrulation (Figure 3B), reflecting

a ubiquitous presence at early stages of development. Later in

embryogenesis and postnatally, expression became more

restricted to highly proliferative tissues, such as the subventric-

ular zone during neurogenesis and perinatal hair follicles (Figures

S2C–S2F). In adults, RNase H2 was present in proliferative

tissues, including intestinal crypt epithelium, and testes (Figures

S2G and S2H). Expression correlated most closely with the

proliferation marker Ki67, suggesting that RNase H2 is

(D) Multiplex PCR for mouse genotyping. (Top) A 221 bp PCR product (a/c) is present in wild-type mice (+/+); mice containing the Rnaseh2bE202X allele (also)

give a 460 bp product (a/b). (Bottom) Schematic indicating position of forward (a) and reverse primers (b and c).

(E) Mice with null mutations (m) in Rnaseh2b are not postnatally viable, whereas E6.5–E10.5 embryos are present at Mendelian ratios. Genotype frequencies for

offspring at weaning (and for embryos at indicated stages) derived from Rnaseh2bE202X/+ and RNaseh2btm1a/+ intercrosses respectively.

p values, c2 test; n.s., not significant; m, mutant allele. Rnaseh2b accession number: NM_026001.2.
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Figure 2. Rnaseh2bE202X/E202X Embryos Exhibit Severe Growth Failure during Early Development, Resulting in Embryonic Lethality

(A and B) Growth failure in mutant embryos starts at gastrulation.

(A) Photomicrographs of representative embryos from embryonic stages E6.5, E7.5, E8.5, and E9.5. Scale bars, 200 mm.

(B) There is a significant difference in length (L), width (W), and height (H) between wild-type (+/+) and mutant Rnaseh2bE202X/E202X embryos (denoted as �/�) at

E7.5, but not at E6.5. (E7.5, 7 litters: n = 22,21,11; E6.5, 6 litters: n = 12,18,9 for +/+, +/�, and �/�, respectively). Error bars represent SEM; t test; n.s., not

significant.

(C) Immunoblotting demonstrates that all three RNase H2 subunits (RNASEH2A, B, and C) are absent from mutant embryo lysates. Loading control, actin.

(D) Type 2 RNase H activity is undetectable in mutant embryos, and total cellular RNase H activity is reduced to < 10%. Cleavage of RNase H (RNA/DNA hybrid)

and RNase H2-specific substrates by mutant and wild-type E9.5 embryo lysates was measured using fluorescence-based assays. Error bars represent SD. n = 3

replicates.

See also Figure S1.
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preferentially expressed in actively cycling cells at all stages of

the cell cycle. In support of this, western analysis from synchro-

nized HeLa cells demonstrated uniform expression levels of all

three RNase H2 subunits throughout the cell cycle (Figure S2I).

A p53-Dependent Damage Response Is Evident in
RNaseH2null Embryos
RNaseH2null embryonic growth failure could be the conse-

quence of inefficient DNA replication or activated DNA damage

signaling. Embryonic tissues were therefore immunostained for

histone H2A.X phosphorylated at serine 139 (pH2AX), a marker

of DNA-damage response to double-strand breaks and arrested

replication (Rogakou et al., 1998;Ward and Chen, 2001). Though

no difference in pH2AX levels was observed between mutant

and control blastocysts, at E6.5, there was a substantial increase

in nuclear pH2AX staining in epiblast cells of RNaseH2null

embryos (Figure 4A), coinciding with a period of rapid cell cycles

of less than 6 hr (Snow, 1977).

At E6.5, there was no alteration in the percentage of epiblast

cells undergoing active DNA synthesis; however, by E7.5, a

significant reduction was evident (Figures 4B and 4C). Reduced

embryo growth appeared to be the result of arrested cell prolif-

eration, rather than cell death, as no widespread increase in

apoptosis was observed at E7.5 or E9.5 by activated caspase

3 immunostaining (data not shown).

To investigate the molecular basis of this growth arrest,

whole-genome expression analysis was performed using Illu-

mina microarrays. Transcript levels of 197 genes were signifi-

cantly upregulated in E9.5 mutant embryos, whereas 115

genes were downregulated when compared to age-matched

controls (p < 0.05; > 1.5-fold change). Of note, the four genes

with the greatest fold increase in expression (Figure 4D),

Figure 3. The RNase H2 Enzyme Is Expressed

in Actively Proliferating Cells from Early

Embryogenesis

(A) RNase H2 is expressed from early embryogenesis.

Whole-mount immunostaining of wild-type mouse blas-

tocysts detects endogenous RNase H2 expression in the

nucleus of interphase cells and dispersed throughout the

cell at mitosis (*). Scale bar, 20 mm.

(B) RNase H2 is expressed in all three cell layers of

gastrulating mouse embryos. Confocal image of a wild-

type cryosectioned E7.5 embryo, with Ki67 marking

actively proliferating cells. Scale bar, 100 mm. (Insert)

Higher-power view demonstrates strong nuclear locali-

zation in all three embryonic layers: endoderm (Endo),

mesoderm (Meso), and ectoderm (Ecto). Scale bar, 20 mm.

See also Figure S2.

Ccng1/Cyclin G1, Cdkn1a/p21, Phlda3, and

Trp53inp1, were all targets of the p53 tran-

scriptional activator, a key transducer of

ATM/ATR DNA damage signaling (Tibbetts

et al., 1999; Yajima et al., 2006). Increased

Cyclin G1 and p21 expression was confirmed

by qPCR and immunoblotting (Figure 4E). In

addition, Rnaseh2b was found to be <0.02%

of wild-type by qPCR, in keeping with

nonsense-mediated decay of this transcript (Figure 4E).

Although RNase H2 could have a role in suppressing expres-

sion of endogenous retroelements (Bhoj and Chen, 2008), no

changes in retroelement transcript levels were identified, indi-

cating that there was no widespread dysregulation of retroele-

ments at this stage of embryonic development. Similarly, there

was no transcriptional evidence of an immune-mediated

process (data not shown).

We postulated that the DNA damage observed in the E6.5

embryos led to p53 activation and reduced cellular proliferation

as a consequence of cyclin G1 and p21-mediated cell-cycle

arrest (Cazzalini et al., 2010; Kimura et al., 2001). In keeping

with this, partial rescue of the RNaseH2null embryonic phenotype

was observed in a p53�/� background (Figure S3). Loss of p53

also fully rescued defective cell proliferation (Figure 4F) in

primary cultures of E10.5/E11.5 mesodermal tissue, performed

to generate mouse embryonic fibroblast (MEF) cell lines.

Rnaseh2b�/�;p53+/+ cells completely failed to proliferate in

culture (2/2), whereas those derived from Rnaseh2b�/�;p53�/�

embryos grew well (p < 0.001; 5/5), though at 64% of the

rate of Rnaseh2b+/+;p53�/� MEFs (Figures 4F and 4G).

Rnaseh2b�/�;p53+/� cells showed very limited growth, and

though MEF cell lines were eventually established from three

out of eight embryos, all were found to have then lost the remain-

ing wild-type p53 allele (data not shown). In conclusion, loss of

RNase H2 enzyme activity results in p53-mediated arrest of

cell growth.

Ribonucleotide Accumulation in Genomic DNA
of RNaseH2null Cells
Rnaseh2b�/�;p53�/� MEFs were next used to investigate the

molecular consequences of RNase H2 loss. As expected,

1012 Cell 149, 1008–1022, May 25, 2012 ª2012 Elsevier Inc.
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Figure 4. A p53-Dependent DNA-Damage Response Is Activated in RNase H2-Deficient Embryos, Leading to Arrest in Cellular Proliferation

(A)Markedly elevated levels of nuclear pH2AX foci are evident in the epiblast of E6.5 embryos. Confocal projection of transverse cryosections through the decidua

of E6.5 mutant RNaseH2null and control littermate embryos. Scale bar, 10 mm.

(B and C) The number of S phase epiblast cells is reduced in E7.5 embryos.

(B) Representative immunofluorescence confocal projections of 10 mm cryosections from E7.5 mutant and control embryos. Embryos fixed 1 hr after intra-

peritoneal injection of 100 mg/kg into pregnant females and EdU visualized by Click-iT (Invitrogen), counterstained with DAPI (blue). Scale bar, 50 mm.

(C) Relative proportions of EdU- incorporating cells in E6.5 and E7.5 embryos demonstrate a significant reduction at E7.5 in RNaseH2null embryos (t test; n = 5

embryos per data point, >200 epiblast cells/embryo). S phase index determined from EdU-positive nuclei/total nuclei. Error bars represent SEM.

(D) Significant upregulation of p53 target genes in E9.5 RNaseH2null embryos is detected by IlluminaMouseWG-6 v2.0 Expression BeadChipmicroarray analysis.

Plotted data points correspond to Illumina probes.

(E) qPCR confirms a 6-fold upregulation ofCyclin G1 and p21 transcripts in E9.5mutant embryos (error bars represent SD of technical triplicates). Immunoblotting

of total cell lysates from E9.5 mutant embryos demonstrates increased p21 protein levels. Loading control, actin.

(F and G) Cell-cycle arrest in RNaseH2null embryos is p53 dependent.

(F) Growth kinetics from primary culture of mesenchymal cells recovered from E10.5 and E11.5 RNaseH2null embryos show that RNaseH2null cells from p53�/�

(n = 5), but not p53+/� (n = 8) and p53+/+ (n = 2), littermates are capable of proliferation. Growth curves for Rnase2b+/+;p53�/� cells (n = 3) derived from littermates

are shown for comparison.

(G) Specific growth rates of MEFs calculated from growth kinetics as shown in (F). Rnase2b�/�;p53�/� cells initially grew with doubling times of 2.4 ± 0.4 days

compared with Rnase2b+/+;p53�/� cells that doubled every 1.5 ± 0.5 days (p < 0.05). This difference became negligible at later passages (data not shown). Green

circles correspond to MEF lines used for further analysis.

See also Figure S3.
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Figure 5. RNaseH2null Genomic DNA Is More Sensitive to Alkali Hydrolysis

(A and B) Levels of pH2AX foci are elevated in Rnase2b�/�;p53�/� MEFs.

(A) Representative immunofluorescent images of Rnaseh2b+/+, +/�, �/� cell lines. Scale bar, 10 mm.
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type 2 RNase H activity and the RNase H2 protein complex

were absent in these cell lines (Figures S4A and S4B). Signifi-

cantly elevated levels of pH2AX foci were also present (Figures

5A and 5B), indicative of DNA double-strand breaks and/or

replication fork arrest. In addition, we examined polyADPribo-

sylation (PAR) as another early marker of DNA-damage activa-

tion, which occurs in response to DNA breaks (Caldecott, 2008;

Satoh and Lindahl, 1992). Levels of PAR were substantially

raised in RNaseH2null MEFs, as shown by immunoblotting (Fig-

ure S4C), confirming the presence of cellular DNA-strand

breaks.

DNA damage in RNaseH2null cells might arise as the conse-

quence of undegraded Okazaki RNA primers, misincorpora-

tion of ribonucleotides by DNA polymerases, or transcription-

ally induced R loops. To discriminate between these

possibilities, total nucleic acids from the MEFs were sepa-

rated by gel electrophoresis under alkaline conditions.

Substantially increased mobility of genomic DNA from both

RNaseH2null cell lines after treatment with alkali was observed

relative to control genomic DNA (Figures 5C–5E), whereas no

significant difference was evident upon electrophoresis under

neutral conditions (Figure S4D). Given that phosphodiester

bonds 30 of ribonucleotides, but not deoxynucleotides, are

sensitive to alkali hydrolysis through nucleophilic attack by

the 20 hydroxyl group (Lipkin et al., 1954), such increased

fragmentation (termed alkali sensitivity) likely indicates the

incorporation of ribonucleotides into genomic DNA. Given

that alkali treatment also denatures DNA, increased electro-

phoretic mobility could also be the consequence of increased

nicking, or gaps, in genomic DNA. To address this possibility,

gel electrophoresis of total cellular nucleic acids was per-

formed after formamide denaturation, which denatures DNA

(Tang et al., 1989) without hydrolyzing ribonucleotide phos-

phodiester bonds (Figure 6A). Under these conditions,

RNaseH2null DNA did not demonstrate increased mobility, in

contrast to DNA treated with Nt.BspQI nicking endonuclease,

which on average introduces nicks every �11 kb. Therefore,

the observed alkali-sensitive sites were consistent with cova-

lently incorporated ribonucleotides, rather than gaps or nicks

in genomic DNA.

Treatment with recombinant RNase H2 enzyme also led to

widespread fragmentation of RNaseH2null genomic DNA, as

shown by increased electrophoretic mobility after formamide

denaturation. Significantly, the resulting fragmentation pattern

was essentially identical to that seen after alkali treatment

(Figure 6B), whereas no increased mobility was observed

when inactive recombinant RNase H2 was used. In distinct

contrast, recombinant E. coli type-1 RNase H (RNase HI) had

no visible impact on the mobility of RNaseH2null genomic

DNA (Figure 6C). RNase HI efficiently digests substrates with

four or more ribonucleotides but can also hydrolyze double-

stranded nucleic acids with three embedded ribonucleotides,

albeit at substantially lower rates (Hogrefe et al., 1990).

Although the biological significance of this activity is unclear,

oligonucleotide substrates with three ribonucleotides were

cleaved efficiently under our assay conditions (Figures S5C

and S5D). This activity was fully preserved in the presence of

RNaseH2null genomic DNA, ruling out any inhibitory effects

that may be present within the nucleic acid preparation (Figures

S5A–S5C). Thus, the differential sensitivity of genomic DNA

from RNaseH2null cells to RNase HI and RNase H2 activities es-

tablished that the alkali and RNase H2 cleavable sites consist of

one or, at most, two consecutive covalently incorporated

ribonucleotides.

Quantitative analysis of the alkali-induced fragmentation

permitted us to estimate the frequency of embedded ribonucle-

otides. Determination of DNA fragment distributions (Figure 5E)

from the densitometry data (Figure 5D) predicted a rate of

ribonucleotide incorporation of �1 in 7,600 nucleotides (nt)

(analytical method described in Figure S4F). Additionally, the

fragmentation pattern of hydrolyzed RNaseH2null DNA lies

between that generated by two nicking endonucleases, one

that cuts, on average, once every 11 kb (7-cutter Nt.BspQI)

and the other once every 3.7 kb (6-cutter Nb.BtsI) in the mouse

reference genome (Figures 5F and 5G), supporting the computa-

tional estimate. Early and late passage MEFs exhibited similar

levels of alkali sensitivity (data not shown). The incorporation of

1 ribonucleotide every 7,600 nucleotides during each round of

replication would maintain such a steady-state level, so this is

a minimum estimate for in vivo ribonucleotide misincorporation

by polymerases.

Taken together, these results demonstrate the widespread

presence of incorporated ribonucleotides in genomic DNA of

RNaseH2null MEFs. Ribonucleotide misincorporation was also

evident in RNaseH2null embryos (Figures 5C and S4E), consis-

tent with this molecular defect underlying the developmental

(B) Quantification for (A). Cells with five or more strong pH2AX foci. Error bars represent SD. n = 3 expts, > 100 cells/expt, t test. From here on +/+, +/�, �/�,

and �/� indicate Rnaseh2b genotypes of four independent MEF lines.

(C and D) Genomic DNA from RNaseH2null cells display markedly increased alkali sensitivity.

(C) Representative gel of total nucleic acids from Rnaseh2b+/+, +/�, �/� MEFs and yolk sacs separated by alkaline agarose gel electrophoresis after alkaline

hydrolysis.

(D) Densitometry of the first five lanes of (C), plotted using Aida 2D densitometry software, demonstrates a substantial shift in migration of RNaseH2null MEF

genomic DNA fragments.

(E) Quantification of DNA fragmentation pattern calculated from densitometry traces shown in (D). Densitometry intensity distribution is divided by the fragment

length distribution to quantitate the proportion of molecules of a particular fragment size. Fragment counts are normalized so that total nucleotide number is equal

between samples.

(F and G) Alkali treatment fragments RNaseH2null DNA to an average size that lies between 3.7 and 11 kb.

(F) Fragmentation pattern of RNaseH2null (�/�) alkali-treated DNA compared with that of the nicking endonucleases Nt.BspQI, which cuts mouse genomic DNA

on average every 11 kb (7-cutter), and Nb.BtsI, which cuts on average every 3.7 kb (6-cutter).

(G) Densitometry of selected lanes from (F).

See also Figure S4.
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phenotype. Finally, we employed a chemical genetic approach

analogous to previous yeast genetic experiments, in which a

mutated Pol 3with an enhanced propensity for ribonucleotide

incorporation was used (Nick McElhinny et al., 2010b). Cells

were treated with a low dose of hydroxyurea (HU) to reduce

cellular dNTP:rNTP ratios through partial inhibition of ribonucle-

otide reductase activity. This would then increase ribonucleotide

incorporation by DNA polymerases. RNaseH2null cells were

observed to be hypersensitive to such a low dose of HU, accu-

mulating in S phase (Figure S5G). Most significantly, such

treatment resulted in additional alkali and RNase H2-sensitive

sites in genomic DNA from RNaseH2null cells (Figures 6D–6F,

S5E, and S5F), consistent with such sites resulting from ribonu-

cleotide misincorporation by DNA polymerases.

Chromosome Instability in RNaseH2null Cells
Substantial levels of micronuclei, indicative of chromosomal

breakage (Norppa and Falck, 2003), were observed in

RNaseH2null MEFs (Figure 7A), suggesting that the excessive

presence of ribonucleotides in DNA causes large-scale genome

instability. Likewise, large-scale cytogenetic anomalies were

evident in DAPI-stained metaphase chromosomes (Figure 7B).

Using satellite FISH probes, chromosomal rearrangements were

present in virtually all metaphases from Rnaseh2b�/�;p53�/�

MEFs, whereas they were only occasionally seen in control

MEFs. Both minutes (marker chromosomes) and interchromo-

somal translocations were frequently observed, with transloca-

tions confirmed by FISH and chromosomal painting (Figures 7,

S6A, and S6B).

DISCUSSION

Ribonucleotides Accumulate in RNaseH2null Cells as
a Consequence of Incorporation by DNA Polymerases
Here, we report that substantial genome-wide incorporation

of ribonucleotides occurs in mammalian genomic DNA and

establish that RNase H2 is required for efficient removal of

such nucleotides. Recent in vitro biochemical studies with yeast

replicative polymerases have shown the misincorporation of

ribonucleotides into DNA (Nick McElhinny et al., 2010a). Based

on these findings, it was predicted that ribonucleotides may be

incorporated into genomic DNA in vivo. Subsequent studies in

both fission and budding yeast have established that this is

indeed the case using alkali sensitivity assays of yeast genomic

DNA (Miyabe et al., 2011; Nick McElhinny et al., 2010b). Here,

we show that ribonucleotide incorporation also occurs in meta-

zoans; demonstrate that such ribonucleotide lesions are harm-

ful to mammalian cells; and establish that their removal is

required for mouse embryonic development. Previous studies

used an elegant genetic approach in which mutator replicative

polymerases with increased propensity for ribonucleotide incor-

poration were used to infer the presence of incorporated ribo-

nucleotides from enhanced alkali sensitivity of RNase H2 null

yeast genomic DNA. Our findings provide further characteriza-

tion of these alkali-sensitive sites by using enzymatic assays

to directly substantiate that such lesions are single or diribonu-

cleotides that are covalently incorporated into genomic DNA.

Furthermore, we find that such lesions occur at a frequency

of least 1,000,000 sites per cell, establishing them as the

most common endogenous base lesions in the mammalian

genome.

The presence of such ribonucleotides is most readily ex-

plained by misincorporation by the major replicative polymer-

ases, which are estimated to incorporate one ribonucleotide

every few thousand nucleotides in vitro (Nick McElhinny et al.,

2010a). Alternatively, embedded ribonucleotides could result

from failure to remove RNA primers during Okazaki-lagging

strand processing. Such primers are �10 nt in length, much

longer than the single/diribonucleotides found. However, reten-

tion of single ribonucleotides during this process remains a

possibility (Rumbaugh et al., 1997). Theoretically, oxidation of

deoxynucleotides that are present in DNA could also result in

embedded ribonucleotides (Vengrova and Dalgaard, 2004),

although this seems an unlikely explanation for their frequent

occurrence.

Genomic DNA fromRNase H2 null S. cerevisiae exhibits differ-

ential alkali sensitivity that correlates with the propensity of

a mutant Pol 3to incorporate ribonucleotides (Nick McElhinny

et al., 2010b). Here, we performed an analogous experiment

using hydroxyurea to alter dNTP:rNTP ratios, favoring ribonucle-

otide incorporation. This promoted increased alkali and RNase

H2 sensitivity, leading us to conclude that ribonucleotides that

are embedded in genomic DNA are most likely the consequence

of misincorporation by DNA polymerases. Given their frequent

occurrence in genomic DNA, the predominant sources of such

ribonucleotides are likely to be Pol 3and Pol d, the major replica-

tive polymerases that are responsible for leading- and lagging-

strand synthesis, respectively (Burgers, 2009; Kunkel and

Figure 6. Covalently Incorporated Ribonucleotides Are Present in Nuclear DNA of RNaseH2null Cells

(A–C) Rnase2b�/�;p53�/� genomic DNA contains mono or diribonucleotides. Total nucleic acids isolated from p53�/� MEFs were separated by agarose gel

electrophoresis under native conditions or after denaturation with 90% formamide.

(A) Genomic DNA from RNaseH2null cells does not contain elevated numbers of nicks. Increased nicking is detected only in genomic DNA treated with Nt.BspQI

nicking endonuclease. (+/+, +/�, �/�,�/�) Rnaseh2b genotypes of four independent MEF lines.

(B) RNase H2 fragments genomic DNA from RNaseH2null cells to the same extent as hydrolysis with NaOH. Total nucleic acids isolated from passage matched

p53�/� MEFs ± Rnaseh2b treated with purified recombinant human RNase H2, catalytically inactive RNase H2 (RNASEH2A-D34A/D169A), or NaOH and were

then denatured with 90% formamide.

(C) Recombinant RNaseHI, which cleavesDNAduplexeswith three ormore embedded ribonucleotides, does not fragment DNA fromRNaseH2null MEFs. Treated

nucleic acids were denatured with 90% formamide.

(D–F) RNaseH2null cells have increased ribonucleotide incorporation, reflected by enhanced alkali sensitivity after low-dose hydroxyurea treatment. Alkali gel

electrophoresis of total nucleic acids from four independent MEF cell lines with and without hydroxyuea (HU) treatment (200 mM for 48 hr). (E) Densitometry traces

of selected lanes from (D) as indicated and (F) quantification of fragmentation pattern.

See also Figure S5.
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Burgers, 2008; Miyabe et al., 2011). However, other DNA poly-

merases, such as Pol b (Cavanaugh et al., 2010) and lesion

bypass polymerases, may also contribute.

RNase H2 Is a Genome Surveillance Enzyme Required
for Ribonucleotide Removal
Ribonucleotide accumulation in genomic DNA of RNaseH2null

mice (Figures 5 and 6) implicates the RNase H2 complex in the

maintenance of genome integrity. This DNA repair function was

originally suggested by Eder and colleagues (Eder et al., 1993).

Ribonucleotides are likely to be harmful, as their ribose

20-hydroxyl group increases susceptibility of the adjacent phos-

phodiester bond to hydrolysis. Specific patterns of mutations at

nucleotide level have been observed in genomic DNA from

RNase H2 null S. cerevisiae (Kim et al., 2011; Nick McElhinny

et al., 2010a). Most frequently, these consist of 2–5 bp deletions,

which are the result of topoisomerase-I-induced nicks at

embedded ribonucleotides (Kim et al., 2011). However, the

loss of yeast RNase H2 alone has a relatively small effect on

mutation frequency, and the effect of embedded ribonucleotides

on large-scale genome stability in yeast has not been reported.

Therefore, the frequent occurrence of large-scale genome

rearrangements in RNaseH2null MEFs is unanticipated and

noteworthy (Figure 7).

We estimate that ribonucleotides are incorporated at a rate of

at least 1 every 7,600 nt in RNaseH2null cells, corresponding to

�1,300,000 lesions per cell. This is within the same order of

magnitude predicted from in vitro incorporation rates by eukary-

otic replicative polymerases (Nick McElhinny et al., 2010a) and is

substantially higher than any other endogenous base lesions

occurring in the mammalian genome. Even the previously most

common lesions, such as abasic sites, 8-hydroxyguanine

(8-oxoG), and 7-methylguanine, only occur up to 10,000 times

per genome (Ciccia and Elledge, 2010; Lindahl and Barnes,

2000). As misincorporated ribonucleotides occur at at least

50-fold higher rates, without an efficient repair mechanism,

they would be the most common noncanonical nucleotides

present in mammalian DNA. Therefore, defining the processes

that remove these ribonucleotides is of substantial interest. Of

note, FEN1/Rad27 in conjunction with RNase H2 can excise
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Figure 7. RNaseH2null Cells Display Large-Scale Genome Instability

(A) Micronuclei are frequently present in Rnase2b�/�;p53�/� cells. Error bars represent SD. n = 3 expts 500–1000 cells/expt. p value, t test.

(B) Chromosomal rearrangements (asterisk) and marker chromosomes (arrowheads) are evident in DAPI-stained metaphase chromosomes of

Rnase2b�/�;p53�/� MEFs.

(C and D) FISH for major (green) andminor (red) satellite probes confirms the presence of frequent intrachromosomal translocations and heterochromaticminutes

(marker chromosomes). (i) Robertsonian translocation, (ii) heterochromatic marker chromosomes (arrowheads), (iii) end-to-end translocation, and (iv) complex

chromosomal rearrangement. (D) Quantification of cytogenetic anomalies identified in (C). n = 38, 32, 33, and 20 metaphases, respectively. p < 0.05 (Fisher’s

exact test) for all wild-type (+/+) versus mutant (�/�) comparisons.

See also Figure S6.
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ribonucleotides on an in vitro substrate, generating a single

nucleotide gap on which a DNA polymerase and DNA ligase

could act directly to repair the lesion (Rydberg and Game, 2002).

Misincorporated Ribonucleotides Induce DNA Damage
In itself, ribonucleotide incorporation does not prevent replica-

tion: cellular proliferation is seen in both RNase H2 null mouse

cells (p53�/�; Figure 4) and RNase H2 null budding yeast, in

which p53 signaling is not evolutionarily conserved (Arudchan-

dran et al., 2000; Belyi et al., 2010; Nick McElhinny et al.,

2010b). DNA polymerases can tolerate templates containing

ribonucleotides (Watt et al., 2011), which may explain why early

embryogenesis in RNaseH2null embryos proceeds normally. The

absence of grossly perturbed transcriptional profiles later in

development (Figure 4) suggests that mammalian RNA polymer-

ases also tolerate ribonucleotide-containing templates.

However, excessive numbers of ribonucleotides do appear to

be problematic. Replication fork stalling may occur in regions

that contain clustered ribonucleotides, as seen at the

S. pombe mating switch locus (Vengrova and Dalgaard,

2006). Incorporation of ribonucleotides in difficult to replicate

regions or in close proximity to other lesions may be similarly

detrimental. This is likely to explain the activation of DNA-

damage response signaling observed in RNaseH2null MEFs

and embryos (Figures 4 and 5). Chromosomal rearrangements

and micronuclei indicate the occurrence of double-strand

DNA breaks. Such breaks may result from subsequent replica-

tion fork collapse or may be caused directly by hydrolysis of

ribonucleotides on opposing DNA strands (see model in Figures

S6C and S6D). Alternatively, the observed increase in PAR (Fig-

ure S4C) could suggest the presence of frequent single-strand

breaks that would be converted at low frequency to double-

strand lesions during replication. The accumulation of ribonu-

cleotides in conjunction with rapid cell cycles in the epiblast

(Snow, 1977) probably underlies the marked activation of

DNA-damage signaling in the embryo. This then results in a

p53-mediated inhibition of proliferation that is likely to substan-

tially contribute to the lethality observed at E11.5 in RNaseH2null

embryos.

Ribonucleotide Incorporation in Health and Disease
To our knowledge, stable incorporation of ribonucleotides has

only been reported to date in two contexts. First, a diribonucleo-

tide at the S. pombe mating switch locus is believed to be

the signal initiating homologous recombination (Vengrova and

Dalgaard, 2004). Second, the presence of ribonucleotides in

mature mitochondrial DNA has been previously established

(Grossman et al., 1973), and we now show these to be mono

or diribonucleotides (Figure S5H). These sporadic ribonucleo-

tides appear to be randomly distributed and thus are likely to

result from replicative polymerase incorporation. The selectivity

of the mitochondrial polymerase g would be consistent with

the presence of 10–30 ribonucleotides in mature mtDNA (Kasi-

viswanathan and Copeland, 2011). These may be tolerated by

the mitochondrial genome either because of its relatively slow

replication rate (Bogenhagen and Clayton, 1977) or owing to

different mechanism(s) of genome replication (Clayton, 2003;

Holt, 2009). Likewise, ribonucleotide incorporation is well toler-

ated in RNase H2-deficient S. cerevisiae, with normal viability

and efficient cellular proliferation in unperturbed cells (Arudchan-

dran et al., 2000; Nick McElhinny et al., 2010b). As recently

reported, template switch and translesion DNA synthesis postre-

plication repair pathways may permit such ribonucleotides to be

tolerated (Lazzaro et al., 2012). In contrast, in mice, we find

that ribonucleotide removal is essential early in development.

Similarly, mutation of other genes ensuring genome integrity,

such as the catalytic subunit of pol z (Rev3), are viable in yeast

but cause embryonic lethality at a similar stage in mutant mice

(Esposito et al., 2000; Wittschieben et al., 2000). Such lethality

may therefore be explained by the much larger size and

complexity of the mammalian nuclear genome.

Low levels of ribonucleotide incorporation in the nuclear

genome may be tolerated, and this could well be relevant to

the autoinflammatory disorder Aicardi-Goutières syndrome

(AGS), in which aberrant nucleic acid substrates are thought to

drive an innate immune response (Crow and Rehwinkel, 2009).

Reduced RNase H2 activity in AGS may therefore result in

a chronic low level of ribonucleotide incorporation that is then

processed by alternative (non-RNase H2 dependent) repair

pathways. The increased levels of polyADPribosylation (Fig-

ure S4C), as well as the enhanced sensitivity to hydroxyurea

observed in Rnaseh2b+/� MEFs (Figure S5G), could be consis-

tent with this possibility. Aberrant nucleic acid species generated

by such repair could then trigger an innate immune response.

Alternatively, embedded ribonucleotides might induce DNA-

damage response signaling that itself stimulates interferon

production (Brzostek-Racine et al., 2011).

In summary, ribonucleotides are highly deleterious to the

mammalian cell when left incorporated in the nuclear genome,

causing substantial genome instability. RNase H2 is therefore

a critical enzyme for ensuring the integrity of genomic DNA.

Defining the pathway(s) that remove these ribonucleotides

from genomic DNA, the site and nature of ribonucleotide-

inducedDNAdamage, aswell as the genome distribution of ribo-

nucleotides will now be of substantial interest. This will help

improve our understanding of the pathological and physiological

roles of ribonucleotides in genomic DNA, of significance to both

nucleic acid-driven autoimmunity and carcinogenesis.

EXPERIMENTAL PROCEDURES

Generation of Rnaseh2b Null Mice

While performing targeted homologous recombination to generate 129/Ola

ES cells with a c.520G > A (A174T) mutation in exon 7 of Rnaseh2b (that corre-

sponds to themost common, hypomorphic AGSpatientmutation, c.529G>A),

we identified the Rnaseh2bE202X ES clone that had fortuitously acquired

an additional mutation resulting in a premature stop codon: c.604G > T,

E202X. Further details of gene targeting are available in the Supplemental

Information. After karyotyping and blastocyst injection, resulting male

chimeras were crossed to C57BL/6J females, giving rise to heterozygous

Rnaseh2b knockin mice carrying both A174T and E202X mutations

(Rnaseh2btm1-hgu-A174T,E202X, elsewhere referred to as Rnaseh2bE202X).

Crosses with p53+/� mice (Clarke et al., 1993) were used to generate

Rnaseh2bE202X/+;p53+/� double mutants. Knockout-first Rnaseh2b mice

were generated by blastocyst injection of the Rnaseh2btm1a(EUCOMM)Wtsi ES

cell clone EPD0087_4_A02 (EUCOMM ID: 24441; elsewhere referred to as

Rnaseh2btm1a) (Friedel et al., 2007). The Rnaseh2btm1a allele is designed to

prematurely truncate Rnaseh2b transcripts through targeted insertion into
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intron 4 of a genetrap cassette that contains a strong splice acceptor and an

efficient polyadenylation signal (Testa et al., 2004).

Genotyping

Genotypes of mice and embryos were determined by multiplex PCR. The

status of early embryos was determined by a-RNase H2 immunofluorescence.

For further details and primer sequences, see Supplemental Information and

Table S1.

RNase H Activity Assays

Enzyme activity assays were performed in triplicate using a FRET-based

fluorescent substrate release assay as previously described (Crow et al.,

2006a; Reijns et al., 2011) using 100 ng/ml of total protein from whole-cell

extracts. RNaseH2-specific activity was determined by subtracting the cellular

activity against a sequence-matched DNA duplex without ribonucleotides.

Western Blotting, Immunohistochemistry, Immunocytochemistry,

and Microscopy

Immunoblotting was performed onwhole-cell extracts as described previously

(Crow et al., 2006a). For immunohistochemistry, tissues and deciduas were

dissected into ice-cold PBS and fixed with 4% paraformaldehyde/PBS for

3–16 hr at 4�C with further processing performed by standard methods.

Images were collected on Zeiss Axioplan II fluorescence or Nikon A1R

confocal microscopes. For full experimental details, see the Supplemental

Information; for antibodies and dilutions, see Table S2.

Detection of Ribonucleotides in Genomic DNA

Total nucleic acids were isolated by mechanical disruption of MEFs or yolk

sacks in ice-cold lysis buffer (20 mM Tris-HCl [pH 7.5], 75 mM NaCl, and

50 mM EDTA) and subsequent incubation with 100 mg/ml proteinase K, with

Sarcosine then added to final 1% concentration. Nucleic acids were sequen-

tially extracted with TE-equilibrated phenol, phenol:chloroform:isoamylalcohol

(25:24:1), and chloroform; precipitated with isopropanol; washed with 75%

ethanol; and dissolved in water. Mitochondrial DNA (mtDNA) was isolated

from sucrose-gradient purifiedmitochondria as previously described (Pohjois-

mäki et al., 2010). For alkaline gel electrophoresis, total nucleic acids were

heated for 2 hr at 55�C with 0.3 M NaOH and separated on agarose gels

(50 mM NaOH, 1 mM EDTA) as previously described (Nick McElhinny et al.,

2010b). Control samples were heated with 0.3 M NaCl and separated on

0.53 TBE agarose gels. Alternatively, nucleic acids were treated with RNase

H enzymes and heated for 30–60 min in 90% formamide/20 mM EDTA at

37�C before separation on 0.53 TBE agarose gels. Digestions with RNase

HI were carried out in 100 ml of 13 reaction buffer (NEB) with 5 U of enzyme

for 1 hr at 37�C. Digestions with RNase H2 were carried out for 1 hr at 37�C
in 100 ml reaction buffer (50 mM Tris [pH 8], 60 mM KCl, 10 mM MgCl2,

0.01% BSA, 0.01% Triton) using 10 nM of purified recombinant human RNase

H2 (Reijns et al., 2011). Nucleic acids were ethanol precipitated and dissolved

in 90% formamide/20 mM EDTA. After electrophoresis, gels were stained with

SYBR Gold (Invitrogen) or ethidium bromide.

ACCESSION NUMBERS

Microarray data for E9.5 Rnaseh2bE202X/E202X and wild-type embryos have

been deposited in the Gene Expression Omnibus under the accession number
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