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Abstract

In this paper we present a fully unsupervised
syntactic class induction system formulated as
a Bayesian multinomial mixture model, where
each word type is constrained to belong to a
single class. By using a mixture model rather
than a sequence model (e.g., HMM), we are
able to easily add multiple kinds of features,
including those at both the type level (mor-
phology features) and token level (context and
alignment features, the latter from parallel cor-
pora). Using only context features, our sys-
tem yields results comparable to state-of-the
art, far better than a similar model without the
one-class-per-type constraint. Using the addi-
tional features provides added benefit, and our
final system outperforms the best published
results on most of the 25 corpora tested.

1 Introduction

Research on unsupervised learning for NLP has be-
come widespread recently, with part-of-speech in-
duction, or syntactic class induction, being a partic-
ularly popular task.1 However, despite a recent pro-
liferation of syntactic class induction systems (Bie-
mann, 2006; Goldwater and Griffiths, 2007; John-
son, 2007; Ravi and Knight, 2009; Berg-Kirkpatrick
et al., 2010; Lee et al., 2010), careful compari-
son indicates that very few systems perform better
than some much simpler and quicker methods dating
back ten or even twenty years (Christodoulopoulos

1The task is more commonly referred to as part-of-speech
induction, but we prefer the term syntactic class induction since
the induced classes may not coincide with part-of-speech tags.

et al., 2010). This fact suggests that we should con-
sider which features of the older systems led to their
success, and attempt to combine these features with
some of the machine learning methods introduced
by the more recent systems. We pursue this strat-
egy here, developing a system based on Bayesian
methods where the probabilistic model incorporates
several insights from previous work.

Perhaps the most important property of our model
is that it is type-based, meaning that all tokens of
a given word type are assigned to the same clus-
ter. This property is not strictly true of linguistic
data, but is a good approximation: as Lee et al.
(2010) note, assigning each word type to its most
frequent part of speech yields an upper bound ac-
curacy of 93% or more for most languages. Since
this is much better than the performance of cur-
rent unsupervised syntactic class induction systems,
constraining the model in this way seems likely to
improve performance by reducing the number of
parameters in the model and incorporating useful
linguistic knowledge. Both of the older systems
discussed by Christodoulopoulos et al. (2010), i.e.,
Clark (2003) and Brown et al. (1992), included this
constraint and achieved very good performance rel-
ative to token-based systems. More recently, Lee et
al. (2010) presented a new type-based model, and
also reported very good results.

A second property of our model, which distin-
guishes it from the type-based Bayesian model of
Lee et al. (2010), is that the underlying probabilistic
model is a clustering model, (specifically, a multino-
mial mixture model) rather than a sequence model
(HMM). In this sense, our model is more closely re-
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lated to several non-probabilistic systems that clus-
ter context vectors or lower-dimensional represen-
tations of them (Redington et al., 1998; Schütze,
1995; Lamar et al., 2010). Sequence models are
by far the most common method of supervised part-
of-speech tagging, and have also been widely used
for unsupervised part-of-speech tagging both with
and without a dictionary (Smith and Eisner, 2005;
Haghighi and Klein, 2006; Goldwater and Griffiths,
2007; Johnson, 2007; Ravi and Knight, 2009; Lee et
al., 2010). However, systems based on context vec-
tors have also performed well in these latter scenar-
ios (Schütze, 1995; Lamar et al., 2010; Toutanova
and Johnson, 2007) and present a viable alternative
to sequence models.

One advantage of using a clustering model rather
than a sequence model is that the features used for
clustering need not be restricted to context words.
Additional types of features can easily be incorpo-
rated into the model and inference procedure using
the same general framework as in the basic model
that uses only context word features. In particu-
lar, we present two extensions to the basic model.
The first uses morphological features, which serve
as cues to syntactic class and seemed to partly ex-
plain the success of two best-performing systems
analysed by Christodoulopoulos et al. (2010). The
second extension to our model uses alignment fea-
tures gathered from parallel corpora. Previous work
suggests that using parallel text can improve perfor-
mance on various unsupervised NLP tasks (Naseem
et al., 2009; Snyder and Barzilay, 2008).

We evaluate our model on 25 corpora in 20 lan-
guages that vary substantially in both syntax and
morphology. As in previous work (Lee et al., 2010),
we find that the one-class-per-type restriction boosts
performance considerably over a comparable token-
based model and yields results that are comparable
to state-of-the-art even without the use of morphol-
ogy or alignment features. Including morphology
features yields the best published results on 14 or 15
of our 25 corpora (depending on the measure) and
alignment features can improve results further.

2 Models

Our model is a multinomial mixture model with
Bayesian priors over the mixing weights θ and

α θ

z

β φ f

Z
M

nj

Figure 1: Plate diagram of the basic model with a single
feature per token (the observed variable f ). M , Z, and
nj are the number of word types, syntactic classes z, and
features (= tokens) per word type, respectively.

multinomial class output parameters ϕ. The model
is defined so that all observations associated with
a single word type are generated from the same
mixing component (syntactic class). In the basic
model, these observations are token-level features;
the morphology model adds type-level features as
well. We begin by describing the simplest version of
our model, where each word token is associated with
a single feature, for example its left context word
(the word that occurs to its left in the corpus). We
then show how to generalise the model to multiple
token-level features and to type-level features.

2.1 Basic model

In the basic model, each word token is represented
by a single feature such as its left context word.
These features are the observed data; the model ex-
plains the data by assuming that it has been gener-
ated from some set of latent syntactic classes. The
ith class is associated with a multinomial parameter
vector ϕi that defines the distribution over features
generated from that class, and with a mixing weight
θi that defines the prior probability of that class. θ
and ϕi are drawn from symmetric Dirichlet distribu-
tions with parameters α and β respectively.

The generative story goes as follows: First, gen-
erate the prior class probabilities θ. Next, for each
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word type j = 1 . . . M , choose a class assignment zj

from the distribution θ. For each class i = 1 . . . Z,
choose an output distribution over features ϕi. Fi-
nally, for each token k = 1 . . . nj of word type j,
generate a feature fjk from ϕzj , the distribution as-
sociated with the class that word type j is assigned
to. The model is illustrated graphically in Figure 1
and is defined formally as follows:

θ | α ∼ Dirichlet(α)

zj | θ ∼ Multinomial(θ)

ϕi | β ∼ Dirichlet(β)

fjk | ϕzj ∼ Multinomial(ϕzj )

In addition to the variables defined above, we will
use F to refer to the number of different possible
values a feature can take on (so that ϕ is a Z × F
matrix). Thus, one way to think of the model is as a
vector-based clustering system, where word type j is
associated with a 1×F vector of feature counts rep-
resenting the features of all nj tokens of j, and these
vectors are clustered into similar classes. The differ-
ence from other vector-based syntactic class induc-
tion systems is in the method of clustering. Here,
we define a Gibbs sampler that samples from the
posterior distribution of the clusters given the ob-
served features; other systems have used various
standard distance-based vector clustering methods.
Some systems also include dimensionality reduction
(Schütze, 1995; Lamar et al., 2010) to reduce the
size of the context vectors; we simply use the F most
common words as context features.

2.2 Inference
At inference time we want to sample a syntactic
class assignment z from the posterior of the model.
We use a collapsed Gibbs sampler, integrating out
the parameters θ and ϕ and sampling from the fol-
lowing distribution:

P (z|f , α, β) ∝ P (z|α)P (f |z, β). (1)

Rather than sampling the joint class assignment
P (z|f , α, β) directly, the sampler iterates over each
word type j, resampling its class assignment zj

given the current assignments z−j of all other word
types. The posterior over zj can be computed as

P (zj | z−j , f , α, β)

∝ P (zj | z−j , α, β)P (fj | f−j , z, α, β) (2)

where fj are the features associated with word type
j (one feature for each token of j). The first (prior)
factor is easy to compute due to the conjugacy be-
tween the Dirichlet and multinomial distributions,
and is equal to

P (zj = z | z−j , α) =
nz + α

n· + Zα
(3)

where nz is the number of types in class z and n·
is the total number of word types in all classes. All
counts in this and the following equations are com-
puted with respect to z−j (e.g., n· = M − 1).

Computing the second (likelihood) factor is
slightly more complex due to the dependencies be-
tween the different variables in fj that are induced
by integrating out the ϕ parameters. Consider first a
simple case where word type j occurs exactly twice
in the corpus, so fj contains two features. The prob-
ability of the first feature fj1 is equal to

P (fj1 = f | zj = z, z−j , f−j , β) =
nf,z + β

n·,z + Fβ
(4)

where nf,z is the number of times feature f has been
seen in class z, n·,z is the total number of feature
tokens in the class, and F is the number of different
possible features.

The probability of the second feature fj2 can be
calculated similarly, except that it is conditioned on
fj1 in addition to the other variables, so the counts
for previously observed features must include the
counts due to fj1 as well as those due to f−j . Thus,
the probability is

P (fj2 = f | fj1, zj = z, z−j , f−j , β)

=
nf,z + δ(fj1, fj2) + β

n·,z + 1 + Fβ
(5)

where δ is the Kronecker delta function, equal to 1
if its arguments are equal and 0 otherwise.

Extending this example to the general case, the
probability of a sequence of features fj is computed
using the chain rule, where the counts used in each
factor are incremented as necessary for each addi-
tional conditioning feature, yielding the following
expression:

P (fj | f−j , zj = z, z−j , β)

=

∏F
k=1

∏njk−1
i=0 (njk,z + i + β)

∏nj−1
i=0 (n·,z + i + Fβ)

(6)
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where njk is the number of instances of feature k in
word type j.2

2.3 Extended models
We can extend the model above in two different
ways: by adding more features at the word token
level, or by adding features at the type level. To add
more token-level features, we simply assume that
each word token generates multiple features, one
feature from each of several different kinds.3 For
example, the left context word might be one kind of
feature and the right context word another. We as-
sume conditional independence between the gener-
ated features given the syntactic class, so each kind
of feature t has its own output parameters ϕ(t). A
plate diagram of the model with T kinds of features
is shown in Figure 2 (a type-level feature is also in-
cluded in this diagram, as described below).

Due to the independence assumption between the
different kinds of features, the basic Gibbs sampler
is easy to extend to this case by simpling multiplying
in extra factors for the additional kinds of features,
with the prior (Equation 3) unchanged. The likeli-
hood becomes:

P (f
(1)
j , . . . , f

(T )
j | f (1...T )

−j , zj = z, z−j , β)

=
T∏

t=1

P (f
(t)
j | f (t)

−j , zj = z, z−j , β) (7)

where each factor in the product is computed using
Equation 6.

In addition to monolingual context features, we
also explore the use of alignment features for those
languages where we have parallel corpora. These
features are extracted for language ℓ by word-
aligning ℓ to another language ℓ′ (details of the
alignment procedure are described in Section 3.1).
The features used for each token e in ℓ are the left
and right context words of the word token that is
aligned to e (if there is one). As with the mono-
lingual context features, we use only the F most fre-
quent words in ℓ′ as possible features.

2One could approximate this likelihood term by assuming
independence between all nj feature tokens of word type j.
This is the approach taken by Lee et al. (2010).

3We use the word kind here to avoid confusion with type,
which we reserve for the type-token distinction, which can ap-
ply to features as well as words.

Note that this model with multiple context fea-
tures is deficient: it can generate data that are in-
consistent with any actual corpus, because there is
no mechanism to constrain the left context word
of token ei to be the same as the right context
word of token ei−1 (and similarly with alignment
features). However, deficient models have proven
useful in other unsupervised NLP tasks (Klein and
Manning, 2002; Toutanova and Johnson, 2007). In
particular, Toutanova and Johnson (2007) demon-
strate good performance on unsupervised part-of-
speech tagging (using a dictionary) with a Bayesian
model similar to our own. If we remove the part of
their model that relies on the dictionary (the mor-
phological ambiguity classes), their model is equiv-
alent to our own, without the restriction of one class
per type. We use this token-based version of our
model as a baseline in our experiments.

The final extension to our model introduces type-
level features, specifically morphology features.
The model is illustrated in Figure 2. We assume
conditional independence between the morphology
features and other features, so again we can simply
multiply another factor into the likelihood during in-
ference. There is only one morphological feature per
type, so this factor has the form of Equation 4. Since
frequent words will have many token-level features
contributing to the likelihood and only one morphol-
ogy feature, the morphology features will have a
greater effect for infrequent words (as appropriate,
since there is less evidence from context and align-
ments). As with the other kinds of features, we use
only a limited number Fm of morphology features,
as described below.

3 Experiments

3.1 Experimental setup

We evaluate our models using an increasing level
of complexity, starting with a model that uses only
monolingual context features. We use the F = 100
most frequent words as features, and consider two
versions of this model: one with two kinds of fea-
tures (one left and one right context word) and one
with four (two context words on each side).

For the model with morphology features we ran
the unsupervised morphological segmentation sys-
tem Morfessor (Creutz and Lagus, 2005) to get a
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Figure 2: Plate diagram of the extended model with T
kinds of token-level features (f (t) variables) and a single
kind of type-level feature (morphology, m).

segmentation for each word type in the corpus. We
then extracted the suffix of each word type4 and used
it as a feature type. This process yielded on average
Fm = 110 morphological feature types5. Each word
type generates at most one of these possible features.
If there are overlapping possibilities (e.g. -ingly and
-y) we take the longest possible match.

We also explore the idea of extending the mor-
phology feature space beyond suffixes, by including
features like capitalisation and punctuation. Specif-
ically we use the features described in Haghighi
and Klein (2006), namely initial-capital, contains-
hyphen, contains-digit and we add an extra feature
contains-punctuation.

For the model with alignment features, we fol-
low (Naseem et al., 2009) in using only bidirectional
alignments: using Giza++ (Och and Ney, 2003),
we get the word alignments in both directions be-
tween all possible language pairs in our parallel cor-
pora (i.e., alternating the source and target languages
within each pair). We then use only those align-
ments that are found in both directions. As discussed

4Since Morfessor yields multiple affixes for each word we
concatenated all the suffixes into a single suffix.

5There was large variance in the number of feature types for
each language ranging from 11 in Chinese to more than 350 in
German and Czech.

above, we use two kinds of alignment features: the
left and right context words of the aligned token in
the other language. The feature space is set to the
F = 100 most frequent words in that language.

Instead of fixing the hyperparameters α and β, we
used the Metropolis-Hastings sampler presented by
Goldwater and Griffiths (2007) to get updated values
based on the likelihood of the data with respect to
those hyperparameters6. In order to improve conver-
gence of the sampler, we used simulated annealing
with a sigmoid-shaped cooling schedule from an ini-
tial temperature of 2 down to 1. Preliminary experi-
ments indicated that we could achieve better results
by cooling even further (approximating the MAP so-
lution rather than a sample from the posterior), so for
all experiments reported here, we ran the sampler for
a total of 2000 iterations, with the last 400 of these
decreasing the temperature from 1 to 0.66.

Finally, we investigated two different initialisa-
tion techniques: First, we use random class as-
signments to word types (referred to as method 1)
and second, we assign each of the Z most frequent
word types to a separate class and then randomly
distribute the rest of the word types to the classes
(method 2).

3.2 Datasets
Although unsupervised systems should in principle
be language- and corpus-independent, most part-of-
speech induction systems (especially in the early lit-
erature) have been developed on English. Whether
because English is simply an easier language, or be-
cause of bias introduced during development, these
systems’ performance is considerably worse in other
languages (Christodoulopoulos et al., 2010)

Since we aim to use our system mostly on non-
English corpora, and ones that are significantly
smaller than the large English treebank corpora, we
developed our models using one of the languages of
the MULTEXT-East corpus (Erjavec, 2004), namely
Bulgarian. The other languages in the corpus were
used during development as a source of word align-
ments, but otherwise were only used for testing final
versions of our models. Since none of the authors
speak any of the languages in the MULTEXT col-

6For simplicity, we tied the β parameters for the two or four
kinds of context features to the same value, and similarly the β
parameters for the two kinds of alignment features.
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lection, we also used the Penn Treebank WSJ cor-
pus (Marcus et al., 1993) for development. Fol-
lowing Christodoulopoulos et al. (2010) we created
a smaller version of the WSJ corpus (referred to
as wsj-s) to approximate the size of the corpora in
MULTEXT-East. For comparison to other systems,
we also used the full WSJ at test time.

For further testing, we used the remaining MUL-
TEXT languages, as well as the languages of the
CONNL-X (Buchholz and Marsi, 2006) shared task.
This dataset contains 13 languages, 4 of which
are freely available (Danish, Dutch, Portuguese
and Swedish) and 9 that are used with permission
from the creators of the corpora ( Arabic7, Bul-
garian8, Czech9, German10, Chinese11, Japanese12,
Slovene13, Spanish14, Turkish15 ). Following Lee et
al. (2010) we used only the training sections for each
language.

Finally, to widen the scope of our system, we gen-
erated two more corpora in French16 and Ancient
Greek17, extracting the gold standard parts of speech
from the respective dependency treebanks.

3.3 Baselines

We chose three baselines for comparison. The first
is the basic k-means clustering algorithm, which we
applied to the same feature vectors we extracted for
our system (context + extended morphology), using
a Euclidean distance metric. This provides a very
simple vector-based clustering baseline. The second
baseline is a more recent vector-based syntactic class
induction method, the SVD approach of (Lamar et
al., 2010), which extends Schütze (1995)’s original
method and, like ours, enforces a one-class-per-tag
restriction. As a third baseline we use the system of
Clark (2003) since it is a type-level system that mod-

7Part of the Prague Arabic Treebank (Hajič et al., 2003;
Smrž and Pajas, 2004)

8Part of the BulTreeBank (Simov et al., 2004).
9Part of the Prague Dep. Treebank (Böhmová et al., 2001)

10Part of the TIGER Treebank (Brants et al., 2002)
11Part of the Sinica Treebank (Keh-Jiann et al., 2003)
12Part of the Tübingen Treebank of Spoken Japanese (for-

merly VERMOBIL Treebank - Kawata and Bartels (2000)).
13Part of the Slovene Dep. Treebank (Džeroski et al., 2006)
14Part of the Cast3LB Treebank (Civit et al., 2006)
15Part of the METU-Sabanci Treebank (Oflazer et al., 2003).
16French Treebank (Abeillé et al., 2000)
17Greek Dependency Treebank (Bamman et al., 2009)

els morphology and has produced very good results
on multilingual corpora.

4 Results and Analysis

4.1 Development results

Tables 1 and 2 present the results from develop-
ment runs, which were used to decide which fea-
tures to incorporate in the final system. We used V-
Measure (Rosenberg and Hirschberg, 2007) as our
primary evaluation score, but also present many-to-
one matching accuracy (M-1) scores for better com-
parison with previously published results. We chose
V-Measure (VM) as our evaluation score because it
is less sensitive to the number of classes induced by
the model (Christodoulopoulos et al., 2010), allow-
ing us to develop our models without using the num-
ber of classes as a parameter. We fixed the number
of classes in all systems to 45 during development;
note however that the gold standard tag set for Bul-
garian contains only 12 tags, so the results in Ta-
ble 1 (especially the M-1 scores) are not comparable
to previous results. For results using the number of
gold-standard tags refer to Table 4.

The first conclusion that can be drawn from these
results is the large difference between the token-
and type-based versions of our system, which con-
firms that the one-class-per-type restriction is help-
ful for unsupervised syntactic class induction. We
also see that for both languages, the performance of
the model using 4 context words (±2 on each side) is
worse than the 2 context words model. We therefore
used only two context words for all of our additional
test languages (below).

We can clearly see that morphological features
are helpful in both languages; however the extended
features of Haghighi and Klein (2006) seem to help
only on the English data. This could be due to the
fact that Bulgarian has a much richer morphology
and thus the extra features contribute little to the
overall performance of the model.

The contribution of the alignment features on the
Bulgarian corpus (aligned with English) is less sig-
nificant than that of morphology but when com-
bined, the two sets of features yield the best per-
formance. This provides evidence in favor of using
multiple features.

Finally, initialisation method 2 does not yield
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system ±1 words ±2 words
VM/M-1 VM/M-1

base 58.1 / 70.8 55.4 / 67.6
base(tokens) 48.3 / 62.5 37.0 / 54.4
base(init) 57.6 / 70.1 56.1 / 68.6
+morph 58.3 / 74.9 57.4 / 71.9
+morph(ext) 57.8 / 73.7 57.8 / 70.1
(init)+morph 57.8 / 74.3 57.3 / 69.5
(init)+morph(ext) 58.1 / 74.3 57.2 / 71.3
+aligns(EN) 58.1 / 72.6 56.7 / 71.1
+aligns(EN)+morph 59.0 / 75.4 57.5 / 69.7

Table 1: V-measure (VM) and many-to-one (M-1) results
on the MULTEXT-Bulgarian corpus for various mod-
els using either ±1 or ±2 context words as features.
base: context features only; (tokens): token-based model;
(init): Initialisation method 2—other results use method
1; (ext): Extended morphological features.

system ±1 words ±2 words
VM/M-1 VM/M-1

base 63.3 / 64.3 62.4 / 63.3
base(tokens) 48.6 / 57.8 49.3 / 38.3
base(init) 62.7 / 62.9 62.2 / 62.4
+morph 66.4 / 66.7 65.1 / 67.2
+morph(ext) 67.7 / 72.0 65.6 / 67.0
(init)+morph 64.8 / 66.9 64.2 / 66.0
(init)+morph(ext) 67.4 / 71.3 65.7 / 67.1

Table 2: V-measure and many-to-one results on the wsj-s
corpus for various models, as described in Table 1.

.

consistent improvements over the standard ran-
dom initialisation—if anything, it seems to perform
worse. We therefore use only method 1 in the re-
maining experiments.

4.2 Overall results

Table 3 presents the results on our parallel corpora.
We tested all possible combinations of two lan-
guages to align, and present both the average score
over all alignments, and the score under the best
choice of aligned language.18 Also shown are the
results of adding morphology features to the basic
model (context features only) and to the best align-
ment model for each language. In accord with our

18The choice of language was based on the same test data, so
the ‘best-language’ results should be viewed as oracle scores.

development results, adding morphology to the ba-
sic model is generally useful. The alignment results
are mixed: on the one hand, choosing the best pos-
sible language to align yields improvements, which
can be improved further by adding morphological
features, resulting in the best scores of all models
for most languages. On the other hand, without
knowing which language to choose, alignment fea-
tures do not help on average. We note, however,
that three out of the seven languages have English
as their best-aligned pair (perhaps due to its better
overall scores), which suggests that in the absence
of other knowledge, aligning with English may be a
good choice.

The low average performance of the alignment
features is disappointing, but there are many pos-
sible variations on our method for extracting these
features that we have not yet tested. For example,
we used only bidirectional alignments in an effort to
improve alignment precision, but these alignments
typically cover less than 40% of tokens. It is pos-
sible that a higher-recall set of alignments could be
more useful.

We turn now to our results on all 25 corpora,
shown in Table 4 along with corpus statistics, base-
line results, and the best published results for each
language (when available). Our system, includ-
ing morphology features in all cases, is listed as
BMMM (Bayesian Multinomial Mixture Model).
We do not include alignment features for the MUL-
TEXT languages since these features only yielded
improvements for the oracle case where we know
which aligned language to choose. Nevertheless, our
MULTEXT scores mostly outperform all other sys-
tems. Overall, we acheive the highest published re-
sults on 14 (VM) or 15 (M-1) of the 25 corpora.

One surprising discovery is the high performance
of the k-means clustering system. Despite its sim-
plicity, it is competitive with the other systems and
in a few cases even achieves the best published re-
sults.

5 Conclusion

We have presented a Bayesian model for syntactic
class induction that has two important properties.
First, it is type-based, assigning the same class to
every token of a word type. We have shown by
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BASE ALIGNMENTS
Lang. base +morph Avg. Best +morph

VM/M-1 VM/M-1 VM/M-1 VM/M1 VM/M1
Bulgarian 54.4 / 61.5 54.5 / 64.3 53.1 / 60.5 55.2 / 64.5(EN) 55.7 / 66.0
Czech 54.2 / 58.9 53.9 / 64.2 52.6 / 58.4 53.8 / 59.7(EN) 55.4 / 66.4
English 62.9 / 72.4 63.3 / 73.3 62.5 / 72.0 63.2 / 71.9(HU) 63.5 / 73.7
Estonian 52.8 / 63.5 53.3 / 67.4 52.8 / 63.9 53.5 / 65.0(EN) 54.3 / 66.9
Hungarian 53.3 / 60.4 54.8 / 68.2 53.3 / 60.8 53.9 / 61.1(RO) 55.9 / 67.1
Romanian 53.9 / 62.4 52.3 / 61.1 56.2 / 63.7 57.5 / 64.6(ES) 54.5 / 63.4
Slovene 57.2 / 65.9 56.7 / 67.9 54.7 / 64.1 55.9 / 64.4(HU) 56.7 / 67.9
Serbian 49.1 / 56.6 49.0 / 62.0 47.3 / 55.6 48.9 / 59.4(CZ) 48.3 / 60.8

Table 3: V-measure (VM) and many-to-one (M-1) results on the languages in the MULTEXT-East corpus using
the gold standard number of classes shown in Table 4. BASE results use ±1-word context features alone or with
morphology. ALIGNMENTS adds alignment features, reporting the average score across all possible choices of paired
language and the scores under the best performing paired language (in parens), alone or with morphology features.

Language Types Tags k-means SVD2 clark Best Pub. BMMM

W
SJ wsj 49,190 45 59.5 / 61.6 58.2 / 64.0 65.6 / 71.2 68.8 / 76.1∗ 66.1 / 72.8

wsj-s 16,850 45 56.7 / 60.1 54.3 / 60.7 63.8 / 68.8 62.3 / 70.7∗ 67.7 / 72.0

M
U

LT
E

X
T-

E
as

t

Bulgarian 16,352 12 50.3 / 59.3 41.7 / 51.0 55.6 / 66.5 - 54.5 / 64.4
Czech 19,115 12 48.6 / 56.7 35.5 / 50.9 52.6 / 64.1 - 53.9 / 64.2
English 9,773 12 56.5 / 65.4 52.3 / 65.5 60.5 / 70.6 - 63.3 / 73.3
Estonian 17,845 11 45.3 / 55.6 38.7 / 55.3 44.4 / 58.4 - 53.3 / 64.4
Hungarian 20,321 12 46.7 / 53.9 39.8 / 49.5 48.9 / 61.4 - 54.8 / 68.2
Romanian 15,189 14 45.2 / 55.1 42.1 / 52.6 40.9 / 49.9 - 52.3 / 61.1
Slovene 17,871 12 46.9 / 56.2 39.5 / 54.2 54.9 / 69.4 - 56.7 / 67.9
Serbian 18,095 12 41.4 / 47.0 39.1 / 54.6 51.0 / 64.1 - 49.0 / 62.0

C
oN

L
L

06
Sh

ar
ed

Ta
sk

Arabic 12,915 20 43.3 / 60.7 27.6 / 49.0 40.6 / 59.8 - 42.4 / 61.5
Bulgarian 32,439 54 53.6 / 65.6 49.0 / 65.3 59.6 / 70.4 - 58.8 / 68.9
Chinese 40,562 15 32.6 / 61.1 24.5 / 54.6 31.8 / 56.7 - 42.6 / 69.4
Czech 130,208 12 - - 47.1 / 65.5 - 48.4 / 65.7
Danish 18,356 25 51.7 / 61.6 40.8 / 57.6 52.7 / 65.3 - / 66.7† 59.0 / 71.1
Dutch 28,393 13 45.3 / 60.5 36.7 / 52.4 52.2 / 67.9 - / 67.3‡ 54.7 / 71.1
German 72,326 54 58.7 / 67.5 54.1 / 64.2 63.0 / 73.9 - / 68.4‡ 61.9 / 74.4
Japanese 3,231 80 76.1 / 76.2 74.4 / 75.5 78.6 / 77.4 - 77.4 / 78.5
Portuguese 28,931 22 51.6 / 64.4 45.9 / 63.1 57.4 / 69.2 - / 75.3† 63.9 / 76.8
Slovene 7,128 29 52.6 / 64.2 44.0 / 60.3 53.9 / 63.5 - 49.4 / 56.2
Spanish 16,458 47 59.5 / 69.2 54.8 / 68.2 61.6 / 71.9 - / 73.2† 63.2 / 71.7
Swedish 20,057 41 53.2 / 62.2 47.4 / 59.1 58.9 / 68.7 - / 60.6‡ 58.0 / 68.2
Turkish 17,563 30 40.8 / 62.8 27.4 / 52.4 36.8 / 58.1 - 40.2 / 58.7
French 49,964 23 48.2 / 68.6 46.3 / 68.5 57.3 / 77.8 - 55.0 / 76.6
A.Greek 15,194 15 38.6 / 44.8 24.2 / 38.5 33.3 / 45.4 - 40.5 / 45.1

Table 4: Final results on 25 corpora in 20 languages, with the number of induced classes equal to the number of gold
standard tags in all cases. k-means and SVD2 models could not produce a clustering in the Czech CoNLL corpus due
its size. Best published results are from ∗Christodoulopoulos et al. (2010), †Berg-Kirkpatrick et al. (2010) and ‡Lee
et al. (2010). The latter two papers do not report VM scores. No best published results are shown for the MULTEXT
languages; Christodoulopoulos et al. (2010) report results based on 45 tags suggesting that clark performs best on
these corpora.
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comparison with a token-based version of the model
that this restriction is very helpful. Second, it is
a clustering model rather than a sequence model.
This property makes it easy to incorporate multi-
ple kinds of features into the model at either the to-
ken or the type level. Here, we experimented with
token-level context features and alignment features
and type-level morphology features, showing that
morphology features are helpful in nearly all cases,
and alignment features can be helpful if the aligned
language is properly chosen. Our results even with-
out these extra features are competitive with state-
of-the-art; with the additional features we achieve
the best published results in the majority of the 25
corpora tested.

Since it is so easy to add extra features to our
model, one direction for future work is to explore
other possible features. For example, it could be
useful to add dependency features from an unsuper-
vised dependency parser. We are also interested in
improving our morphology features, either by con-
sidering other ways to extract features during pre-
processing (for example, including prefixes or not
concatenating together all suffixes), or by develop-
ing a joint model for inducing both morphology and
syntactic classes simultaneously. Finally, our model
could be extended by replacing the standard mixture
model with an infinite mixture model (Rasmussen,
2000) in order to induce the number of syntactic
classes automatically.
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