

Edinburgh Research Explorer

Polynomial Time Algorithms for Branching Markov Decision
Processes and Probabilistic Min(Max) Polynomial Bellman
Equations
Citation for published version:
Etessami, K, Stewart, A & Yannakakis, M 2012, Polynomial Time Algorithms for Branching Markov Decision
Processes and Probabilistic Min(Max) Polynomial Bellman Equations. in A Czumaj, K Mehlhorn, A Pitts & R
Wattenhofer (eds), Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012,
Warwick, UK, July 9-13, 2012, Proceedings, Part I: 39th International Colloquium, ICALP 2012, Warwick,
UK, July 9-13, 2012, Proceedings, Part I. vol. 7391, Lecture Notes in Computer Science, vol. 7391, Springer
Berlin Heidelberg, pp. 314-326. DOI: 10.1007/978-3-642-31594-7_27

Digital Object Identifier (DOI):
10.1007/978-3-642-31594-7_27

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13,
2012, Proceedings, Part I

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28968212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-642-31594-7_27
http://www.research.ed.ac.uk/portal/en/publications/polynomial-time-algorithms-for-branching-markov-decision-processes-and-probabilistic-minmax-polynomial-bellman-equations(bbf92384-9930-4429-a354-e9bd4de6edb3).html

ar
X

iv
:1

20
2.

47
98

v2
 [

cs
.C

C
]

23
 F

eb
 2

01
2

Polynomial Time Algorithms for

Branching Markov Decision Processes and

Probabilistic Min(Max) Polynomial Bellman Equations

Kousha Etessami

U. of Edinburgh

kousha@inf.ed.ac.uk

Alistair Stewart

U. of Edinburgh

stewart.al@gmail.com

Mihalis Yannakakis

Columbia U.

mihalis@cs.columbia.edu

Abstract

We show that one can approximate the least fixed point solution for a multivariate sys-
tem of monotone probabilistic max (min) polynomial equations, referred to as maxPPSs (and
minPPSs, respectively), in time polynomial in both the encoding size of the system of equa-
tions and in log(1/ε), where ε > 0 is the desired additive error bound of the solution. (The
model of computation is the standard Turing machine model.) We establish this result using a
generalization of Newton’s method which applies to maxPPSs and minPPSs, even though the
underlying functions are only piecewise-differentiable. This generalizes our recent work which
provided a P-time algorithm for purely probabilistic PPSs.

These equations form the Bellman optimality equations for several important classes of
infinite-state Markov Decision Processes (MDPs). Thus, as a corollary, we obtain the first
polynomial time algorithms for computing to within arbitrary desired precision the optimal
value vector for several classes of infinite-state MDPs which arise as extensions of classic, and
heavily studied, purely stochastic processes. These include both the problem of maximizing and
mininizing the termination (extinction) probability of multi-type branching MDPs, stochastic
context-free MDPs, and 1-exit Recursive MDPs.

Furthermore, we also show that we can compute in P-time an ε-optimal policy for both
maximizing and minimizing branching, context-free, and 1-exit-Recursive MDPs, for any given
desired ε > 0. This is despite the fact that actually computing optimal strategies is Sqrt-Sum-
hard and PosSLP-hard in this setting.

We also derive, as an easy consequence of these results, an FNP upper bound on the complex-
ity of computing the value (within arbitrary desired precision) of branching simple stochastic
games (BSSGs) and related infinite-state turn-based stochastic game models.

1 Introduction

Markov Decision Processes (MDPs) are a fundamental model for stochastic dynamic optimization
and optimal control, with applications in many fields. They extend purely stochastic processes
(Markov chains) with a controller (an agent) who can partially affect the evolution of the process,
and seeks to optimize some objective. For many important classes of MDPs, the task of computing
the optimal value of the objective, starting at any state of the MDP, can be rephrased as the problem
of solving the associated Bellman optimality equations for that MDP model. In particular, for finite-
state MDPs where, e.g., the objective is to maximize (or minimize) the probability of eventually

1

reaching some target state, the associated Bellman equations are max-(min-)linear equations, and
we know how to solve such equations in P-time using linear programming (see, e.g., [20]). The same
holds for a number of other classes of finite-state MDPs.

In many important settings however, the state space of the processes of interest, both for purely
stochastic processes, as well as for controlled ones (MDPs), is not finite, even though the processes
can be specified in a finite way. For example, consider multi-type branching processes (BPs) [18, 16],
a classic probabilistic model with applications in many areas (biology, physics, etc.). A BP models
the stochastic evolution of a population of entities of distinct types. In each generation, every entity
of each type T produces a set of entities of various types in the next generation according to a
given probability distribution on offsprings for the type T . In a Branching Markov Decision Process
(BMDP) [19, 21], there is a controller who can take actions that affect the probability distribution
for the sets of offsprings for each entity of each type. For both BPs and BMDPs, the state space
consists of all possible populations, given by the number of entities of the various types, so there
are an infinite number of states. From the computational point of view, the usefulness of such
infinite-state models hinges on whether their analysis remains tractable.

In recent years there has been a body of research aimed at studying the computational com-
plexity of key analysis problems associated with MDP extensions (and, more general stochastic
game extensions) of important classes of finitely-presented but countably infinite-state stochastic
processes, including controlled extensions of classic multi-type branching processes (i.e., BMDPs),
and stochastic context-free grammars, and discrete-time quasi-birth-death processes. In [14] a model
called recursive Markov decision processes (RMDP) was studied that is in a precise sense more
general than all of these, and forms the MDP extension of recursive Markov chains [15] (and equiv-
alently, probabilistic pushdown systems [10]), or it can be viewed alternatively as the extension of
finite-state MDPs with recursion.

A central analysis problem for all of these models, which forms the key to a number of other
analyses, is the problem of computing their optimal termination (extinction) probability. For exam-
ple, in the setting of multi-type Branching MDPs (BMDPs), these key quantities are the maximum
(minimum) probabilities, over all control strategies (or policies), that starting from a single entity of
a given type, the process will eventually reach extinction (i.e., the state where no entities have sur-
vived). From these quantities, one can compute the optimum probability for any initial population,
as well as other quantities of interest.

One can indeed form Bellman optimality equations for the optimal extinction probabilities of
BMDPs, and for a number of related important infinite-state MDP models. However, it turns out
that these optimality equations are no longer max/min linear but rather are max/min polynomial
equations ([14]). Specifically, the Bellman equations for BMDPs with the objective of maximizing (or
minimizing) extinction probability are multivariate systems of monotone probabilistic max (or min)
polynomial equations, which we call max/minPPSs, of the form xi = Pi(x1, . . . , xn), i = 1, . . . , n,
where each Pi(x) ≡ maxj qi,j(x) (respectively Pi(x) ≡ minj qi,j(x)) is the max (min) over a finite
number of probabilistic polynomials, qi,j(x). A probabilistic polynomial, q(x), is a multi-variate
polynomial where the monomial coefficients and constant term of q(x) are all non-negative and
sum to ≤ 1. We write these equations in vector form as x = P (x). Then P (x) defines a mapping
P : [0, 1]n → [0, 1]n that is monotone, and thus (by Tarski’s theorem) has a least fixed point in
[0, 1]n. The equations x = P (x), can have more than one solution, but it turns out that the optimal
value vector for the corresponding BMDP is precisely the least fixed point (LFP) solution vector
q∗ ∈ [0, 1]n, i.e., the (coordinate-wise) least non-negative solution ([14]).

2

Already for pure stochastic multi-type branching processes (BPs), the extinction probabilities
may be irrational values. The problem of deciding whether the extinction probability of a BP is ≥ p,
for a given probability p is in PSPACE ([15]), and likewise, deciding whether the optimal extinction
probability of a BMDP is ≥ p is in PSPACE ([14]). These PSPACE upper bounds appeal to decision
procedures for the existential theory of reals for solving the associated (max/min)PPS equations.
However, already for BPs, it was shown in [15] that this quantitative decision problem is already
at least as hard as the square-root sum problem, as well as a (much) harder and more fundamental
problem called PosSLP, which captures the power of unit-cost exact rational arithmetic. It is a long-
standing open problem whether either of these decision problems is in NP, or even in the polynomial
time hierarchy (see [1, 15] for more information on these problems). Thus, such quantitative decision
problems are unlikely to have P-time algorithms, even in the purely stochastic setting, so we can
certainly not expect to find P-time algorithms for the extension of these models to the MDP setting.
On the other hand, it was shown in [15] and [14], that for both BPs and BMDPs the qualitative
decision problem of deciding whether the optimal extinction probability q∗i = 0 or whether q∗i = 1,
can be solved in polynomial time.

Despite decades of theoretical and practical work on computational problems like extinction
relating to multi-type branching processes, and equivalent termination problems related to stochas-
tic context-free grammars, until recently it was not even known whether one could obtain any
non-trivial approximation of the extinction probability of a purely stochastic multi-type branching
processes (BP) in P-time. The extinction probabilities of pure BPs are the LFP of a system of
probabilistic polynomial equations (PPS), without max or min. In recent work [11], we provided
the first polynomial time algorithm for computing (i.e., approximating) to within any desired addi-
tive error ε > 0 the LFP of a given PPS, and hence the extinction probability vector q∗ for a given
pure stochastic BP, in time polynomial in both the encoding size of the PPS (or the BP) and in
log(1/ε). The algorithm works in the standard Turing model of computation. Our algorithm was
based on an approach using Newton’s method that was first introduced and studied in [15]. In [15]
the approach was studied for more general systems of monotone polynomial equations (MPSs), and
it was subsequently further studied in [9].

Note that unlike PPSs and MPSs, the min/maxPPSs that define the Bellman equations for
BMDPs are no longer differentiable functions (they are only piecewise differentiable). Thus, a
priori, it is not even clear how one could apply a Newton-type method toward solving them.

In this paper we extend the results of [11], and provide the first polynomial time algorithms
for approximating the LFP of both maxPPSs and minPPSs, and thus the first polynomial time
algorithm for computing (to within any desired additive error) the optimal value vector for BMDPs
with the objective of maximizing or minimizing their extinction probability.

Our approach is based on a generalized Newton’s method (GNM), that extends Newton’s method
in a natural way to the setting of max/minPPSs, where each iteration requires the computation of
the least (greatest) solution of a max- (min-) linear system of equations, both of which we show can
be solved using linear programming. Our approach also makes crucial use of the P-time algorithms
in [14] for qualitative analysis of max/min BMDPs, which allow us to remove variables xi where
the LFP is q∗i = 1 or where q∗i = 0. The algorithms themselves have the nice feature that they are
relatively simple, although the analysis of their correctness and time complexity is rather involved.

We furthermore show that we can compute ε-optimal (pure) strategies (policies) for both maxPPSs
and minPPSs, for any given desired ε > 0, in time polynomial in both the encoding size of the
max/minPPS and in log(1/ε). This result is at first glance rather surprising, because there are only

3

a bounded number of distinct pure policies for a max/minPPS, and computing an optimal policy
is PosSLP-hard. The proof of this result involves an intricate analysis of bounds on the norms of
certain matrices associated with (max/min)PPSs.

Finally, we consider Branching simple stochastic games (BSSGs), which are two-player turn-
based stochastic games, where one player wants to maximize, and the other wants to minimize, the
extinction probability (see [14]). The value of these games (which are determined) is characterized
by the LFP solution of associated min-maxPPSs which combine both min and max operators (see
[14]). We observe that our results easily imply a FNP upper bound for ε-approximating the value
of BSSGs and computing ε-optimal strategies for them.

Related work: We have already mentioned some of the important relevant results. BMDPs and
related processes have been studied previously in both the operations research (e.g. [19, 21, 7])
and computer science literature (e.g. [14, 8, 4]), but no efficient algorithms were known for the
(approximate) computation of the relevant optimal probabilities and policies; the best known upper
bound was PSPACE [14].

In [14] we introduced Recursive Markov Decision Processes (RMDPs), a recursive extension of
MDPs. We showed that for general RMDPs, the problem of computing the optimal termination
probabilities, even within any nontrivial approximation, is undecidable. However, we showed for the
important class of 1-exit RMDPs (1-RMDP), the optimal probabilities can be expressed by min (or
max) PPSs, and in fact the problems of computing (approximately) the LFP of a min/maxPPS and
the termination probabilities of a max/min 1-RMDP, or BMDP, are all polynomially equivalent.
We furthermore showed in [14] that there are always pure, memoryless optimal policies for both
maximizing and minimizing 1-RMDPs (and for the more general turn-based stochastic games).

In [12], 1-RMDPs with a different objective were studied, namely optimizing the total expected
reward in a setting with positive rewards. In that setting, things are much simpler: the Bellman
equations turn out to be max/min-linear, the optimal values are rational, and they can be computed
exactly in P-time using linear programming.

A work that is more closely related to this paper is [8] by Esparza, Gawlitza, Kiefer, and
Seidl. They studied more general monotone min-maxMPSs, i.e., systems of monotone polynomial
equations that include both min and max operators, and they presented two different iterative
analogs of Newton’s methods for approximating the LFP of a min-maxMPS, x = P (x). Their
methods are related to ours, but differ in key respects. Both of their methods use certain piece-wise
linear functions to approximate the min-maxMPS in each iteration, which is also what one does
to solve each iteration of our generalized Newton’s method. However, the precise nature of their
piece-wise linearizations, as well as how they solve them, differ in important ways from ours, even
when they are applied in the specific context of maxPPSs or minPPSs. They show, working in the
unit-cost exact arithmetic model, that using their methods one can compute j “valid bits” of the
LFP (i.e., compute the LFP within relative error at most 2−j) in kP + cP · j iterations, where kP
and cP are terms that depend in some way on the input system, x = P (x). However, they give no
constructive upper bounds on kP , and their upper bounds on cP are exponential in the number n of
variables of x = P (x). Note that MPSs are more difficult: even without the min and max operators,
we know that it is PosSLP-hard to approximate their LFP within any nontrivial constant additive
error c < 1/2, even for pure MPSs that arise from Recursive Markov Chains [15].

Another subclass of RMDPs, called one-counter MDPs (a controlled extension of one-counter
Markov chains and Quasi-Birth-Death processes [13]) has been studied, and the approximation of
their optimal termination probabilities was recently shown to be computable, but only in expo-

4

nential time ([3]). This subclass is incomparable with 1-RMDPs and BMDPs, and does not have
min/maxPPSs as Bellman equations.

2 Definitions and Background

For an n-vector of variables x = (x1, . . . , xn), and a vector v ∈ N
n, we use the shorthand notation

xv to denote the monomial xv11 . . . xvnn . Let 〈αr ∈ N
n | r ∈ R〉 be a multi-set of n-vectors of natural

numbers, indexed by the set R. Consider a multi-variate polynomial Pi(x) =
∑

r∈R prx
αr , for some

rational-valued coefficients pr, r ∈ R. We shall call Pi(x) a monotone polynomial if pr ≥ 0
for all r ∈ R. If in addition, we also have

∑
r∈R pr ≤ 1, then we shall call Pi(x) a probabilistic

polynomial.

Definition 2.1. A probabilistic (respectively, monotone) polynomial system of equations,
x = P (x), which we shall call a PPS (respectively, a MPS), is a system of n equations, xi = Pi(x),
in n variables x = (x1, x2, ..., xn), where for all i ∈ {1, 2, ...n}, Pi(x) is a probabilistic (respectively,
monotone) polynomial.

A maximum-minimum probabilistic polynomial system of equations, x = P (x), called
a max-minPPS is a system of n equations in n variables x = (x1, x2, . . . , xn), where for all
i ∈ {1, 2, . . . , n}, either:

• Max-polynomial: Pi(x) = max{qi,j(x) : j ∈ {1, ...,mi}}, Or:

• Min-polynomial: Pi(x) = min{qi,j(x) : j ∈ {1, ...,mi}}

where each qi,j(x) is a probabilistic polynomial, for every j ∈ {1, . . . ,mi}.
We shall call such a system a maxPPS (respectively, a minPPS) if for every i ∈ {1, . . . , n},

Pi(x) is a Max-polynomial (respectively, a Min-polynomial).
Note that we can view a PPS in n variables as a maxPPS, or as a minPPS, where mi = 1 for

every i ∈ {1, . . . , n}.

For computational purposes we assume that all the coefficients are rational. We assume that
the polynomials in a system are given in sparse form, i.e., by listing only the nonzero terms, with
the coefficient and the nonzero exponents of each term given in binary. We let |P | denote the total
bit encoding length of a system x = P (x) under this representation.

We use max/minPPS to refer to a system of equations, x = P (x), that is either a maxPPS or
a minPPS. While [14] also considered systems of equations containing both max and min equations
(which we refer to as max-minPPSs), our primary focus will be on systems that contain just one
or the other. (But we shall also obtain results about max-minPPSs as a corollary.)

As was shown in [14], any max-minPPS, x = P (x), has a least fixed point (LFP) solution,
q∗ ∈ [0, 1]n, i.e., q∗ = P (q∗) and if q = P (q) for some q ∈ [0, 1]n then q∗ ≤ q (coordinate-wise
inequality). As observed in [15, 14], q∗ may in general contain irrational values, even in the case
of PPSs. The central results of this paper yield P-time algorithms for computing q∗ to within
arbitrary precision, both in the case of maxPPSs and minPPSs. As we shall explain, our P-time
upper bounds for computing (to within any desired accuracy) the least fixed point of maxPPSs and
minPPSs will also yield, as corollaries, FNP upper bounds for computing approximately the LFP
of max-minPPSs.

5

Definition 2.2. We define a policy for a max/minPPS, x = P (x), to be a function σ : {1, ...n} →
N such that 1 ≤ σ(i) ≤ mi.

Intuitively, for each variable, xi, a policy selects one of the probabilistic polynomials, qi,σ(i)(x),
that appear on the RHS of the equation xi = Pi(x), and which Pi(x) is the maximum/minimum
over.

Definition 2.3. Given a max/minPPS x = P (x) over n variables, and a policy σ for x = P (x),
we define the PPS x = Pσ(x) by:

(Pσ)i(x) = qi,σ(i)

for all i ∈ {1, . . . , n}.

Obviously, since a PPS is a special case of a max/minPPS, every PPS also has a unique LFP
solution (this was established earlier in [15]). Given a max/minPPS, x = P (x), and a policy, σ, we
use q∗σ to denote the LFP solution vector for the PPS x = Pσ(x).

Definition 2.4. For a maxPPS, x = P (x), a policy σ∗ is called optimal if for all other policies
σ, q∗σ∗ ≥ q∗σ. For a minPPS x = P (x) a policy σ∗ is optimal if for all other policies σ, q∗σ∗ ≤ q∗σ. A
policy σ is ε-optimal for ε > 0 if ||q∗σ − q∗||∞ ≤ ε.

A non-trivial fact is that optimal policies always exist, and furthermore that they actually attain
the LFP q∗ of the max/minPPS:

Theorem 2.5 ([14], Theorem 2). For any max/minPPS, x = P (x), there always exists an optimal
policy σ∗, and furthermore q∗ = q∗σ∗.1

Probabilistic polynomial systems can be used to capture central probabilities of interest for sev-
eral basic stochastic models, including Multi-type Branching Processes (BP), Stochastic Context-
Free Grammars (SCFG) and the class of 1-exit Recursive Markov Chains (1-RMC) [15]. Max-
and minPPSs can be similarly used to capture the central optimum probabilities of correspond-
ing stochastic optimization models: (Multi-type) Branching Markov Decision processes (BMDP),
Context-Free MDPs (CF-MDP), and 1-exit Recursive Markov Decision Processes (1-RMDP) [14].
We now define BMDPs and 1-RMDPs.

A Branching Markov Decision Process (BMDP) consists of a finite set V = {T1, . . . , Tn}
of types, a finite set Ai of actions for each type, and a finite set R(Ti, a) of probabilistic rules for

each type Ti and action ai ∈ Ai. Each rule r ∈ R(Ti, a) has the form Ti
pr
→ αr, where αr is a finite

multi-set whose elements are in V , pr ∈ (0, 1] is the probability of the rule, and the sum of the
probabilities of all the rules in R(Ti, a) is equal to 1:

∑
r∈R(Ti,a)

pr = 1.
Intuitively, a BMDP describes the stochastic evolution of entities of given types in the presence of

a controller that can influence the evolution. Starting from an initial population (i.e. set of entities
of given types) X0 at time (generation) 0, a sequence of populations X1,X2, . . . is generated, where
Xk is obtained from Xk−1 as follows. First the controller selects for each entity of Xk−1 an available
action for the type of the entity; then a rule is chosen independently and simultaneously for every
entity of Xk−1 probabilistically according to the probabilities of the rules for the type of the entity
and the selected action, and the entity is replaced by a new set of entities with the types specified

1Theorem 2 of [14] is stated in the more general context of 1-exit Recursive Simple Stochastic Games and shows
that also for max-minPPSs, both the max player and the min player have optimal policies that attain the LFP q∗.

6

by the right-hand side of the rule. The process is repeated as long as the current population Xk is
nonempty, and terminates if and when Xk becomes empty. The objective of the controller is either
to minimize the probability of termination (i.e., extinction of the population), in which case the
process is a minBMDP, or to maximize the termination probability, in which case it is a maxBMDP.
At each stage, k, the controller is allowed in principle to select the actions for the entities of Xk

based on the whole past history, may use randomization (a mixed strategy) and may make different
choices for entities of the same type. However, it turns out that these flexibilities do not increase the
controller’s power, and there is always an optimal pure, memoryless strategy that always chooses
the same action for all entities of the same type ([14]).

For each type Ti of a minBMDP (respectively, maxBMDP), let q∗i be the minimum (resp.
maximum) probability of termination if the initial population consists of a single entity of type
Ti. From the given minBMDP (maxBMDP) we can construct a minPPS (resp. maxPPS) x =
P (x) whose LFP is precisely the vector q∗ of optimal termination (extinction) probabilities (see
Theorem 20 in the full version of [14]): The min/max polynomial Pi(x) for each type Ti contains
one polynomial qi,j(x) for each action j ∈ Ai, with qi,j(x) =

∑
r∈R(Ti,j)

prx
αr .

A 1-exit Recursive Markov Decision Process (1-RMDP) consists of a finite set of compo-
nents A1, . . . , Ak, where each component Ai is essentially a finite-state MDP augmented with the
ability to make recursive calls to itself and other components. Formally, each component Ai has a
finite set Ni of nodes, which are partitioned into probabilistic nodes and controlled nodes, and a
finite set Bi of "boxes" (or supernodes), where each box is mapped to some component. One node
eni is specified as the entry of the component Ai and one node exi as the exit of Ai.

2 The exit
node has no outgoing edges. All other nodes and the boxes have outgoing edges; the edges out of
the probabilistic nodes and boxes are labelled with probabilities, where the sum of the probabilities
out of the same node or box is equal to 1.

Execution of a 1-RMDP starts at some node, for example, the entry en1 of component A1.
When the execution is at a probabilistic node v, then an edge out of v is chosen randomly according
to the probabilities of the edges out of v. At a controlled node v, an edge out of v is chosen by a
controller who seeks to optimize his objective. When the execution reaches a box b of Ai mapped to
some component Aj , then the current component is suspended and a recursive call to Aj is initiated
at its entry node enj ; if the call to Aj terminates, i.e. reaches eventually its exit node exj, then
the execution of component Ai resumes from box b following an edge out of b chosen according to
the probability distribution of the outgoing edges of b. Note that a call to a component can make
further recursive calls, thus, at any point there is in general a stack of suspended recursive calls, and
there can be an arbitrary number of such suspended calls; thus, a 1-RMDP induces generally an
infinite-state MDP. The process terminates when the execution reaches the exit of the component
of the initial node and there are no suspended recursive calls.

There are two types of 1-RMDPs with a termination objective: In a min 1-RMDP (resp. max
1-RMDP) the objective of the controller is to minimize (resp. maximize) the probability of ter-
mination. In principle, a controller can use the complete past history of the process and also use
randomization (i.e. a mixed strategy) to select at each point when the execution reaches a con-
trolled node which edge to select out of the node. As shown in [14] however, there is always an
optimal strategy that is pure, stackless and memoryless, i.e., selects deterministically one edge out

2The restriction to having only one entry node is not important; any multi-entry RMDP can be efficiently trans-
formed to an 1-entry RMDP. The restriction to 1-exit is very important: multi-exit RMDPs lead to undecidable
termination problems, even for any non-trivial approximation of the optimal values [14].

7

of each controlled node, the same one every time, independent of the stack and of the past history
(including the starting node). From a given min or max 1-RMDP we can construct efficiently a
minPPS or maxPPS, whose LFP yields the minimum or maximum termination probabilities for all
the different possible starting vertices of the 1-RMDP [14]. Conversely, from any given min/max
PPS, we can efficiently construct a 1-RMDP whose optimal termination probabilities yield the LFP
of the min/max PPS. The system of equations for a 1-RMDP has a particularly simple form. All
max/minPPS can be put in that form.

It is convenient to put max/minPPS in the following simple form.

Definition 2.6. A maxPPS in simple normal form (SNF), x = P (x), is a system of n equations
in n variables x1, x2, ...xn where each Pi(x) for i = 1, 2, ...n is in one of three forms:

• Form L: P (x)i = ai,0 +
∑n

j=1 ai,jxj , where ai,j ≥ 0 for all j, and such that
∑n

j=0 ai,j ≤ 1

• Form Q: P (x)i = xjxk for some j, k

• Form M: P (x)i = max{xj , xk} for some j, k

We define SNF form for minPPSs analogously: only the definition of “Form M” changes, replacing
max with min.

In the setting of a max/minPPS in SNF form, for simplicity in notation, when we talk about
a policy, if Pi(x) has form M , say Pi(x) ≡ max{xj , xk}, then when it is clear from the context we
will use σ(i) = k to mean that the policy σ chooses xk among the two choices xj and xk available
in Pi(x) ≡ max{xj , xk}.

Proposition 2.7 (cf. Proposition 7.3 [15]). Every max/minPPS, x = P (x), can be transformed in
P-time to an “equivalent” max/minPPS , y = Q(y) in SNF form, such that |Q| ∈ O(|P |). More
precisely, the variables x are a subset of the variables y, the LFP of x = P (x) is the projection of
the LFP of y = Q(y), and an optimal policy (respectively, ε-optimal policy) for x = P (x) can be
obtained in P-time from an optimal (resp., ε-optimal) policy of y = Q(y).

Proof. We can easily convert, in P-time, any max/minPPS into SNF form, using the following
procedure.

• For each equation xi = Pi(x) = max {p1(x), . . . , pm(x)}, for each pj(x) on the right-hand-side
that is not a variable, add a new variable xk, replace pj(x) with xk in Pi(x), and add the new
equation xk = pj(x). Do similarly if Pi(x) = min{p1(x), . . . , pm(x)}.

• If Pi(x) = max {xj1 , ..., xjm} with m > 2, then add m − 2 new variables xi1 , . . . , xim−2 , set
Pi(x) = max {xj1 , xi1}, and add the equations xi1 = max {xj2 , xi2}, xi2 = max {xj3 , xi3}, . . .,
xim−2 = max {xjm−1 , xjm}. Do similarly if Pi(x) = min{xj1 , ..., xjm} with m > 2.

• For each equation xi = Pi(x) =
∑m

j=1 pjx
αj , where Pi(x) is a probabilistic polynomial that is

not just a constant or a single monomial, replace every monomial xαj on the right-hand-side
that is not a single variable by a new variable xij and add the equation xij = xαj .

• For each variable xi that occurs in some polynomial with exponent higher than 1, introduce
new variables xi1 , . . . , xik where k is the logarithm of the highest exponent of xi that occurs in
P (x), and add equations xi1 = x2i , xi2 = x2i1 , . . ., xik = x2ik−1

. For every occurrence of a higher

8

power xli, l > 1, of xi in P (x), if the binary representation of the exponent l is ak . . . a2a1a0,
then we replace xli by the product of the variables xij such that the corresponding bit aj is
1, and xi if a0 = 1. After we perform this replacement for all the higher powers of all the
variables, every polynomial of total degree >2 is just a product of variables.

• If a polynomial Pi(x) = xj1 · · · xjm in the current system is the product of m > 2 variables,
then add m − 2 new variables xi1 , . . . , xim−2 , set Pi(x) = xj1xi1 , and add the equations
xi1 = xj2xi2 , xi2 = xj3xi3 , . . ., xim−2 = xjm−1xjm .

Now all equations are of the form L, Q, or M.
The above procedure allows us to convert any max/minPPS into one in SNF form by introducing

O(|P |) new variables and blowing up the size of P by a constant factor O(1). Furthermore, there is
an obvious (and easy to compute) bijection between policies for the resulting SNF form max/minPPS
and the original max/minPPS.

Thus from now on, and for the rest of this paper we assume, without loss of generality, that all
max/minPPSs are in SNF normal form.

We now summarize some of the main previous results on PPSs and max/minPPSs.

Proposition 2.8 ([14]). There is a P-time algorithm that, given a minPPS or maxPPS, x = P (x),
over n variables, with LFP q∗ ∈ R

n
≥0, determines for every i = 1, . . . , n whether q∗i = 0 or q∗i = 1

or 0 < q∗i < 1.

Thus, given a max/minPPS we can find in P-time all the variables xi such that q∗i = 0 or q∗i = 1,
remove them and their corresponding equations xi = Pi(x), and substitute their values on the RHS
of the remaining equations. This yields a new max/minPPS, x′ = P ′(x′), where its LFP solution,
q′∗, is 0 < q′∗ < 1, which corresponds to the remaining coordinates of q∗. Thus, it suffices to focus
our attention to systems whose LFP is strictly between 0 and 1.

The decision problem of determining whether a coordinate q∗i of the LFP is ≥ 1/2 (or whether
q∗i ≥ r for any other given bound r ∈ (0, 1)) is at least as hard as the Square-Root-Sum and the
PosSLP problems even for PPS (without the min and max operator) [15] and hence it is highly
unlikely that it can be solved in P.

The problem of approximating efficiently the LFP of a PPS was solved recently in [11], by using
Newton’s method after elimination of the variables with value 0 and 1.

Definition 2.9. For a PPS x = P (x) we use P ′(x) to denote the Jacobian matrix of partial

derivatives of P (x), i.e., P ′(x)i,j :=
∂Pi(x)
∂xj

. For a point x ∈ R
n, if (I −P ′(x)) is non-singular, then

we define one Newton iteration at x via the operator:

N (x) = x+ (I − P ′(x))−1(P (x)− x)

Given a max/minPPS, x=P(x), and a policy σ, we use Nσ(x) to denote the Newton operator of the
PPS x = Pσ(x); i.e., if (I − P ′

σ(x)) is non-singular at a point x ∈ R
n, then Nσ(x) = x + (I −

P ′
σ(x))

−1(Pσ(x)− x).

Theorem 2.10 (Theorem 3.2 and Corollary 4.5 of [11]). Let x = P (x) be a PPS with rational
coefficients in SNF form which has least fixed point 0 < q∗ < 1. If we conduct iterations of Newton’s

9

method as follows: x(0) := 0, and for k ≥ 0: x(k+1) := N (x(k)), then the Newton operator N (x(k))
is defined for all k ≥ 0, and for any j > 0:

‖q∗ − x(j+4|P |)‖∞ ≤ 2−j

where |P | is the total bit encoding length of the system x = P (x).
Furthermore, there is an algorithm (based on suitable rounding of Newton iterations) which,

given a PPS, x = P (x), and given a positive integer j, computes a rational vector v ∈ [0, 1]n, such
that ||q∗−v||∞ ≤ 2−j , and which runs in time polynomial in |P | and j in the standard Turing model
of computation.

The proof of the theorem involves a number of technical lemmas on PPS and Newton’s method,
several of which we will also need in this paper, some of them in strengthened form.

Lemma 2.11. (c.f., Lemma 3.6 of [11]) Given a PPS, x = P (x), with LFP q∗ > 0, if 0 ≤ y ≤ q∗,
and if (I−P ′(y))−1 exists and is non-negative (in which case clearly N (y) is defined), then N (y) ≤ q∗

holds.3

Proof. In Lemma 3.4 of [11] it was established that when (I−P ′(y)) is non-singular, i.e., (I−P ′(y))−1

is defined, and thus N (y) is defined, then

q∗ −N (y) = (I − P ′(y))−1P
′(q∗)− P ′(y)

2
(q∗ − y) (1)

Now, since all polynomials in P (x) have non-negative coefficients, it follows that the Jacobian P ′(x)
is monotone in x, and thus since y ≤ q∗, we have that P ′(q∗) ≥ P ′(y). Thus (P ′(q∗)− P ′(y)) ≥ 0,
and by assumption (q∗ − y) ≥ 0. Thus, by the assumption that (I − P ′(y))−1 ≥ 0, we have by
equation (1) that q∗ −N (y) ≥ 0, i.e., that q∗ ≥ N (y).

We also need the following, which is a less immediate consequence of results in [11]:

Lemma 2.12. Given a PPS, x = P (x), with LFP q∗ > 0, if 0 ≤ y ≤ q∗, and y < 1, then
(I − P ′(y))−1 exists and is non-negative.

The proof of this lemma is more involved and is given in the appendix. To prove the polynomial-
time upper bounds in [11], an inductive step of the following form was used:

Lemma 2.13 (Combining Lemma 3.7 and Lemma 3.5 of [11]). Let x = P (x) be a PPS in SNF
with 0 < q∗ < 1. For any 0 ≤ x ≤ q∗ and λ > 0, the operator N (x) is defined, N (x) ≤ q∗, and if
q∗ − x ≤ λ(1− q∗) then q∗ −N (x) ≤ λ

2 (1− q∗).

If we knew an optimal policy τ for a max/minPPS, x = P (x), then we would be able to solve the
problem of computing the LFP for a max/minPPS using the algorithm in [11] for approximating
q∗τ , because we know q∗τ = q∗. Unfortunately, we do not know which policy is optimal. There are
exponentially many policies, so it would be inefficient to run this algorithm using every policy. (And
even if we did do so for each possible policy, we would only be able to ε-approximate the values q∗σ
for each policy σ using the results of [11], for say, ε = 2−j for some chosen j, and therefore we could
only be sure that a particular policy that yields the best result is, say, (2ε)-optimal, but it may not

3Note that the Lemma does not claim that N (y) ≥ 0 holds. Indeed, it may not.

10

not necessarily be optimal.) In fact, as we will see, it is probably impossible to identify an optimal
policy in polynomial time.

Our goal instead will be to find an iteration I(x) for max/minPPS, that has similar properties to
the Newton operator for PPS, i.e., that can be computed efficiently for a given x and for which we can
prove a similar property to Lemma 2.13, i.e. such that if q∗−x ≤ λ(1−q∗), then q∗−I(x) ≤ λ

2 (1−q∗).
Once we do so, we will be able to adapt and extend results from [11] to get a polynomial time
algorithm for the problem of approximating the LFP q∗ of a max/minPPS.

3 Generalizing Newton’s method using linear programming

If a max/minPPS, x = P (x), has no equations of form Q, then it amounts to precisely the Bell-
man equations for an ordinary finite-state Markov Decision Process with the objective of maximiz-
ing/minimizing reachability probabilities. It is well known that we can compute the exact (rational)
optimal values for such finite-state MDPs, and thus the exact LFP, q∗, for such a max(min)-linear
systems, using linear programming (see, e.g., [20, 6]).

Computing the LFP of max/minPPSs is clearly a generalization of this finite-state MDP problem
to the infinite-state setting of branching and recursive MDPs. If we have no equations of form M,
we have a PPS, which we can solve in P-time using Newton’s method, as shown recently in [11]. An
iteration of Newton’s method works by approximating the system of equations by a linear system.
For a maxPPS(or minPPS), we will define an analogous “approximate” system of equations that
we have to solve in each iteration of “Generalized Newton’s Method” (GNM) which has both
linear equations and equations involving the max (or min) function. We will show that we can solve
the equations that arise from each iteration of GNM using linear programming. We will then show
that a polynomial (in fact, linear) number of iterations are enough to approximate the desired LFP
solution, and that it suffices to carry out the computations with polynomial precision.

The rest of this Section is organized as follows. In Section 3.1 we define a linearization of a
max/minPPS and prove some basic properties. In 3.2 we define the operator for an iteration of
the Generalized Newton’s method and show that it can be computed by Linear Programming. In
Section 3.3 we analyze the operator for maxPPS and in Section 3.4 for minPPS. Finally in Section
3.5 we put everything together and show that the algorithm approximates the LFP within any
desired precision in polynomial time in the Turing model.

3.1 Linearizations of max/minPPSs and their properties

We begin by expressing the max/min linear equations that should be solved by one iteration of what
will eventually become the “Generalized Newton’s Method” (GNM), applied at a point y. Recall
that we assume w.l.o.g. throughout that max/minPPS and PPS are in SNF.

Definition 3.1. For a max/minPPS, x = P (x), with n variables, the linearization of P (x) at a
point y ∈ R

n, is a system of max/min linear functions denoted by P y(x), which has the following
form:

if P (x)i has form L or M, then P y
i (x) = Pi(x), and

if P (x)i has form Q, i.e., P (x)i = xjxk for some j,k, then

P y
i (x) = yjxk + xjyk − yjyk

11

We can consider the linearization of a PPS, x = Pσ(x), obtained as the result of fixing a policy,
σ, for a max/minPPS, x = P (x).

Definition 3.2. P y
σ (x) := (Pσ)

y(x).

Note than the linearization P y(x) only changes equations of form Q, and using a policy σ only
changes equations of form M, so these operations are independent in terms of the effects they have
on the underlying equations, and thus P y

σ (x) ≡ (Pσ)
y(x) = (P y)σ(x).

Lemma 3.3. Let x = P (x) be any PPS. For any y ∈ R
n, let (P y)′(x) denote the Jacobian matrix

of P y(x). Then for any x ∈ R
n, we have (P y)′(x) = P ′(y).

Proof. We need to show that the Jacobian (P y)′(x) of P y(x), evaluated anywhere, is equal to
P ′(y). If xi = Pi(x) is not of form Q, then, for any x ∈ R

n, Pi(x) = P y
i (x). So for any xj ,

∂P
y
i (x)
∂xj

= ∂Pi(x)
∂xj

. Otherwise, xi = Pi(x) has form Q, that is Pi(x) = xjxk for some variables xj,xk.

Then P y
i (x) = yjxk + xjyk − yjyk. In this case

∂P
y
i (x)
∂xj

= yk and
∂P

y
i (x)
∂xk

= yj. But when x = y,
∂Pi(x)
∂xj

= yk and ∂Pi(x)
∂xk

= yj. Furthermore, clearly for any xl, with l
= j and l
= k, ∂Pi(x)
∂xl

= 0 and
∂P

y
i (x)
∂xl

= 0. We have thus established that (P y)′(x) = P ′(y) for any x ∈ R
n.

Lemma 3.4. If x = P (x) is any PPS, then for any x, y ∈ R
n, P y(x) = P (y) + P ′(y)(x− y).

Proof. Firstly, note that P y(x) = P y(y) + (P y)′(x)(x − y), since the functions P y
i (x) are all linear

in x. Next, observe that Pi(y) = P y
i (y), for all i, and thus that P (y) = P y(y). Thus, to show that

P y(x) = P y(y)+P ′(y)(x−y) = P (y)+P ′(y)(x−y), all we need to show is that the Jacobian (P y)′(x)
of P y(x), evaluated anywhere, is equal to P ′(y). But this was established in Lemma 3.3.

An iteration of Newton’s method on x = Pσ(x) at a point y solves a system of linear equations
that can be expressed in terms of P y

σ (x). The next lemma establishes this basic fact in part (i). In
part (ii) it provides us with conditions under which we are guaranteed to be doing “at least as well”
as one such Newton iteration.

Lemma 3.5. Suppose that the matrix inverse (I − P ′
σ(y))

−1 exists and is non-negative, for some
policy σ, and some y ∈ R

n. Then

(i) Nσ(y) is defined, and is equal to the unique point a ∈ R
n such that P y

σ (a) = a.

(ii) For any vector x ∈ R
n:

If P y
σ (x) ≥ x, then x ≤ Nσ(y).

If P y
σ (x) ≤ x, then x ≥ Nσ(y).

Proof. (i): We define:
a = y + (I − P ′

σ(y))
−1(Pσ(y)− y) ≡ Nσ(y)

Then we can re-arrange this expression, reversibly, yielding:

a = y + (I − P ′
σ(y))

−1(Pσ(y)− y) ⇔ Pσ(y)− y − (I − P ′
σ(y))(a− y) = 0

⇔ Pσ(y) + P ′
σ(y)(a − y) = a

⇔ P y
σ (a) = a (by Lemma 3.4)

12

Uniqueness follows from the reversibility of these transformations.

(ii): Firstly, we shall observe that the result of applying Newton’s method to solve x = P y
σ (x) with

any initial point x gives us Nσ(y) = a in a single iteration. Recalling from Lemma 3.3 that the
following equality hold between the Jacobians: (P y)′(x) = P ′

σ(y), one iteration of Newton’s method
applied to x = P y

σ (x) can be equivalently defined as:

x+ (I − P ′
σ(y))

−1(P y
σ (x)− x) = x+ (I − P ′

σ(y))
−1(Pσ(y) + P ′

σ(y)(x− y)− x)

= (I − P ′
σ(y))

−1(x− P ′
σ(y)x+ Pσ(y) + P ′

σ(y)(x− y)− x)

= (I − P ′
σ(y))

−1(Pσ(y)− P ′
σ(y)y)

= (I − P ′
σ(y))

−1((I − P ′
σ(y))y + Pσ(y)− y)

= y + (I − P ′
σ(y))

−1(Pσ(y)− y)

= Nσ(y).

We thus have Nσ(y) = x+(I−P ′
σ(y))

−1(P y
σ (x)−x). By assumption, (I−P ′

σ(y))
−1 is a non-negative

matrix. So if P y
σ (x)− x ≥ 0 then Nσ(y) ≥ x, whereas if P y

σ (x)− x ≤ 0 then Nσ(y) ≤ x.

3.2 The iteration operator of Generalized Newton’s Method

We shall now define distinct iteration operators for a maxPPS and a minPPS, both of which we
shall refer to with the overloaded notation I(x). (We shall also establish in the next two subsections
that the operators are well-defined in their respective settings.) These operators will serve as the
basis for a Generalized Newton’s Method to be applied to maxPPSs and minPPSs, respectively.

Definition 3.6. For a maxPPS, x = P (x), with LFP q∗, such that 0 < q∗ < 1, and for a real vector
y such that 0 ≤ y ≤ q∗, we define the operator I(y) to be the unique optimal solution, a ∈ R

n, to
the following mathematical program: Minimize:

∑
i ai ; Subject to: P y(a) ≤ a.

For a minPPS, x = P (x), with LFP q∗, such that 0 < q∗ < 1, and for a real vector y such that
0 ≤ y ≤ q∗, we define the operator I(y) to be the unique optimal solution a ∈ R

n to the following
mathematical program: Maximize:

∑
i ai ; Subject to: P y(a) ≥ a.

A priori, it is not even clear if the above “definitions” of I(x) for maxPPSs and minPPSs are well-
defined. We now make the following central claim, which we shall prove separately for maxPPSs
and minPPSs in the following two subsections:

Proposition 3.7. Let x = P (x) be a max/minPPS, with LFP q∗, such that 0 < q∗ < 1. For any
0 ≤ x ≤ q∗:

1. I(x) is well-defined, and I(x) ≤ q∗, and:

2. For any λ > 0, if q∗ − x ≤ λ(1− q∗) then q∗ − I(x) ≤ λ
2 (1− q∗).

The next proposition observes that linear programming can be used to compute an iteration of
the operator, I(x), for both maxPPSs and minPPSs.

Proposition 3.8. Given a max/minPPS, x = P (x), with LFP q∗, and given a rational vector y,
0 ≤ y ≤ q∗, the constrained optimization problem (i.e., mathematical program) “defining” I(y) can
be described by a LP whose encoding size is polynomial (in fact, linear) in both |P | and the encoding
size of the rational vector y. Thus, we can compute the (unique) optimal solution I(y) to such an
LP (assuming it exists, and is unique) in P-time.

13

Proof. For a maxPPS (minPPS), the definition of I(x) asks us to maximize (minimize) a linear
objective,

∑
i ai, subject to the constraints P y(a) ≤ a (P y(a) ≥ a, respectively). All of these

constraints are linear, except the constraints of form M. For a maxPPS, if (P y(a))i is of form M,
then the corresponding constraint is an inequality of the form max {aj , ak} ≤ ai. Such an inequality
is equivalent to, and can be replaced by, the two linear inequalities: aj ≤ ai and ak ≤ ai. Likewise,
for a minPPS, if (P y(a))i is of form M, then the corresponding constraint is an inequality of the
form min {aj , ak} ≥ ai. Again, such an inequality is equivalent to, and can be replaced by, two
linear inequalities: aj ≥ ai and ak ≥ ai.

Thus, for a rational vector y whose encoding length is size(y), the operator I(y) can be formu-
lated (for both maxPPSs and minPPSs) as a problem of computing the unique optimal solution to
a linear program whose encoding size is polynomial (in fact, linear) in |P | and in size(y).

3.3 An iteration of Generalized Newton’s Method (GNM) for maxPPSs

For a maxPPS, x = P (x), we know by Theorem 2.5 that there exists an optimal policy, τ , such that
q∗ = q∗τ ≥ q∗σ for any policy σ. The next lemma implies part (i) of Proposition 3.7 for maxPPS:

Lemma 3.9. If x = P (x) is a maxPPS, with LFP solution 0 < q∗ < 1, and y is a real vector
with 0 ≤ y ≤ q∗, then x = P y(x) has a least fixed point solution, denoted μP y, with μP y ≤ q∗.
Furthermore, the operator I(y) is well-defined, I(y) = μP y ≤ q∗, and for any optimal policy τ ,
I(y) = μP y ≥ Nτ (y).

Proof. Recall that (by Proposition 3.8) the following can be written as an LP that “defines” I(y):

Minimize:
∑
i

ai ; Subject to: P y(a) ≤ a (2)

Firstly, we show that the LP constraints P y(a) ≤ a in the definition of I(y) are feasible. We
do so by showing that actually P y(q∗) ≤ q∗. At any coordinate i, if Pi(x) has form M or L, then
P y
i (q

∗) = Pi(q
∗) = q∗i . Otherwise, Pi(x) has form Q, i.e., Pi(x) = xjxk, and then

P y
i (q

∗) = q∗j yk + yjq
∗
k − yjyk

= q∗j q
∗
k − (q∗j − yj)(q

∗
k − yk)

≤ q∗i (since y ≤ q∗)

Next we show that the LP (2) defining I(y) is bounded. Recall that, by Theorem 2.5, there is
always an optimal policy for any maxPPS, x = P (x).

Claim 3.10. Let x = P (x) be any maxPPS, with 0 < q∗ < 1, and let τ be any optimal policy for
x = P (x). For any y such that 0 ≤ y ≤ q∗, we have that Nτ (y) is defined, and for any vector a, if
P y(a) ≤ a then Nτ (y) ≤ a. In particular, Nτ (y) ≤ q∗.

Proof. Recall, from our definition of an optimal policy, that q∗ = q∗τ is also the least non-negative
solution to x = Pτ (x). So we can apply Lemma 2.12 using x = Pτ (x) and y ≤ q∗ to deduce that
(I − P ′

τ (y))
−1 exist and is non-negative. Thus Nτ (y) is defined. Now, by applying Lemma 3.5 (ii),

to show that a ≥ Nτ (y) all we need to show is that P y
τ (a) ≤ a. But recalling that x = P (x) is a

maxPPS, by the definition of P y(x) and P y
τ (x), we have that P y

τ (a) ≤ P y(a) ≤ a. We have just
shown before this Claim that P y(q∗) ≤ q∗, and thus Nτ (y) ≤ q∗.

14

Thus the LP (2) defining I(y) is both feasible and bounded, hence it has an optimal solution.
To show that I(y) is well-defined, all that remains is to show that this optimal solution is unique. In
the process, we will also show that I(y) defines precisely the least fixed point solution of x = P y(x),
which we denote by μP y.

Firstly, we claim that for any optimal solution b to the LP (2), it must be the case that P y(b) = b.
Suppose not. Then there exists i such that P y(b)i < bi, then we can define a new vector b′, such
that b′i = P y(b)i and b′j = bj for all j
= i. By monotonicity of P y(x), it is clear that P y(b′) ≤ b′, and
thus that b′ is a feasible solution to the LP (2). But

∑
i b

′
i <

∑
i bi, contradicting the assumption

that b is an optimal solution to the LP (2).
Secondly, we claim that there is a unique optimal solution. Suppose not: suppose b and c are

two distinct optimal solution to the LP (2). Define a new vector d by di = min{bi, ci}, for all i.
Clearly, d ≤ b and d ≤ c. Thus by the monotonicity of P y(x), for all i P y(d)i ≤ P y(b)i = bi, and
likewise P y(d)i ≤ P y(c)i = ci. Thus P y(d) ≤ d, and d is a feasible solution to the LP. But since b
and c are distinct, and yet

∑
i bi =

∑
i ci, we have that

∑
i di <

∑
i bi =

∑
i ci, contradicting the

optimality of both b and c.
We have thus established that I(y) defines the unique least fixed point solution of x = P y(x),

which we denote also by μP y. Since q∗ is also a solution of the LP, we have μP y ≤ q∗.
Finally, by Claim 3.10, it must be the case that I(y) = μP y ≥ Nτ (y), where τ is any optimal

policy for x = P (x).

We next establish part (ii) of Proposition 3.7 for maxPPS.

Lemma 3.11. Let x = P (x) be a maxPPS with 0 < q∗ < 1. For any 0 ≤ x ≤ q∗ and λ > 0, we
have I(x) ≤ q∗, and furthermore if:

q∗ − x ≤ λ(1− q∗)

then

q∗ − I(x) ≤
λ

2
(1− q∗)

Proof. Let τ be an optimal policy (which exists by Theorem 2.5). The least fixed point solution of
the PPS x = Pτ (x) is q∗. From our assumptions, Lemma 2.13 gives that q∗ −Nτ (x) ≤

λ
2 (1 − q∗).

But by Lemma 3.9 Nτ (x) ≤ I(x) ≤ q∗. The claim follows.

Proposition 3.7 for maxPPSs follows from Lemmas 3.9 and 3.11. In subsection 3.5 we will
combine this result with methods from [11] to obtain a P-time algorithm for approximating the
LFP of a maxPPS, in the standard Turing model of computation.

3.4 An iteration of GNM for minPPSs

Our proof of the minPPS version of Lemma 3.11 will be somewhat different, because it turns out
we can not use the same argument based on LPs to prove that I(y) is well-defined. Fortunately,
in the case of minPPSs, we can show that (I − Pσ(y))

−1 exists and is non-negative for any policies
σ, at those points y that are of interest. And we can use this to show that there is some policy, σ,
such that I(y) is equivalent to an iteration of Newton’s method at y after fixing the policy σ. We
shall establish the existence of such a policy using a policy improvement argument, instead of just
using the LP, as we did for maxPPSs. (Note that the policy improvement algorithm may not be an
efficient (P-time) way to compute it, and we do not claim it is. We only use policy improvement as
an argument in the proof of existence of a suitable policy σ.)

15

Lemma 3.12. For a minPPS, x = P (x), and for any policy σ, the LFP of, x = Pσ(x), denoted q∗σ,
satisfies q∗ ≤ q∗σ.

Proof. By Theorem 2.5, there is an optimal policy τ with q∗τ = q∗. But we defined an optimal policy
for a minPPS as one with q∗τ ≤ q∗υ for any policies υ. So q∗ = q∗τ ≤ q∗σ.

Lemma 3.12 allows us to use Lemma 2.12 with any policy, not just with optimal policies:

Lemma 3.13. For a minPPS, x = P (x), with LFP 0 < q∗ < 1, for any 0 ≤ y ≤ q∗ and any policy
σ, (I − Pσ(y))

−1 exists and is non-negative. Thus also Nσ(y) is defined.

Proof. 0 ≤ y ≤ q∗ ≤ q∗σ ≤ 1. Note also that y < 1, and that q∗σ ≥ q∗ > 0. This is all we need for
Lemma 2.12 to apply.

Lemma 3.14. Given a minPPS, x = P (x), with LFP 0 < q∗ < 1, and a vector y with 0 ≤ y ≤ q∗,
there is a policy σ such that P y(Nσ(y)) = Nσ(y).

Proof. We use a policy (strategy) improvement “algorithm” to prove this. Start with any policy σ1.
At step i, suppose we have a policy σi.

For notational simplicity, in the following we use the abbreviation: z = Nσi
(y). By Lemma 3.5,

P y
σi(z) = z. So we have P y(z) ≤ z. If P y(z) = z, then stop: we are done.

Otherwise, to construct the next strategy σi+1, take the smallest j such that (P y(z))j < zj .
Note that Pj(x) has form M, because otherwise (P (x))j = (Pσi

(x))j . Thus, there is some variable
xk with Pj(x) = min {xk, xσi(j)} and zk < zσi(j). Define σi+1 to be:

σi+1(l) =

{
σi(l) if l
= j

k if l = j

Then (P y
σi+1(z))j < zj, but for every other coordinate l
= j, (P y

σi+1(z))l = (P y
σi(z))l = zl. Thus

P y
σi+1

(z) ≤ z (3)

By Lemma 3.13, Nσi+1(y) is defined. Moreover, the inequality (3), together with Lemma 3.5 (ii),
yields that Nσi+1(y) ≤ z. But Nσi+1(y)
= z because P y

σi+1(z)
= z whereas, by Lemma 3.5 (i), we
have P y

σi+1(Nσi+1(y)) = Nσi+1(y).
Thus this algorithm gives us a sequence of policies σ1, σ2... with Nσ1(y) ≥ Nσ2(y) ≥ Nσ3(y) ≥ ...,

where furthermore each step must strictly decrease at least one coordinate of Nσi
(y). It follows that

σi
= σj , unless i = j. There are only finitely many policies. So the sequence must be finite, and the
algorithm terminates. But it only terminates when we reach a σi with P y(Nσi

(y)) = Nσi
(y).

We note that the analogous policy improvement algorithm might fail to work for maxPPSs, as we
might reach a policy σi where (I − Pσi

(x))−1 does not exist, or has a negative entry.
The next Lemma shows that this policy improvement algorithm always produces a coordinate-

wise minimal Newton iterate over all policies.

Lemma 3.15. For a minPPS, x = P (x), with LFP 0 < q∗ < 1, if 0 ≤ y ≤ q∗ and σ is a policy
such that P y(Nσ(y)) = Nσ(y), then:

(i) For any policy σ′, Nσ′(y) ≥ Nσ(y).

16

(ii) For any x ∈ R
n with P y(x) ≥ x, we have x ≤ Nσ(y).

(iii) For any x ∈ R
n with P y(x) ≤ x, we have x ≥ Nσ(y).

(iv) Nσ(y) is the unique fixed point of x = P y(x).

(v) Nσ(y) ≤ q∗.

Proof. Note firstly that by Lemma 3.13, for any policy σ, (I −P ′
σ(y))

−1 exists and is non-negative,
and Nσ(y) is defined.

(i) Consider P y
σ′(Nσ(y)). Note that P y

σ′(Nσ(y)) ≥ P y(Nσ(y)) = Nσ(y) by assumption. Thus, by
Lemma 3.5 (ii), Nσ(y) ≤ Nσ′(y).

(ii) P y
σ (x) ≥ P y(x) ≥ x, so by Lemma 3.5 (ii), x ≤ Nσ(y).

(iii) If P y(x) ≤ x, then there a policy σ′ with P y
σ′(x) ≤ x, and by Lemma 3.5 (ii), x ≥ Nσ′(y). So

using part (i) of this Lemma, x ≥ Nσ′(y) ≥ Nσ(y).

(iv) By assumption, Nσ(y) is a fixed point of x = P y(x). We just need uniqueness. If P y(q) = q,
then by parts (ii) and (iii) of this Lemma, q ≤ Nσ(y) and q ≥ Nσ(y), i.e., q = Nσ(y).

(v) Consider an optimal policy τ , for the minPPS, x = P (x). From Lemma 2.11, if follows that
Nτ (y) ≤ q∗τ = q∗. And then part (i) of this Lemma, gives us that Nσ(y) ≤ Nτ (y) ≤ q∗.

We can now return to using linear programming, which we can do in polynomial time. Recall the
LP that “defines” I(y), for a minPPS:

Maximize:
∑
i

ai ; Subject to: P y(a) ≥ a (4)

Lemma 3.16. For a minPPS, x = P (x), with LFP 0 < q∗ < 1, and for 0 ≤ y ≤ q∗, there is a
unique optimal solution, which we call I(y), to the LP (4), and furthermore I(y) = Nσ(y) for some
policy σ, and P y(I(y)) = I(y).

Proof. By Lemma 3.14, there is a σ such that P y(Nσ(y)) = Nσ(y). So Nσ(y) is a feasible solution
of P y(a) ≥ a. Let a by any solution of P y(a) ≥ a. By Lemma 3.15 (ii), a ≤ Nσ(y). Consequently∑n

i=1 ai ≤
∑n

i=1(Nσ(y))i with equality only if a = Nσ(y). So Nσ(y) is the unique optimal solution
of the LP (4).

In the maxPPS case, we had an iteration that was at least as good as iterating with the optimal
policy. Here we have an iteration that is at least as bad! Nevertheless, we shall see that it is good
enough. In the maxPPS case, the analog of Lemma 2.13, Lemma 3.11, thus followed from Lemma
2.13. Here we crucially need a stronger result than Lemma 2.13.

Lemma 3.17. If x = P (x) is a PPS and we are given x, y ∈ R
n with 0 ≤ x ≤ y ≤ P (y) ≤ 1, and

if the following conditions hold:

λ > 0 and y − x ≤ λ(1 − y) and (I − P ′(x))−1 exists and is non-negative, (5)

then y −N (x) ≤ λ
2 (1 − y).

17

(Note that we cannot conclude that y −N (x) ≥ 0.)

Proof. Firstly, we show that P ′(y)(1 − y) ≤ (1 − y). Clearly, for any PPS, P (1) ≤ 1. Note that
since by assumption y ≤ P (y), we have (1 − y) ≥ (1 − P (y)) ≥ (P (1) − P (y)). Then by Lemma
3.3 of [11]:

(1 − y) ≥ P (1)− P (y) = P ′(
1 + y

2
)(1 − y) (6)

≥ P ′(y)(1 − y) (7)

Again by Lemma 3.3 of [11]: P (y)− P (x) = 1
2(P

′(x) + P ′(y))(y − x), and thus:

P (x) = P (y)−
1

2
(P ′(x) + P ′(y))(y − x) (8)

Thus:

y −N (x) = y − x− (I − P ′(x))−1(P (x) − x)

= y − x− (I − P ′(x))−1(P (y) − x−
1

2
(P ′(x) + P ′(y))(y − x)) (by (8))

≤ y − x− (I − P ′(x))−1(y − x−
1

2
(P ′(x) + P ′(y))(y − x))

= (y − x)− (I − P ′(x))−1((y − x)−
1

2
(P ′(x) + P ′(y))(y − x))

= (I − (I − P ′(x))−1(I −
1

2
(P ′(x) + P ′(y))))(y − x)

= ((I − P ′(x))−1(I − P ′(x))− (I − P ′(x))−1(I −
1

2
(P ′(x) + P ′(y))))(y − x)

= (I − P ′(x))−1(I − P ′(x)− (I −
1

2
(P ′(x) + P ′(y))))(y − x)

= (I − P ′(x))−1(−P ′(x) +
1

2
(P ′(x) + P ′(y)))(y − x)

= (I − P ′(x))−1 1

2
(P ′(y)− P ′(x))(y − x)

≤
λ

2
(I − P ′(x))−1(P ′(y)− P ′(x))(1 − y) (by (5), and because (P ′(y)− P ′(x)) ≥ 0)

≤
λ

2
(I − P ′(x))−1(I − P ′(x))(1 − y) (because by (7), P ′(y)(1 − y) ≤ (1− y))

=
λ

2
(1 − y)

Lemma 3.18. Let x = P (x) be a minPPS, with LFP 0 < q∗ < 1. For any 0 ≤ x ≤ q∗ and λ > 0,
I(x) ≤ q∗, and if:

q∗ − x ≤ λ(1− q∗)

then

q∗ − I(x) ≤
λ

2
(1− q∗)

18

Proof. By Lemma 3.14, there is a policy σ with I(x) = Nσ(x). We then apply Lemma 3.17 to
x = Pσ(x), x, and q∗ instead of y. Observe that Pσ(q

∗) ≥ P (q∗) = q∗ and that (I − P ′
σ(x))

−1

exists and is non-negative. Thus the conditions of Lemma 3.17 hold, and we can conclude that
q∗−Nσ(x) ≤

λ
2 (1−q∗). Lastly, Lemma 3.15 (v) and Lemma 3.16 yield that I(x) = Nσ(x) ≤ q∗.

Proposition 3.7 for minPPS follows from Lemmas 3.16 and 3.18.

3.5 A polynomial-time algorithm (in the Turing model) for max/minPPSs

In [11] we gave a polynomial time algorithm, in the standard Turing model of computation, for
approximating the LFP of a PPS, x = P (x), using Newton’s method. Here we use the same
methods from [11], with our new Generalized Newton’s Method (GNM), I(x), to obtain polynomial-
time algorithms (again, in the standard Turing model), for approximating the LFP of maxPPSs
and minPPSs. The proof in [11] uses induction based on the “halving lemma”, Lemma 2.13. We of
course now have suitable “halving lemmas” for maxPPSs and minPPSs, namely, Lemmas 3.11 and
3.18. In [11], the following bound was used for the base case of the induction:

Lemma 3.19 (Theorem 3.12 from [11]). If 0 < q∗ < 1 is the LFP of a PPS, x = P (x), in n
variables, then for all i ∈ {1, . . . , n}:

1− q∗i ≥ 2−4|P |

In other words, 0 < q∗i ≤ 1− 2−4|P | , for all i ∈ {1, . . . , n}.

We can now easily derive an analogous Lemma for the setting of max/minPPSs:

Lemma 3.20. If 0 < q∗ < 1 is the LFP of a max/minPPS, x = P (x), in n variables, then for all
i ∈ {1, . . . , n}:

1− q∗i ≥ 2−4|P |

In other words, 0 < q∗i ≤ 1− 2−4|P |, for all i ∈ {1, . . . , n}.

Proof. Let τ be any optimal policy for x = P (x). We know it exists, by Theorem 2.5. Lemma 3.19
gives that 1− q∗i ≥ 2−4|Pτ |. All we need is to note is that |P | ≥ |Pτ |, which clearly holds using any
sensible encoding for P and Pτ , in the sense that we should need no more bits needed to encode
xi = xj than to encode xi = max{xj , xk} or xi = min{xj , xk}.

Now we can give a polynomial time algorithm, in the Turing model of computation, for approx-
imating the LFP, q∗, for a max/minPPS, to within any desired precision, by carrying out iterations
of GNM using the same rounding technique, with the same rounding parameter, and using the
same number of iterations, as in [11]. Specifically, we use the following algorithm with rounding
parameter h:

Start with x(0) := 0;
For each k ≥ 0 compute x(k+1) from x(k) as follows:

1. Calculate I(x(k)) by solving the following LP:

Minimize:
∑

i xi ; Subject to: P x(k)
(x) ≤ x, if x = P (x) is a maxPPS,

or:
Maximize:

∑
i xi ; Subject to: P x(k)

(x) ≥ x, if x = P (x) is a minPPS.

19

2. For each coordinate i = 1, 2, ...n, set x
(k+1)
i to be the maximum (non-negative) multiple of

2−h which is ≤ max{0, I(x(k))i}. (In other words, we round I(x(k)) down to the nearest 2−h

and ensure it is non-negative.)

Theorem 3.21. Given any max/minPPS, x = P (x), with LFP 0 < q∗ < 1, if we use the above
algorithm with rounding parameter h = j + 2 + 4|P |, then the iterations are all defined, and for
every k ≥ 0 we have 0 ≤ x(k) ≤ q∗, and furthermore after h = j + 2 + 4|P | iterations we have:

‖q∗ − x(j+2+4|P |)‖∞ ≤ 2−j

The proof is very similar to the proof of Theorem 4.2 in [11], and is given in the Appendix.

Corollary 3.22. Given any max/minPPS, x = P (x), with LFP q∗, and given any integer j > 0,
there is an algorithm that computes a rational vector v with ‖q∗ − v‖∞ ≤ 2−j , in time polynomial
in |P | and j.

Proof. First, we use the algorithms given in [14] (Theorems 11 and 13), to detect those variables xi
with q∗i = 0 or q∗i = 1 in time polynomial in |P |. Then we can remove these from the max/minPPS by
substituting their known values into the equations for other variables. This gives us a max/minPPS
with LFP 0 < q′∗ < 1 and does not increase |P |. Now we can use the iterated GNM, with rounding
down, as outlined earlier in this section. In each iteration of GNM we solve an LP. Each LP has at
most n ≤ |P | variables, at most 2n equations and the numerators and denominators of each rational
coefficient are no larger than 2j+2+4|P |, so it can be solved in time polynomial in |P | and j using
standard algorithms. We need only j +2+4|P | iterations involving one LP each. Putting back the
removed 0 and 1 values into the resulting vector gives us the full result q∗. This can all be done in
polynomial time.

4 Computing an ε-optimal policy in P-time

First let us note that we can not hope to compute an optimal policy in P-time, without a major
breakthrough:

Theorem 4.1. Computing an optimal policy for a max/minPPS is PosSLP-hard.

Proof. Recall from [15, 11] that the termination probability vector q∗ of a SCFG (equivalently, of a
1-exit RMC) can be equivalently viewed as the LFP of a purely probabilistic PPS, and vice-versa.

It was shown in [15] (Theorems 5.1 and 5.3), that given a PPS (equivalently, a SCFG or 1-RMC),
and given a rational probability p, it is PosSLP-hard to decide whether the LFP q∗1 > p, for a given
rational p, as well as to decide whether q∗1 < p. (In fact, these hardness results hold already even if
p = 1/2.)

The fact that computing an optimal policy for max/minPPS is PosSLP-hard follows easily from
this: For the case of maxPPSs (minPPS, respectively), given a PPS, x=P(x), and given p, we simply
add a new variable x0 to the PPS, and a corresponding equation:

x0 = max{p, x1} (= min{p, x1}) (9)

It is clear that q∗i > p (q∗i < p, respectively) for the original PPS, if and only if in any optimal
policy σ, for the augmented maxPPS (minPPS, respectively), the policy picks x1 rather than p on
the RHS of equation 9. So, if we could compute an optimal policy for a maxPPS (minPPS), we
would be able to decide whether q∗i > p (whether q∗i < p, respectively).

20

Since we can not hope to compute an optimal policy for max/minPPSs in P-time without a
major breakthrough, we will instead seek to find a policy σ such that ‖q∗σ − q∗‖∞ ≤ ε for a given
desired ε > 0, in time poly(|P |, log(1/ε)). We have an algorithm for approximating q∗. Can we
use a sufficiently close approximation, q, to q∗ to find such an ε-optimal strategy? Once we have
an approximation q, it seems natural to consider policies σ such that Pσ(q) = P (q). For minPPSs,
this means choosing the variable that has the lowest approximate value qi and for maxPPS choosing
the variable that has the highest approximate value. It turns out that this works as long as we
can establish good enough upper bounds on the norm of (I − P ′

σ(x))
−1 for certain values of x.

Recall that for a square matrix A, ρ(A) denotes its spectral radius. For a vector x, the l∞ norm is
‖x‖∞ := maxi |xi|, and its associated matrix norm ‖A‖∞ is the maximum absolute-value row sum
of A, i.e., ‖A‖∞ := maxi

∑
j |Ai,j|.

Theorem 4.2. For a max/minPPS, x = P (x), given 0 ≤ q ≤ q∗, such that q < 1, and a policy
σ such that P (q) = Pσ(q), and such that ρ(P ′

σ(
1
2 (q

∗ + q∗σ))) < 1, and thus (I − P ′
σ(

1
2 (q

∗ + q∗σ)))
−1

exists and is non-negative, then

‖q∗σ − q∗‖∞ ≤ (2‖(I − P ′
σ(

1

2
(q∗σ + q∗)))−1‖∞ + 1)‖q∗ − q‖∞

Proof. We know that q is close to q∗. We just have to show that q is close to q∗σ as well. We have
to exploit some results about PPSs established in [11].

Lemma 4.3. If x = P (x) is a PPS, with LFP q∗, such that 0 < q∗ ≤ 1, and 0 ≤ y ≤ q∗, such that
y < 1, then:

q∗ − y = (I − P ′(
1

2
(q∗ + y)))−1(P (y)− y)

Proof. Lemma 3.3 of [11] tells us that for any PPS, x = P (x), (assumed to be in SNF form), and
any pair of vectors a, b ∈ R

n, we have P (a)− P (b) = P ′((a+ b)/2)(a− b). Applying this to a = q∗

and b = y, we have that
q∗ − P (y) = P ′((1/2)(q∗ + y))(q∗ − y)

Subtracting both sides from q∗ − y, we have that:

P (y)− y = (I − P ′((1/2)(q∗ + y)))(q∗ − y) (10)

Now, by Lemma 2.12, we know that for any z ≤ q∗, such that z < 1, (I − P ′(z))−1 exists and is
non-negative. But since y ≤ q∗, clearly also (1/2)(q∗ + y) ≤ q∗, and since y < 1, and q∗ ≤ 1, then
clearly (1/2)(q∗ + y) < 1. Thus (I − P ′((1/2)(q∗ + y))−1 exists and is non-negative. Multiplying
both sides of equation (10) by (I − P ′((1/2)(q∗ + y))−1, we obtain:

q∗ − y = (I − P ′(1/2(q∗ + y))−1(P (y)− y)

as required.

By assumption, σ was chosen such that P (q) = Pσ(q). Note also that since 0 ≤ q ≤ q∗, we have
0 ≤ P ′

σ(
1
2 (q + q∗σ)) ≤ P ′

σ(
1
2(q

∗ + q∗σ), and thus 0 ≤ ρ(P ′
σ(

1
2(q + q∗σ))) ≤ ρ(P ′

σ(
1
2 (q

∗ + q∗σ)) < 1. Thus
(I − (P ′

σ(
1
2(q + q∗σ)))

−1 also exists and is non-negative. Using this, and applying Lemma 4.3 to the
PPS x = Pσ(x), where we set y := q, and taking norms, we obtain the following inequality:

‖q∗σ − q‖∞ ≤ ‖(I − P ′
σ(

1

2
(q∗σ + q)))−1‖∞‖P (q)− q‖∞ (11)

To find a bound on ‖P (q)− q‖∞, we need the following:

21

Lemma 4.4. If x = P (x) is a max/minPPS, and if 0 ≤ y ≤ q∗, then ‖P (y)− y‖∞ ≤ 2‖q∗ − y‖∞.

Proof. Suppose that x = P (x) is a PPS. By Lemma 3.3 of [11], we have that q∗ −P (y) = P ′(12 (y+
q∗))(q∗ − y). Since 1

2(y + q∗) ≤ 1, ‖P ′(12(y + q∗))‖∞ ≤ 2: If the ith row has xi = Pi(x) of type L

then
∑n

j=1 |pi,j| ≤ 1 and if xi = Pi(x) has type Q, then
∑n

j=1 |
∂Pi(x)
∂xj

(12 (y + q∗))| = 1
2(yj + q∗j) +

1
2(yk + q∗k) ≤ 2. So we have that ‖q∗ − P (y)‖∞ ≤ ‖P ′(12 (y + q∗))‖∞‖q∗ − y‖∞ ≤ 2‖q∗ − y‖∞.
As well as y ≤ q∗, we know that P (y) ≤ q∗ since P (x) is monotone. If (P (y))i ≤ yi, then
yi−P (y)i ≤ q∗i −P (y)i ≤ ‖q∗−P (y)‖∞ ≤ 2‖q∗−y‖∞. If Pi(y) ≥ yi, Pi(y)−yi ≤ q∗i −yi ≤ ‖q∗−y‖∞.
So ‖P (y)− y‖∞ ≤ 2‖q∗ − y‖∞ as required.

If x = P (x) is a max/minPPS, then it has some optimal policy, τ , and from the above, ‖Pτ (y)−
y‖∞ ≤ 2‖q∗ − y‖∞. It thus only remains to show that |Pi(y) − yi| ≤ 2‖q∗ − y‖∞ when xi = Pi(x)
is of form M (because the other equations don’t change in x = Pτ (x)).

If Pi(y) ≥ yi, then this is follows easily: as before we have that Pi(y)−yi ≤ q∗i −yi ≤ ‖q∗−y‖∞.
Suppose that instead we have Pi(y) ≤ yi. Then we consider the two cases (min and max) separately:

Suppose x = P (x) is a minPPS, and that Pi(x) = min {xj , xk}. Since q∗ = P (q∗), we have:

0 ≤ yi − Pi(y) ≤ q∗i − Pi(y) = min{q∗j , q
∗
k} − Pi(y) (12)

We can assume, w.l.o.g., that Pi(y) ≡ min{yj , yk} = yj . (The case where Pi(y) = yk is entirely
analogous.) Then, by (12), we have:

0 ≤ yi − P (y)i ≤ min{q∗j , q
∗
k} − yj ≤ q∗j − yj ≤ ‖q∗ − y‖∞

Suppose now that x = P (x) is a maxPPS, and that Pi(x) ≡ max {xj , xk}. Again, we are already
assuming that Pi(y) ≤ yi. Since q∗ = P (q∗), we have:

0 ≤ yi − Pi(y) ≤ q∗i − Pi(y) = Pi(q
∗)−max{yj , yk} (13)

We can assume, w.l.o.g., that Pi(q
∗) ≡ max{q∗j , q

∗
k} = q∗j . (Again, the case when Pi(q

∗) = q∗k is
entirely analogous.) Then, by (13), we have:

0 ≤ yi − Pi(y) ≤ q∗j −max{yj, yk} ≤ q∗j − yj ≤ ‖q∗ − y‖∞

This completes the proof of the Lemma for all max/minPPSs.

Now, we can show the result:

‖q∗ − q∗σ‖∞ ≤ ‖q∗ − q‖∞ + ‖q∗σ − q‖∞

≤ ‖q∗ − q‖∞ + ‖(I − P ′
σ(

1

2
(q∗σ + q)))−1‖∞‖Pσ(q)− q‖∞

= ‖q∗ − q‖∞ + ‖(I − P ′
σ(

1

2
(q∗σ + q)))−1‖∞‖P (q)− q‖∞

≤ ‖q∗ − q‖∞ + ‖(I − P ′
σ(

1

2
(q∗σ + q)))−1‖∞2‖q∗ − q‖∞

= (2‖(I − P ′
σ(

1

2
(q∗σ + q)))−1‖∞ + 1)‖q∗ − q‖∞

≤ (2‖(I − P ′
σ(

1

2
(q∗σ + q∗)))−1‖∞ + 1)‖q∗ − q‖∞

22

The last inequality follows because q ≤ q∗, and

0 ≤ (I − P ′
σ(q

∗
σ + q))−1 =

∞∑
i=0

(P ′
σ(q

∗
σ + q))i ≤

∞∑
i=0

(P ′
σ(q

∗
σ + q∗))i = (I − P ′

σ(q
∗
σ + q∗))−1.

Finding these bounds is different for maxPPSs and minPPSs . Although we assume that 0 <
q∗ < 1, for an arbitrary policy σ, it need not be true that 0 < q∗σ < 1. But the following obviously
does hold:

Proposition 4.5. Given a max/minPPS, x = P (x), with LFP q∗ such that 0 < q∗ < 1, for any
policy σ:
(i) If x = P (x) is a maxPPS then q∗σ < 1.
(ii) If x = P (x) is a minPPS, then q∗σ > 0.

Proof. This is trivial: if x = P (x) is a maxPPS, then clearly q∗σ ≤ q∗ < 1, because σ can be no
better than an optimal strategy. Likewise, if x = P (x) is a minPPS, then 0 < q∗ ≤ q∗σ, for the same
reason.

For maxPPSs, we may have that some coordinate of q∗σ is equal to 0 and for minPPSs we may
have that some coordinate of q∗σ is equal to 1, even when 0 < q∗ < 1. This is the source of the
different complications. We prove the following result in the appendix:

Theorem 4.6. If x = P (x) is a PPS with LFP q∗ > 0 then
(i) If q∗ < 1 and 0 ≤ y < 1, then (I − P ′(12 (y + q∗)))−1 exists and is non-negative, and

‖(I − P ′(
1

2
(y + q∗)))−1‖∞ ≤ 210|P |max {2(1 − y)−1

min, 2
|P |}

(ii) If q∗ = 1 and x = P (x) is strongly connected (i.e. every variable depends directly or indirectly
on every other) and 0 ≤ y < 1 = q∗, then (I − P ′(y))−1 exists and is non-negative, and

‖(I − P ′(y))−1‖∞ ≤ 24|P | 1

(1− y)min

We first focus on minPPSs, for which we shall show that if y is a close approximation to q∗,
then any policy σ with P (y) = Pσ(y) is ε-optimal. The maxPPS case will not be so simple: the
analogous statement is false for maxPPSs.

Theorem 4.7. If x = P (x) is a minPPS, with LFP 0 < q∗ < 1, and 0 ≤ ε ≤ 1, and 0 ≤ y ≤ q∗,
such that ‖q∗ − y‖∞ ≤ 2−14|P |−3ε, then for any policy σ with Pσ(y) = P (y), ‖q∗ − q∗σ‖∞ ≤ ε.

Proof. By Proposition 4.5, q∗σ ≥ q∗, and so q∗σ > 0. Suppose for now that q∗σ < 1 (we will show this
later). Then applying Theorem 4.6 (i), for the case where we set y := q∗ and the PPS is x = Pσ(x),
yields that

‖(I − P ′
σ(

1

2
(q∗ + q∗σ)))

−1‖∞ ≤ 210|Pσ |max {
2

(1− q∗)min
, 2|P |}

23

Note that |Pσ| ≤ |P |. Since for any minPPS, x = P (x), there is an optimal strategy τ , and
x = Pτ (x) is a PPS with the same LFP, q∗τ = q∗, as x = P (x), and furthermore since |Pτ | ≤ |P |, it
follows from Theorem 3.12 of [11] that (1− q∗)min ≥ 2−4|P |. Thus

‖(I − P ′
σ(

1

2
(q∗ + q∗σ)))

−1‖∞ ≤ 214|P |+1

Theorem 4.2 now gives that

‖q∗ − q∗σ‖∞ ≤ (214|P |+2 + 1)‖q∗ − y‖∞ ≤ ε

Thus, under the assumption that q∗σ < 1, we are done.
To complete the proof, we now show that q∗σ < 1. Suppose, for a contradiction, that for some i,

(q∗σ)i = 1. Then by results in [15], x = Pσ(x) has a bottom strongly connected component S with
q∗S = 1. If xi is in S then only variables in S appear in (Pσ)i(x), so we write xS = PS(x) for the
PPS which is formed by such equations. We also have that P ′

S(1) is irreducible and that the least
fixed point solution of xS = PS(xS) is q∗S = 1. Take yS to be the subvector of y with coordinates in
S. Now if we apply Theorem 4.6 (ii), by taking the y in its statement to be 1

2(yS +1), it gives that

‖(I − P ′
S(

1

2
(yS + 1)))−1‖∞ ≤ 24|PS |

1
1
2(1− yS)min

But |PS | ≤ |P | and (1− yS)min ≥ (1− q∗)min ≥ 2−4|P |. Thus

‖(I − P ′
S(

1

2
(yS + 1)))−1‖∞ ≤ 28|P |+1

Lemma 4.3 gives that

1− yS = (I − P ′
S(

1

2
(1 + yS)))

−1(PS(yS)− yS)

Taking norms and re-arranging gives:

‖PS(yS)− yS)‖∞ ≥
‖1− yS‖∞

‖(I − P ′
S(

1
2(yS + 1)))−1‖∞

≥
2−4|P |

28|P |+1
≥ 2−12|P |−1

However ‖PS(yS) − yS)‖∞ ≤ ‖Pσ(y) − y‖∞ and Pσ(y) = P (y). We deduce that ‖P (y) − y‖∞ ≥
2−12|P |−1. Lemma 4.4 states that ‖P (y)−y‖∞ ≤ 2‖q∗−y‖∞. We thus have ‖q∗−y‖∞ ≥ 2−12|P |−2.
This contradicts our assumption that ‖q∗ − y‖∞ ≤ 2−14|P |−3ε for some ε ≤ 1.

Now we proceed to the harder case of maxPPSs. The main theorem in this case is the following.

Theorem 4.8. If x = P (x) is a maxPPS with 0 < q∗ < 1 and given 0 ≤ ε ≤ 1 and a vector y, with
0 ≤ y ≤ q∗, such that ‖q∗ − y‖∞ ≤ 2−14|P |−2ε, there exists a policy σ such that ‖q∗ − q∗σ‖∞ ≤ ε, and
furthermore, such a policy can be computed in P-time, given x = P (x) and y.

We need a policy σ for which we can apply Theorem 4.6, and for which we can get good bounds
on ‖Pσ(y)−y‖∞. Firstly we show that such policies exist. In fact, any optimal policy will do: for an
optimal policy τ , q∗τ > 0 and Lemma 4.4 applied to x = Pτ (x) gives that ‖Pτ (y)−y‖∞ ≤ 2−14|P |−1ε.
Unfortunately the optimal policy might be hard to find (Theorem 4.1). We can however, given a
policy σ and the PPS x = Pσ(x), easily detect in polynomial time whether q∗σ > 0 (see, e.g.,
Theorem 2.2 of [15], and also [2]). We shall also make use of the following easy fact:

24

Lemma 4.9. If x = P (x) is a PPS with n variables, and with LFP q∗, then for any variable index
i ∈ {1, . . . , n} the following are equivalent
(i) q∗i > 0.
(ii) there is a k > 0 such that (P k(0))i > 0.
(iii) (Pn(0))i > 0.

Proof. (i) =⇒ (ii): From [15], P k(0) → q∗ as k → ∞. It follows that if (P k(0))i = 0 for all k, then
q∗i = 0.
(ii) =⇒ (iii): Firstly, if there is a 1 ≤ k < n with (P k(0))i > 0 then (Pn(0))i > 0. P (0) ≥ 0 and
so by monotonicity and an easy induction P l+1(0) ≥ P l(0) for all l > 0. Another induction gives
that Pm(0) ≥ P l(0) when m ≥ l > 0. As k < n, (Pn(0))i ≥ (P k(0))i > 0.

Whether Pi(x) > 0 depends only on whether each xj > 0 or not and not on the value of xj .
So, for any k, whether (P k+1(0))i > 0 depends only on the set Sk = {xj such that (P k(0))j > 0}.
From before P k+1(0) ≥ P k(0), so Sk+1 ⊇ Sk. If ever we have that Sk+1 = Sk, then for any j,
(P k+2(0))j > 0 whenever (P k+1(0))j > 0 so Sk+2 = Sk+1 = Sk. Sk+1 ⊃ Sk can only occur for n
values of k as there are only n variables to add. Consequently Sn+1 = Sn and so Sm = Sn whenever
m > n. So if we have a k > n with (P k(0))i > 0, then (Pn(0))i > 0

(iii) =⇒ (i): By monotonicity and an easy induction, q∗ ≥ P k(0) for all k > 0. In particular
q∗ ≥ Pn(0). So q∗i ≥ (Pn(0))i > 0.

Given the maxPPS, x = P (x), with 0 < q∗ < 1, and given a vector y that satisfies the conditions
of Theorem 4.8, we shall use the following algorithm to obtain the policy we need:

1. Initialize the policy σ to any policy such that Pσ(y) = P (y).

2. Calculate for which variables xi in x = Pσ(x) we have (q∗σ)i = 0. Let S0 denote this set of
variables. (We can do this in P-time; see e.g., Theorem 2.2 of [15].)

3. If for all i we have (q∗σ)i > 0, i.e., if S0 = ∅, then terminate and output the policy σ.

4. Otherwise, look for a variable xi, where Pi(x) is of form M, with Pi(x) = max {xj , xk}, and
where (q∗σ)i = 0 but one of xj, xk, say xj, has (q∗σ)j > 0 and where furthermore ‖yi − yj‖ ≤
2−14|P |−1ε. (We shall establish that such a pair xi and xj will always exist when we are at
this step of the algorithm.)

Let σ′ be the policy that chooses xj at xi but is otherwise identical to σ. Set σ := σ′ and
return to step 2.

Lemma 4.10. The steps of the above algorithm are always well-defined, and the algorithm always
terminates with a policy σ such that q∗σ > 0 and ‖Pσ(y)− y‖∞ ≤ 2−14|P |−1ε.

Proof. Firstly, to show that the steps of the algorithm are always well-defined, we need to show
that if there exists an xi with (q∗σ)i = 0, then step 4 will find some variable to switch to. Suppose
there is such an xi. Let τ be an optimal policy. (q∗τ)i = q∗i > 0. So by Lemma 4.9, (Pn

τ)i > 0.
For any variable xj with (Pτ (0))j > 0, the equation xj = Pj(x) must have form L and not M so
(Pσ(0))j > 0 and so (q∗σ)j > 0. There must be a least k, kmin with 1 < kmin ≤ n, such that there is
a variable xj with (P k

τ (0))j > 0 but (q∗σ)j = 0. Let xi′ be a variable such that (P kmin
τ (0))i′ > 0 but

(q∗σ)i′ = 0.

25

Suppose that xi′ = Pi′(x) has form Q, then Pi′(x) = xjxl for some variables xj, xl. We have
0 < (P kmin

τ (0))i′ = (P kmin−1
τ (0))j(P

kmin−1
τ (0))l. So (P kmin−1

τ (0))j > 0 and (P kmin−1
τ (0))l > 0. The

minimality of kmin now gives us that (q∗σ)j > 0 and (q∗σ)l > 0. So (q∗σ)i′ = (q∗σ)j(q
∗
σ)l > 0. This is a

contradiction. Thus, xi′ = Pi′(x) does not have form Q.
Similarly, xi′ = Pi′(x) does not have form L. So xi′ = Pi′(x) has form M. There are variables

xj, xl with Pi′(x) = max {xj , xl}. Suppose, w.l.o.g. that (Pτ (x))i′ = xj . We have P kmin
τ (0))i′ > 0

and so (P kmin−1(0))j > 0. By minimality of kmin, we have that (q∗σ)j > 0. We have that (q∗σ)i′ = 0
and so (Pσ(x))i′ = xl.

Lemma 4.4 applied to the system x = Pτ (x) gives that ‖Pτ (y)−y‖∞ ≤ 2−14|P |−1ε. So |yi′−yj| =
|yi′ − (Pτ (y))i′ | ≤ 2−14|P |−1ε. Thus, step 4 could use i′ and change the policy σ at i′ (i.e., switch
σ(i′)) from xl to xj.
Next, we need to show that the algorithm terminates:

Claim 4.11. If step 4 switches the variable xi with Pi(x) = max {xj , xk} from (Pσ(x))i = xk to
(Pσ′(x))i = xj , then
(i) q∗σ′ ≥ q∗σ,
(ii) (q∗σ′)i > 0,
(iii) The set of variables xl with (q∗σ′)l > 0 is a strict superset of the set of variables xl with (q∗σ)l > 0.

Proof. Recall that step 4 will only switch if (q∗σ)i = 0 and (q∗σ)j > 0.

(i) We show that, for any t > 0, P t
σ′(0) ≥ P t

σ(0).
The base case t = 1, is clear, because the only indices i where Pi(0)
= 0 are when Pi(0) has
form L, in which case Pi(0) = (Pσ′(0))i = (Pσ(0))i.

For the inductive case: note firstly that Pσ(x) and Pσ′(x) only differ on the ith coordi-
nate. (q∗σ)i = 0, so for any t, (P t

σ(0))i = 0. Suppose that P t
σ′(0) ≥ P t

σ(0). Then by
monotonicity P t+1

σ′ (0) ≥ Pσ′(P t
σ(0)). But (Pσ′(P t

σ(0)))r = (P t+1
σ (0))r when r
= i. Fur-

thermore, (Pσ′(P t
σ(0)))i ≥ 0 = (P t+1

σ (0))i. So Pσ′(P k
σ (0)) ≥ P k+1

σ (0). We thus have that
P t+1
σ′ (0) ≥ P t+1

σ (0).

We know that as t → ∞, P t
σ′(0) → q∗σ′ and P t

σ(0) → q∗σ. So q∗σ′ ≥ q∗σ.

(ii) We have (q∗σ′)i = (q∗σ′)j . By (i) (q∗σ′)j ≥ (q∗σ)j . We chose xj such that (q∗σ)j > 0. So (q∗σ′)i > 0.

(iii) If (q∗σ)l > 0, then by (i) (q∗σ′)l > 0. Also (q∗σ)i = 0 and by (ii) (q∗σ′)i > 0.

Thus, if at some stage of the algorithm we do not yet have q∗σ > 0, then step 4 always gives us a
new σ′ with more coordinates having (q∗σ′)i > 0. Furthermore, note that if ‖Pσ(y)−y‖∞ ≤ 2−14|P |−1ε
then ‖Pσ′(y)−y‖∞ ≤ 2−14|P |−1ε. Our starting policy has ‖Pσ(y)−y‖∞ = ‖P (y)−y‖∞ ≤ 2−14|P |−1ε.
The algorithm terminates and gives a σ with q∗σ > 0 and ‖Pσ(y)− y‖∞ ≤ 2−14|P |−1ε.

We can now complete the proof of the Theorem:

Proof of Theorem 4.8. Using the algorithm, we find a σ with ‖y−Pσ(y)‖∞ ≤ 2−14|P |−1ε and q∗σ > 0.
By Proposition 4.5, q∗σ < 1. Applying Theorem 4.6 (i) to the PPS x = Pσ(x) and point y := q∗ (not
to be confused with the y in the statement of Theorem 4.8), gives that

‖(I − P ′
σ(

1

2
(q∗ + q∗σ)))

−1‖∞ ≤ 210|Pσ |max {
2

(1− q∗)min
, 2|P |}

26

We have |Pσ | ≤ |P |. Also, from the fact there always exists an optimal policy, and from Theorem
3.12 of [11], it follows that we have (1− q∗)min ≥ 2−4|P |. So

‖(I − P ′
σ(

1

2
(q∗ + q∗σ)))

−1‖∞ ≤ 214|P |+1 (14)

We can not use Theorem 4.2 as stated because we need not have P (y) = Pσ(y). We do however
have

‖Pσ(y)− y‖∞ ≤ 2−14|P |−1ε (15)

Applying Lemma 4.3, and taking norms, we get the inequality

‖q∗σ − y‖∞ ≤ ‖(I − P ′(
1

2
(q∗σ + y)))−1‖∞‖P (y)− y‖∞ (16)

Combining (14), (15) and (16) yields:

‖q∗σ − y‖∞ ≤
1

2
ε

so ‖q∗σ − q∗‖∞ ≤ ‖q∗σ − y‖∞ + ‖q∗ − y‖∞ ≤ 1
2ε+ 2−14|P |−2ε ≤ ε.

Theorem 4.12. Given a max/minPPS, x = P (x), and given ε > 0, we can compute an ε-optimal
policy for x = P (x) in time poly(|P |, log (1/ε))

Proof. First we use the algorithms from [14] to detect variables xi with q∗i = 0 or q∗i = 1 in time
polynomial in |P |. Then we can remove these from the max/minPPS by substituting the known
values into the equations for other variables. This gives us an max/minPPS with least fixed point
0 < q′∗ < 1 and does not increase |P |. To use either Theorem 4.8 or Theorem 4.7, it suffices to
have a y with y < q∗ with q∗− y ≤ 2−14|P |−3ε. Theorem 3.21 says that we can find such a y in time
polynomial in |P | and 14|P | − log (ε), which is polynomial in |P | and log (1/ε) as required. Now
depending on whether we have a maxPPS or minPPS, Theorem 4.8 or Theorem 4.7 show that from
this y, we can find an ε-optimal policy for the max/minPPS with 0 < q′∗ < 1 in time polynomial
in |P | and log (1/ε). All that is left to show is that we can extend this policy to the variables xi
where q∗i = 0 or q∗i = 1 while still remaining ε-optimal.

We next show how this can be done.
For a minPPS, if q∗i = 1 then for any policy σ, (q∗σ)i = 1 so the choice made at such variables xi

is irrelevant. Similarly, for maxPPSs, when q∗i = 0, any choice at xi is optimal.
For a minPPS with q∗i = 0, if Pi(x) has form M, we can choose any variable xj with q∗j = 0.

There is such a variable: if Pi(x) = min {xj , xk} and q∗i = 0 then either q∗j = 0 or q∗k = 0. Let σ be
a policy such that for each variable xi with q∗i = 0, (q∗)σ(i) = 0. We need to show that (q∗σ)i = 0

for all such variables. Suppose that, for some k ≥ 0, (P k
σ (0))i = 0 for all xi such that q∗i = 0. Then

P (P k
σ (0))i = 0 for all xi with q∗i = 0.
To see why this is so, note that whether or not Pi(z) = 0 depends only on which coordinates of

z are 0, and furthermore if Pi(z) = 0 when the set of 0 coordinates of z is S, then for any vector
z′ where the 0 coordinates of z′ are S′ ⊇ S, we have Pi(z

′) = 0. Since the coordinate S that are 0
in q∗ are a subset of the coordinates S′ that are 0 in P k

σ (0), and we have Pi(q
∗) = q∗i = 0, we thus

have P (P k
σ (0))i = 0.

If Pi(x) = min {xj , xk} and q∗i = 0 then either q∗j = 0 or q∗k = 0. Suppose w.l.o.g. that

(Pσ(x))i = xj . Then q∗j = 0, so by assumption (P k
σ (0))j = 0 and so (Pσ(P

k
σ (0)))i = 0. We now

27

have enough for (P k+1
σ (0))i = 0 for each variable xi with q∗i = 0. P 0

σ (0) = 0, so by induction for all
k ≥ 0, (P k

σ (0))i = 0 for all xi with q∗i = 0. From this, for each variable xi with q∗i = 0, (q∗σ)i = 0.
The case of a maxPPS that have variables with q∗i = 1 is not so simple. The P-time algorithm

given in [14] to detect vertices with q∗i = 1, produces a partial randomised policy for such vertices
(Lemma 12 in [14]). A randomised policy is a map ρ : M → [0, 1], that turns a maxPPS x = P (x)
into a PPS x = Pρ(x) by replacing equations of form M, Pi(x) = max {xj , xk}, with equations
of form L Pi(x) = ρ(i)xj + (1 − ρ(i))xk. We would prefer a non-randomised (pure) policy σ with
(q∗σ)i = 1 for all variables xi with q∗i = 1. Theorem 2.5 (which quotes Theorem 2 of [14]) guarantees
the existence of such a σ.

We can construct such a pure optimal partial policy. We start with P(0)(x) = P (x). Given an
xi with (P(l)(x))i = max {xj , xk} and (q∗(l))i = 1, we try setting (P(l+1)(x))i = xj and see if this

gives (q∗(l+1))i = 1. If it does then set (P(l+1)(x)))i = xj . If it does not then set (P(l+1)(x)))i = xk.

We can argue inductively that the LFP q∗(l) of x = P(l)(x) is equal to the LFP q∗ of x = P (x)
for all l. The basis, l = 0, is clear. For the induction step. we know from Theorem 2.5 that
there is an optimal policy σ for the maxPPS x = P(l)(x). If σ does not have σ(i) = j then
σ(i) = k. So if setting (P(l+1)(x))i = xj would not give (q∗(l+1))i = 1 then (P(l+1)(x))i = xk does

give (q∗(l+1))i = 1. We have that (q∗(l+1))r = (q∗(l))r when r
= i so q∗(l+1) = q∗(l). When there are no

xi with (P(l)(x))i = max {xj , xk} and (q∗(l))i = 1, we have found a pure partial optimal policy for

xi with q∗i = 1. This requires no more than n calls to the polynomial time algorithm given in [14]
for determining for a maxPPS, x = P (x) those coordinates i such that q∗i = 1.

5 Approximating the value of BSSGs in FNP

In this section we briefly note that, as an easy corollary of our results for BMDPs, we can obtain
a TFNP (total NP search problem) upper bound for computing (approximately), the value of
Branching simple stochastic games (BSSG), where the objective of the two players is to maximize,
and minimize, the extinction probability. For relevant definitions and background results about these
games see [14]. It suffices for our purposes here to point out that, as shown in [14], the value of these
games (which are determined) is characterized by the LFP solution of associated min-maxPPSs,
x = P (x), where both min and max operators can occur in the equations for different variables.
Furthermore, both players have optimal policies (i.e. optimal pure, memoryless strategies) in these
games (see [14]).

Corollary 5.1. Given a max-minPPS, x = P (x), and given a rational ε > 0, the problem of
approximating the LFP q∗ of x = P (x), i.e., computing a vector v such that ‖q∗ − v‖∞ ≤ ε, is
in TFNP, as is the problem of computing ε-optimal policies for both players. (And thus also, the
problem of approximating the value, and computing ε-optimal strategies, for BSSGs is in FNP.)

Proof. Given x = P (x), whose LFP, q∗, we wish to compute, first guess pure policies σ and τ for
the max and min players, respectively. Then, fix σ as max’s strategy, and for the resulting minPPS
(with LFP q∗σ) use our algorithm to compute in P-time an approximate value vector vσ, such that
‖vσ − q∗σ‖∞ ≤ ε/4. Next, fix τ as min’s strategy, and for the resulting maxPPS (with LFP q∗τ), use
our algorithm to compute in P-time an approximate value vector vτ , such that ‖vτ − q∗τ‖∞ ≤ ε/4.
Finally, check whether ‖vσ − vτ‖∞ ≤ ε/4. If not, then reject this “guess”. If so, then output σ
and τ as ε-optimal policies for max and min, respectively, and output v := vσ (or v := vτ) as

28

an ε-approximation of the LFP, q∗. This procedure is correct because if q∗ is the LFP of the
min-maxPPS, x = P (x), then q∗σ ≤ q∗ ≤ q∗τ , and thus:

‖q∗ − vσ‖∞ ≤ ‖q∗ − q∗σ‖∞ + ‖q∗σ − vσ‖∞

≤ ‖q∗τ − q∗σ‖∞ + ‖q∗σ − vσ‖∞

≤ ‖q∗τ − vτ‖∞ + ‖vτ − vσ‖∞ + ‖vσ − q∗σ‖∞ + ‖q∗σ − vσ‖∞

≤ ε

And likewise for vτ .

It is worth noting that the problem of approximating the value of a BSSG game, to within a
desired ε > 0, when ε is given as part of the input, is already at least as hard as computing the
exact value of Condon’s finite-state simple stochastic games (SSGs) [5], and thus one can not hope
for a P-time upper bound without a breakthrough. In fact, it was shown in [14] that even the
qualitative problem of deciding whether the value q∗i = 1 for a given BSSG (or max-minPPS), which
was shown there to be in NP∩coNP, is already at least as hard as Condon’s quantitative decision
problem for finite-state simple stochastic games. (Whereas for finite-state SSGs the qualitative
problem of deciding whether the value is 1 is in P-time.)

A Omitted material from Section 2

A.1 Proof of Lemma 2.12

As usual, we always assume, w.l.o.g., that any MPS or PPS is in SNF form. Recall that for a square
matrix A, ρ(A) denotes its spectral radius.

Lemma 2.12. Given a PPS, x = P (x), with LFP q∗ > 0, if 0 ≤ y ≤ q∗, and y < 1, then
ρ(P ′(y)) < 1, and (I − P ′(y))−1 exists and is non-negative.

We first recall several closely related results established in our previous papers. Recall that
a PPS, x = P (x), is called strongly connected, if its variable dependency graph H is strongly
connected.

Lemma A.1. (Lemma 6.5 of [15])4 Let x = P (x) be a strongly connected PPS, in n variables,
with LFP q∗ > 0. For any vector 0 ≤ y < q∗, ρ(P ′(y)) < 1, and thus (I − P ′(y))−1 exists and is
nonnegative.

Theorem A.2. (Theorem 3.6 of [11]) For any PPS, x = P (x), in SNF form, which has LFP
0 < q∗ < 1, for all 0 ≤ y ≤ q∗, ρ(P ′(y)) < 1 and (I − P ′(y))−1 exists and is nonnegative.

Proof of Lemma 2.12. Consider a PPS, x = P (x), with LFP q∗ > 0, and a vector 0 ≤ y ≤ q∗, such
that y < 1. Note that all we need to establish is that ρ(P ′(y)) < 1, because it then follows by
standard facts (see, e.g., [17]) that (I − P ′(y))−1 exists and is equal to

∑∞
i=0(P

′(y))i ≥ 0.
Let us first show that if x = P (x) is strongly connected, then ρ(P ′(y)) < 1. To see this, note

that if x = P (x) is strongly connected, then every variable depends on every other, and thus if there

4Lemma 6.5 of [15] is actually a more general result, relating to strongly connected MPSs that arise from more
general RMCs.

29

exists any i ∈ {1, . . . , n} such that q∗i < 1, then it must be the case that for all j ∈ {1, . . . , n}, we
have q∗j < 1. Thus, either q∗ = 1, or else 0 < q∗ < 1. If q∗ = 1, then since y < 1, we have y < q∗,
and thus, by Lemma A.1, we have ρ(P ′(y)) < 1. If, on the other hand, 0 < q∗ < 1, then since
0 ≤ y ≤ q∗, by Theorem A.2, we have ρ(P ′(y)) < 1.

Next, consider an arbitrary PPS, x = P (x), that is not necessarily strongly connected. Recall
the variable dependency graph H of x = P (x). We can partition the variables into sets S1, . . . , Sk

which form the SCCs of H. Consider the DAG, D, of SCCs, whose nodes are the sets Si, and for
which there is an edge from Si to Sj iff in the dependency graph H there is a node i′ ∈ Si with an
edge to a node in j′ ∈ Sj.

Consider the matrix P ′(y). Our aim is to show that ρ(P ′(y)) < 1. Since we assume q∗ > 0,
0 ≤ y ≤ q∗, and y < 1, it clearly suffices to show that ρ(P ′(y)) < 1 holds in the case where we
additionally insist that y > 0, because then for any other z such that 0 ≤ z ≤ y, we would have
ρ(P ′(z)) ≤ ρ(P ′(y)) < 1.

So, assuming also that y > 0, consider the n × n-matrix P ′(y). To keep notation clean, we
let A := P ′(y)). For the n × n matrix A, we can consider its underlying dependency graph, H =
({1, . . . , n}, EH), whose nodes are {1, . . . , n}, and where there is an edge from i to j iff Ai,j > 0.
Notice however that, since y > 0, this graph is precisely the same graph as the dependency graph
H of x = P (x), and thus it has the same SCCs, and the same DAG of SCCs, D. Let us sort the
SCCs, so that we can assume S1, . . . , Sk are topologically sorted with respect to the partial ordering
defined by the DAG D. In other words, for any variable indices i ∈ Sa and j′ ∈ Sb if (i, j) ∈ EH ,
then a ≤ b.

Let S ⊆ {1, . . . , n} be any non-empty subset of indices, and let A[S] denote the principle
submatrix of A defined by indices in S. It is a well known fact that 0 ≤ ρ(A[S]) ≤ ρ(A). (See, e.g,
Corollary 8.1.20 of [17].)

Since A ≥ 0, ρ(A) is an eigenvalue of A, and has an associated non-negative eigenvector v ≥ 0,
v
= 0 (again see, e.g., Chapter 8 of [17]). In other words,

Av = ρ(A)v

Firstly, if ρ(A) = 0, then we are of course trivially done. So we can assume w.l.o.g. that ρ(A) > 0.
Now, if vi > 0, then for every j such that (j, i) ∈ EH , we have (Av)j > 0, and thus since (Av)j =
ρ(A)vj , we have vj > 0. Hence, repeating this argument, if vi > 0 then for every j that has a path
to i in the dependency graph H, we have vj > 0.

Since v
= 0, it must be the case that there is exists some SCC, Sc, of H such that for every
variable index i ∈ Sc, vi > 0, and furthermore, such that c is the maximum index for such an SCC
in the topologically sorted list S1, . . . , Sk, i.e., such that for all d > c, and for all j ∈ Sd, we have
vj = 0.

First, let us note that it must be the case that Sc is a non-trivial SCC. Specifically, let us call
an SCC, Sr of H trivial if Sr = {i} consists of only a single variable index, i, and furthermore, such
that 0 = (A)i = (P ′(y))i, i.e., that row i of the matrix A is all zero. This can not be the case for
Sc, because for any variable i ∈ Sc, we have vi > 0, and thus (Av)i = ρ(A)vi > 0.

Let us consider the principal submatrix A[Sc] of A. We claim that ρ(A[Sc]) = ρ(A). To see why
this is the case, note that Av = ρ(A)v, and for every i ∈ Sc, we have (Av)i =

∑
j ai,jvj = ρ(A)vi.

But vj = 0 for every j ∈ Sd such that d > c, and furthermore ai,j = 0 for every j ∈ Sd′ such that
d′ < c.

Thus, if we let vSc denote the subvector of v corresponding to the indices in Sc, then we have just
established that A[Sc]vSc = ρ(A)vSc , and thus that ρ(A[Sc]) ≥ ρ(A). But since A[Sc] is a principal

30

submatrix of A, we also know easily (see, e.g, Corollary 8.1.20 of [17]), that ρ(A[Sc]) ≤ ρ(A), so
ρ(A[Sc]) = ρ(A).

We are almost done. Given the original PPS, x = P (x), for any subset S ⊆ {1, . . . , n} of variable
indices, let xS = PS(xS , xDS

) denote the subsystem of x = P (x) associated with the vector xS of
variables in set S, where xDS

denotes the variables not in S.
Now, note that xSc = PSc(xSc , yDSc

) is itself a PPS. Furthermore, it is a strongly connected PPS,
precisely because Sc is a strongly connected component of the dependency graph H, and because
y > 0. Moreover, the Jacobian matrix of PSc(xSc , yDSc

)), evaluated at ySc , which we denote by
P ′
Sc
(y), is precisely the principal submatrix A[Sc] of A. Since xSc = PSc(xSc , yDSc

) is a strongly
connected PPS, we have already argued that it must be the case that ρ(P ′

Sc
(y)) < 1. Thus since

P ′
Sc
(y) = A[Sc], we have ρ(A[Sc]) = ρ(A) < 1. This completes the proof.

B Omitted Material from Section 3

B.1 Proof of Theorem 3.21

Theorem 3.21 Given any max/minPPS, x = P (x), with LFP 0 < q∗ < 1. If we use the “rounded-
down-GNM” algorithm with rounding parameter h = j+2+4|P |, then the iterations are all defined,
and for every k ≥ 0 we have 0 ≤ x(k) ≤ q∗, and furthermore after h = j + 2 + 4|P | iterations we
have:

‖q∗ − x(j+2+4|P |)‖∞ ≤ 2−j

We prove this using a few lemmas.

Lemma B.1. If we run the rounded-down-GNM starting with x(0) := 0 on a max/minPPS, x =
P (x), with LFP q∗, 0 < q∗ < 1, then for all k ≥ 0, x(k) is well-defined and 0 ≤ x(k) ≤ q∗.

Proof. The base case x(0) = 0 is immediate for both.
For the induction step, suppose the claim holds for k and thus 0 ≤ x(k) ≤ q∗. From Proposition

3.7, I(x(k)) is well-defined and I(x(k)) ≤ q∗. Furthermore, since x(k+1) is obtained from I(x(k))
by rounding down all coordinates, except setting to 0 any that are negative, and since obviously
q∗ > 0, we have that 0 ≤ x(k+1) ≤ q∗.

Lemma B.2. For a max/minPPS, x = P (x), with LFP q∗, such that 0 < q∗ < 1, if we apply
rounded-down-GNM with parameter h, starting at x(0) := 0, then for all j′ ≥ 0, we have:

‖q∗ − x(j
′+1)‖∞ ≤ 2−j′ + 2−h+1+4|P |

Proof. Since x(0) := 0:

q∗ − x(0) = q∗ ≤ 1 ≤
1

(1 − q∗)min

(1 − q∗) (17)

For any k ≥ 0, if q∗ − x(k) ≤ λ(1 − q∗), then by Proposition 3.7(which was proved separately for
maxPPSs and minPPSs, in Lemmas 3.11 and 3.18, respectively), we have:

31

q∗ − I(x(k)) ≤ (
λ

2
)(1 − q∗) (18)

Observe that after every iteration k > 0, in every coordinate i we have:

x
(k)
i ≥ I(x(k−1))i − 2−h (19)

This holds simply because we are rounding down I(x(k−1))i by at most 2−h, unless it is negative in

which case x
(k)
i = 0 > I(x(k−1))i. Combining the two inequalities (18) and (19) yields the following

inequality:

q∗ − x(k+1) ≤ (
λ

2
)(1 − q∗) + 2−h1 ≤ (

λ

2
+

2−h

(1 − q∗)min

)(1 − q∗)

Taking inequality (17) as the base case (with λ = 1
(1−q∗)min

), by induction on k, for all k ≥ 0:

q∗ − x(k+1) ≤ (2−k +

k∑
i=0

2−(h+i))
1

(1 − q∗)min

(1 − q∗)

But
∑k

i=0 2
−(h+i) ≤ 2−h+1 and ‖1−q∗‖∞

(1−q∗)min

≤ 1
(1−q∗)min

≤ 24|P |, by Lemma 3.20. Thus:

q∗ − x(k+1) ≤ (2−k + 2−h+1)24|P |1

Clearly, we have q∗ − x(k) ≥ 0 for all k. Thus we have shown that for all k ≥ 0:

‖q∗ − x(k+1)‖∞ ≤ (2−k + 2−h+1)24|P | = 2−k + 2−h+1+4|P |.

Proof of Theorem 3.21. In Lemma B.2 let j′ := j + 4|P | + 1 and h := j + 2 + 4|P |. We have:
‖q∗ − x(j+2+4|P |)‖∞ ≤ 2−(j+1+4|P |) + 2−(j+1) ≤ 2−(j+1) + 2−(j+1) = 2−j .

C Omitted Material from Section 4.

C.1 Bounds on the norm of (I − P
′(x))−1.

We aim to prove Theorem 4.6, which we re-state here. Let us first recall some definitions related to
the dependency graph of variables in a PPS.

For a PPS, x = P (x) with n variables, its variable dependency graph is defined to be the digraph
H = (V,E), with vertices V = {x1, . . . , xn}, such that (xi, xj) ∈ E iff in Pi(x) ≡

∑
r∈Ri

prx
v(αr)

there is a coefficient pr > 0 such that v(αr)j > 0. Intuitively, (xi, xj) ∈ E means that xi “depends
directly” on xj . A MPS or PPS, x = P (x), is called strongly connected if its dependency graph
H is strongly connected.

Theorem 4.6. If x = P (x) is a PPS with LFP q∗ > 0 then

(i) If q∗ < 1 and 0 ≤ y < 1, then (I − P ′(12(y + q∗)))−1 exists and is non-negative, and

‖(I − P ′(
1

2
(y + q∗)))−1‖∞ ≤ 210|P |max {2(1 − y)−1

min, 2
|P |}

32

(ii) If q∗ = 1 and x = P (x) is strongly connected (i.e. every variable depends on every other) and
0 ≤ y < 1 = q∗, then (I − P ′(y))−1 exists and is non-negative, and

‖(I − P ′(y))−1‖∞ ≤ 24|P | 1

(1− y)min

Before proving this Theorem, we shall need to develop some more definitions and lemmas.

Definition C.1. A path in the dependency graph H = (V,E) of a PPS x = P (x) is a sequence of
variables xk1 , ... ,xkm, with m ≥ 2, such that (xki , xki+1

) ∈ E, for i ∈ {1, . . . ,m − 1}. In other
words, for each i ∈ {1, . . . ,m − 1}, xki+1

appears (with a non-zero coefficient) in the polynomial
Pki(x).

We say that xi depends on xj (directly or indirectly) if there is a path in the dependency graph
starting at xi and ending at xj.

We shall need to be more quantitative about dependency:

Lemma C.2. Given a PPS x = P (x) in SNF form, and variables xi,xj:

(i) If xi depends on xj then there is a positive integer k, with 1 ≤ k ≤ n, such that

(P ′(1)k)ij ≥ 2−|P |

(ii) If (P ′(1)k)ij > 0 for some positive integer k, with 1 ≤ k ≤ n, then xi depends on xj.

(iii) If xi depends on xj "only via variables of Form L", i.e., if there is a path xl1 , . . . , xlm in
the dependency graph such that l1 = i and lm = j, and such that for each 1 ≤ h ≤ m − 1,
xlh = Plh(x) = plh,0 +

∑n
g=1 plh,gxg has form L with plh,lh+1

> 0, then there is a 1 ≤ k ≤ n
such that, for any vector x, such that 0 ≤ x ≤ 1,

(P ′(x)k)ij ≥ 2−|P |

Proof.

(i) Let the sequence of variables xl1 , . . . , xlk constitute a shortest path from xi and xj , such that
k ≥ 2. Such a shortest path exists, since xi depends on xj. So xi = xl1 , and xj = xlk ,
and xlh+1

appears in the expression for Plh(x), and 1 ≤ h ≤ k − 1. Note that we must have
k ≤ n. Thus (P ′(1))lhlh+1

> 0 for 1 ≤ h ≤ k − 1. But note that since P ′(1) is a non-negative

matrix, (P ′(1)k−1)ij ≥
∏k−1

h=1(P
′(1))lhlh+1

. Since we have chosen a shortest (non-empty) path
from xi to xj, and since x = P (x) is in SNF form, each (P ′(1))lhlh+1

that is not exactly 1
must be a distinct rational coefficient in P , not appearing elsewhere along the path, and thus∏k−1

h=1(P
′(1))lhlh+1

≥ 2−|P |.

(ii) For k ≥ 1, we can expand (P ′(1)k)ij into a sum of nk−1 terms of the form
∏k

h=1(P
′(1))lhlh+1

with l1 = i, lk+1 = j and (l2, . . . , lk) ∈ {1, ..., n}k−1. At least one of these has
∏k

h=1(P
′(1))lhlh+1

>
0. In that case, xh1 , ..., xhk+1

is a path in the dependency graph starting at xi and ending at
xj .

33

(iii) Let us choose xl1 , . . . , xlk to be a shortest path from xi to xj , with k ≥ 2, and such that
every equation xlh = Plh(x) along the path, for all h ∈ {1, . . . , k − 1} has form L. Clearly, we
must have k ≤ n. By monotonicity of P ′(z) in z ≥ 0, we have (P ′(1)k−1)ij ≥ P ′(x)k−1. Fur-

thermore, since xl1 , . . . , xlk is a path from xi to xj, we have (P ′(x))k−1
i,j ≥

∏k−1
h=1(P

′(x))lhlh+1
.

Moreover, since each equation xlh = P (x)lh has Form L, for every h ∈ {1, . . . , k− 1}, we must
have (P ′(x))lhlh+1

= (P ′(1))lhlh+1
(because all the partial derivatives of linear expressions are

constants). But we argued in (i) that, when xl1 , . . . , xlk constitutes a shortest path from xi
to xj,

∏k−1
h=1(P

′(1))lhlh+1
≥ 2−|P |.

We need a basic result from the Perron-Frobenius theory of non-negative matrices. We are
not aware of a source that contains a statement exactly equivalent to (or implying) the following
Lemma, so we shall provide a proof, however it is entirely possible (and likely) that such a Lemma
has appeared elsewhere. Lemma 19 of [13] provides a similar result for the case when the matrix A
is irreducible.

Lemma C.3. If A is a non-negative matrix, and vector u > 0 is such that Au ≤ u and ‖u‖∞ ≤ 1,
and α, β ∈ (0, 1) are constants such that for every i ∈ {1, ...n}, one of the following two conditions
holds:

(I) (Au)i ≤ (1− β)ui

(II) there is some k, 1 ≤ k ≤ n, and some j, such that (Ak)ij ≥ α and (Au)j ≤ (1− β)uj .

then (I −A) is non-singular and

‖(I −A)−1‖∞ ≤
n

u2minαβ

Proof. First, suppose that some i ∈ {1, . . . , n}, satisfies condition (I). Then, we claim that it
satisfies condition (II), except that we must take k = 0. Specifically, if we let k = 0, then since
A0 = I, and (A0)ii = Iii = 1 ≥ α, condition (II) boils down to (Au)i ≤ (1 − β)ui. So, to prove the
statement, it suffices to only consider condition (II) but to allow k = 0 in that condition.

So, by assumption, given any i ∈ {1, ...n}, there is some 0 ≤ k ≤ n and some j, such that

(Ak)ij ≥ α > 0 (20)

and moreover (Au)j ≤ (1− β)uj , which we can rewrite as:

uj − (Au)j ≥ βuj (> 0) (21)

34

Let umin = mini ui. We thus have that for every i:

(Anu)i = (u−
n−1∑
l=0

Al(u−Au))i

≤ (u−Ak(u−Au))i (because Al ≥ 0 and (u−Au) ≥ 0)

= (ui −
n∑

j′=1

Ak
ij′(uj′ − (Au)j′)

≤ (ui −Ak
ij(uj − (Au)j) (again, because Ak

i,j′ ≥ 0 and (uj′ − (Au)j′) ≥ 0 for every j′)

≤ ui − αβuj (by (20) and (21))

≤ ui − αβumin

≤ ui − uminαβui (recalling that by assumption ‖u‖∞ ≤ 1)

We have that Anu ≤ (1− uminαβ)u. Of course (1− uminαβ) < 1. So we have that

Amnu ≤ (1− uminαβ)
mu

For any integer d ≥ 0, Adu ≤ u. Thus also, for every d ≥ 0,

Adu ≤ (1− uminαβ)
� d
n
	u (22)

We thus have that, as m → ∞, Amu → 0. Since u > 0 and A ≥ 0, this implies that as m → ∞,
Am → 0 (coordinate-wise), or in other words that limm→∞ ‖Am‖∞ = 0. This is equivalent to
saying that the spectral radius ρ(A) < 1. Let us first recall that this implies that the inverse matrix
(I −A)−1 =

∑∞
k=0A

k ≥ 0 exists.

Lemma C.4. (see, e.g., [17], Theorem 5.6.9 and Corollary 5.6.16) If A is a square matrix with
ρ(A) < 1 then (I −A) is non-singular, the series

∑∞
k=0A

k converges, and (I −A)−1 =
∑∞

k=0A
k.

We will use the following easy fact:

Lemma C.5. If M is a nonnegative n× n matrix, u > 0 is a vector with ‖u‖∞ ≤ 1, and λ > 0 is
a real number satisfying Mu ≤ λu then

‖M‖∞ ≤
λ

umin

Proof. Since M is non-negative, ‖M‖∞ is the maximum row sum of M . There is thus an i such
that

‖M‖∞ =
∑
j

mij

where mi,j are the entries of M . For this i:

λui ≥ (Mu)i

=
∑
j

mijuj

≥
∑
j

mijumin

= ‖M‖∞umin

but ui ≤ 1 giving us ||M ||∞ ≤ λ
umin

.

35

Now we can complete the proof of Lemma C.3:

(I −A)−1u = (
∞∑
k=0

Ak)u =
∞∑
k=0

Aku

≤
∞∑
k=0

(1− uminαβ)
� k
n
	u (by (22))

= (

∞∑
m=0

n(1− uminαβ)
mu

= n
1

uminαβ
u

the last equality holding because the geometric series sum gives
∑∞

m=0(1 − uminαβ)
m = 1

uminαβ
.

Lemma C.5, with M := (I −A)−1 =
∑∞

k=0A
k, and λ := n 1

uminαβ
, now yields:

‖(I −A)−1‖∞ ≤ n
1

u2minαβ

and this completes the proof of Lemma C.3.

Proof of Theorem 4.6. Before we start to prove cases (i) and (ii) of the Theorem we need to
develop some more lemmas.

Proposition C.6. For a PPS, x = P (x), with LFP q∗ > 0, for every variable xi either Pi(0) > 0
or xi depends on a variable xj with Pj(0) > 0.

Proof. Suppose, for contradiction, that a variable xi has Pi(0) = 0 and depends only on variables
xj which have Pj(0) = 0. Then Pn

i (0) = 0 for all n. But Pn(0) → q∗ as n → ∞ (see e.g.,. Theorem
3.1 from [15]). So q∗i = 0.

The case when all the equations, xi = Pi(x), are linear has to be treated a little differently, and we
tackle that first:

Lemma C.7. If x = P (x) is a PPS that has no equations of form Q, and has LFP q∗ > 0, then

‖(I − P ′)−1‖∞ ≤ n22|P |

where P ′ is the constant Jacobian matrix of P (x), (i.e., P ′ = P ′(x) for all x).

Proof. First, note that P ′ is a sub-stochastic matrix i.e. P ′1 ≤ 1. We will now call a variable,
xi, leaky, if (P ′1)i < 1. Note that since Pi(x) ≡

∑n
i=1 pi,jxj + pi,0, this means that (P ′1)i =∑n

j=1
∂Pi(x)
∂xj

=
∑n

j=1 pi,j < 1.

Note that since q∗ > 0, it must be the case that for every variable xi, either xi itself is leaky,
or xi depends (possibly indirectly) on a leaky variable xj . This is because if a variable xi doesn’t
satisfy this, then q∗i = 0, which can’t be the case.

36

Since the entries of P ′ are either 0, 1, or coefficients pi,j from P (x), we see that for every leaky
variable xi, we have that (P ′1)i =

∑n
j=1 pi,j ≤ (1− 2−|P |) holds.5

For any non-leaky variable xr, there is a leaky variable xi that xr depends on. xr does not
depend on any variables of form Q. Thus, by Lemma C.2 (iii), there is a k, 1 ≤ k ≤ n, such that
((P ′)k)ri ≥ 2−|P |.

We can thus apply Lemma C.3 with matrix A := P ′ and vector u := 1, with α := β := 2−|P |,
because we have just established that condition (I) of that Lemma applies to leaky variables xi, and
condition (II) of that Lemma applies to non-leaky variables. Thus Lemma C.3 give us that

‖(I − P ′)−1‖∞ ≤ (
1

1min
)2n22|P |

Of course, 1min = 1.

We are now ready to prove parts (i) and (ii) of Theorem 4.6.
(i) When q∗ < 1, we can say something stronger than Proposition C.6.

Lemma C.8. For any PPS, x=P(x), with LFP 0 < q∗ < 1, for any variable xi either

(I) the equation xi = Pi(x) is of form Q, or else Pi(1) < 1.

(II) xi depends on a variable xj , such that xj = Pj(x) is of form Q, or else Pj(1) < 1.

Proof. Suppose, for contradiction, that there is a variable xi for which neither (I) nor (II) holds.
Let Di be the set of variables that xi depends on, unioned together with {xi} itself. For any vector
x, consider the subvector xDj

, which consists of the components of x with coordinates in Di. We
can consider the subset of the equations xDi

= PDi
(x). By transitivity of dependency, PDi

(x)
contains only terms in the variables xDi

. So xDi
= PDi

(x) = PDi
(xDi

) is itself a PPS. Since by
assumption neither (I) nor (II) hold for xi, we have that xDi

= PDi
(xDi

) contains no equations
of form Q and PDi

(1) = 1. Since, therefore, PDi
(xDi

) is linear, we can rewrite xDi
= PDi

(xDi
)

as xDi
= P ′

Di
xDi

+ PDi
(0) and hence (I − P ′

Di
)xDi

= PDi
(0). Lemma C.7 applied to the PPS

xDi
= PDi

(xDi
) gives us that, in particular, (I−P ′

Di
) is non-singular. Consequently xDi

= PDi
(xDi

)
has a unique solution. But we already said that 1 is a solution, PDi

(1) = 1, and so q∗Di
= 1. This

contradicts q∗ < 1. So there can be no xi for which neither (I) nor (II) holds.

To obtain the conclusion of case (i) of Theorem 4.6, assuming all of the premises of the Theorem’s
statement, we will now aim to use Lemma C.3, applied to A := P ′(12(y + q∗), and u := 1− q∗.

By Lemma C.8, every variable xi either depends on a variable, or is itself equal to a variable,
xj, such that xj = Pj(x) is of form Q or Pj(1) < 1. We can clearly assume that such a dependence
is linear in the sense of Lemma C.2 (iii), and thus for any xi there is a 0 ≤ k ≤ n with (P ′(1)k)ij ≥
2−|P |, for some xj with either xj = Pj(x) of form Q or Pj(1) < 1.

We need to show and that for such an xj we have (P ′(12 (y + q∗))(1 − q∗) < 1− q∗.

5This inequality holds because we assume each positive input probability pi,j is represented as a ratio
aj

bj
of positive

integers in the encoding of x = P (x), and thus 1−
∑n

j=1

aj

bj
can be represented as a ratio a

b
of two positive integers

where the denominator is b =
∏n

j=1 bj . But then (1−
∑n

j=1

aj

bj
) = a

b
≥ 1/

∏n

j=1 bj ≥ 1

2|P | .

37

For any variable xj such that xj = Pj(x) has form Q, we have that xj = xkxl for some variables

k and l. Thus, since
∂Pj(x)
∂xk

= xl and
∂Pj(x)
∂xl

= xk, we have that:

(P ′(
1

2
(q∗ + y))(1 − q∗))j =

1

2
(q∗k + yk)(1 − q∗l) +

1

2
(q∗l + yl)(1− q∗k)

=
1

2
((q∗k + 1)− (1− yk))(1 − q∗l) +

1

2
((q∗l + 1)− (1− yl))(1− q∗k)

=
1

2
((q∗k + 1)(1 − q∗l)− (1− yk)(1− q∗l) + (q∗l + 1)(1 − q∗k)− (1− yl)(1− q∗k))

=
1

2
(2− 2q∗kq

∗
l − (1− yl)(1− q∗k)− (1− yk)(1− q∗l))

≤
1

2
(2− 2q∗kq

∗
l − (1− y)min((1− q∗)k + (1− q∗)l))

≤
1

2
(2− 2q∗kq

∗
l − (1− y)min((1− q∗)k + (1− q∗)l − (1− q∗)k(1− q∗)l))

= (1− q∗j)−
1

2
(1− y)min(1− q∗j)

= (1−
1

2
(1− y)min)(1− q∗)j

If, on the other hand, xj has Pj(1) < 1, then xj = Pj(1) has form L, and, as in the proof of Lemma
C.7, and specifically footnote (5), we must have

Pj(1) ≤ 1− 2−|P | (23)

We thus have that:

(P ′(
1

2
(q∗ + y))(1− q∗))j =

n∑
l=1

pj,l(1− q∗)l

= (

n∑
l=1

pj,l) + pj,0 − (

n∑
l=1

pj,lq
∗
l)− pj,0

= Pj(1) − Pj(q
∗)

= Pj(1) − q∗j

≤ (1− 2−|P |)− q∗j (by (23))

= (1− q∗)j − 2−|P |

≤ (1− 2−|P |)(1− q∗)j

To be able to apply Lemma C.3, it only remains to show that P ′(12 (y+ q∗)))(1− q∗) ≤ (1− q∗).
But Lemma 3.5 of [11] established that P ′(12 (1+ q∗)))(1− q∗) ≤ (1− q∗). Since 0 ≤ y < 1, it follows
by monotonicity of P ′(z) in z that P ′(12 (y + q∗)))(1 − q∗) ≤ (1− q∗).

Thus, we can apply Lemma C.3, by setting A := P ′(12 (y + q∗)), u := (1 − q∗), α := 2−|P |,

β := min{1
2 (1− y)min, 2

−|P |}, and we obtain:

‖(I − P ′(
1

2
(y + q∗)))−1‖∞ ≤ n(1− q∗)−2

minmax {2(1 − y)−1
min, 2

|P |}2|P |

38

Recall that, by Lemma 3.19, (1− q∗)min ≥ 2−4|P |. Thus

‖(I − P ′(
1

2
(y + q∗)))−1‖∞ ≤ n29|P |max {2(1 − y)−1

min, 2
|P |}

≤ 210|P |max {2(1 − y)−1
min, 2

|P |}

We now prove part (ii) of Theorem 4.6. If x = P (x) is strongly connected, then if there is an xi
with xi = Pi(x) of form Q, then every variable depends on it. If there are no such variables, then
Lemma C.7 gives that, for any x ∈ R

n, ‖I − P ′(x)‖∞ ≤ n22|P | and we are done. So we can assume
that there is an xi with xi = Pi(x) of form Q. We quote the following from [15]:

Lemma C.9 (see proof of Theorem 8.1 in [15]). If x = P (x) is strongly connected and q∗ > 0, then
q∗ = 1 iff ρ(P ′(1)) ≤ 1.

P ′(1) is a non-negative irreducible matrix. Perron-Frobenius theory gives us that there is a
positive eigenvector v > 0, with associated eigenvalue ρ(P ′(1)), the spectral radius of P ′(1), i.e.,
such that P ′(1)v = ρ(P ′(1))v. But ρ(P ′(1)) ≤ 1 so P ′(1)v ≤ v.

Lemma C.10 (cf Lemma 5.9 of [9]). ‖v‖∞
vmin

≤ 2|P |.

Proof. For any xi, xj, there is some 1 ≤ k ≤ n with (P ′(1)k)ij > 0. We know that P ′(1)kv ≤ v.
So (P ′(1)k)ijvj ≤ (P ′(1)kv)i = ρ(P ′(1))kvi ≤ vi. But by Lemma C.2 (ii), (P ′(1)k)ij ≥ 2−|P |. So
vj
vi

≤ 2|P |. There are vi,vj that achieve vi = vmin and vj = ‖v‖∞, so we are done.

We can normalise the top eigenvector, v, so we can assume that ‖v‖∞ = 1. Then vmin ≥ 2−|P |.
Consider any equation xi = Pi(x) = xjxk of form Q (we have already dealt with the case where no
such equation exists):

(P ′(y)v)i = yjvk + ykvj

≤ ymaxvk + ymaxvj (where ymax := maxr yr)

≤ (1− (1− y)min)(vk + vj)

= (1− (1− y)min)(P
′(1)v)i

= (1− (1− y)min)ρ(P
′(1))vi

≤ (1− (1− y)min)vi (because ρ(P ′(1)) ≤ 1)

Now we can apply Lemma C.3, with A := P ′(y), u := v, α := 2−|P |, and β := (1− y)min, to obtain
that:

‖(I − P ′(y))−1‖∞ ≤ nv−2
min(1− y)−1

min2
|P |

Inserting our bound for vmin, namely vmin ≥ 2−|P |, yields:

‖(I − P ′(y))−1‖∞ ≤ n23|P |(1− y)−1
min

≤ 24|P |(1− y)−1
min

39

References

[1] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the complexity of
numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.

[2] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis. Analysis of
recursive state machines. ACM Trans. Program. Lang. Syst., 27(4), 2005.

[3] T. Brázdil, V. Brozek, K. Etessami, and A. Kucera. Approximating the termination value of
one-counter mdps and stochastic games. In Proc. of 38th ICALP (2), pages 332–343, 2011.

[4] T. Brázdil, V. Brozek, V. Forejt, and A. Kucera. Reachability in recursive markov decision
processes. Inf. Comput., 206(5):520–537, 2008.

[5] A. Condon. The complexity of stochastic games. Inf. & Comp., 96(2):203–224, 1992.

[6] C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events. IEEE
Trans. on Automatic Control, 43(10):1399–1418, 1998.

[7] E. Denardo and U. Rothblum. Totally expanding multiplicative systems. Linear Algebra Appl.,
406:142–158, 2005.

[8] J. Esparza, T. Gawlitza, S. Kiefer, and H. Seidl. Approximative methods for monotone systems
of min-max-polynomial equations. In Proc. of 35th ICALP (1), pages 698–710, 2008.

[9] J. Esparza, S. Kiefer, and M. Luttenberger. Computing the least fixed point of positive poly-
nomial systems. SIAM Journal on Computing, 39(6):2282–2355, 2010.

[10] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown automata. Logical
Methods in Computer Science, 2(1):1 – 31, 2006.

[11] K. Etessami, A. Stewart, and M. Yannakakis. Polynomial-time algorithms for multi-type
branching processes and stochastic context-free grammars. In Proc. 44th ACM Symposium
on Theory of Computing (STOC), 2012. To appear. (Full preprint on arXiv:1201.2374).

[12] K Etessami, D Wojtczak, and M. Yannakakis. Recursive stochastic games with positive rewards.
In Proc. of 35th ICALP (1), volume 5125 of LNCS, pages 711–723. Springer, 2008. see full tech
report at http://homepages.inf.ed.ac.uk/kousha/bib_index.html.

[13] K. Etessami, D. Wojtczak, and M. Yannakakis. Quasi-birth-death processes, tree-like QBDs,
probabilistic 1-counter automata, and pushdown systems. Perform. Eval., 67(9):837–857, 2010.

[14] K. Etessami and M. Yannakakis. Recursive Markov decision processes and recur-
sive stochastic games. In ICALP, pages 891–903., 2005. See full version (at
http://homepages.inf.ed.ac.uk/kousha/j_sub_rmdp_rssg.pdf) which includes also the results
of our paper “Efficient Qualitative Analysis of Classes of Recursive Markov Decision Processes
and Simple Stochastic Games", Proc. STACS, pp. 634-645, 2006.

[15] K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and monotone
systems of nonlinear equations. Journal of the ACM, 56(1), 2009.

40

[16] T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.

[17] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[18] A. N. Kolmogorov and B. A. Sevastyanov. The calculation of final probabilities for branching
random processes. Doklady, 56:783–786, 1947. (Russian).

[19] S. Pliska. Optimization of multitype branching processes. Management Sci., 23(2):117–124,
1976/77.

[20] M. L. Puterman. Markov Decision Processes. Wiley, 1994.

[21] U. Rothblum and P. Whittle. Growth optimality for branching Markov decision chains. Math.
Oper. Res., 7(4):582–601, 1982.

41

