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SUMMARY

Elongation of telomeres by telomerase replenishes
the loss of terminal telomeric DNA repeats during
each cell cycle. In budding yeast, Cdc13 plays an es-
sential role in telomere length homeostasis, partly
through its interactions with both the telomerase
complex and the competing Stn1-Ten1 complex.
Previous studies in yeast have shown that telomere
elongation by telomerase is cell cycle dependent,
but the mechanism underlying this dependence is
unclear. In S. cerevisiae, a single cyclin-dependent
kinase Cdk1 (Cdc28) coordinates the serial events
required for the cell division cycle, but no Cdk1 sub-
strate has been identified among telomerase and
telomere-associated factors. Here we show that
Cdk1-dependent phosphorylation of Cdc13 is essen-
tial for efficient recruitment of the yeast telomerase
complex to telomeres by favoring the interaction of
Cdc13 with Est1 rather than the competing Stn1-
Ten1 complex. These results provide a direct mecha-
nistic link between coordination of telomere elonga-
tion and cell-cycle progression in vivo.

INTRODUCTION

In most eukaryotes, the ends of linear chromosomes are capped

by telomeres. Telomeres are essential for both the stability of

linear chromosomes and the complete replication of genomic

information (Blackburn, 2000). Telomeres are maintained by tel-

omerase, whose activity is highly regulated. In yeast, more than

150 genes affect telomere length maintenance (Askree et al.,

2004; Gatbonton et al., 2006). In humans, haploinsufficiency

for telomerase RNA in dyskeratosis congenita patients leads to

progressive bone marrow failure and premature aging (Chen

and Greider, 2004). Hence even a reduction in gene dosage

has severe clinical consequences, highlighting the importance

of telomerase regulation.

In the budding yeast S. cerevisiae, the telomeric DNA consists

of 250–350 base pairs of double-stranded C1-3A/ TG1-3 repeats

with a short single-stranded TG1-3 30 overhang (Wellinger et al.,

1993; Zakian, 1996). Sequence-specific telomeric DNA-binding

proteins and their associated factors form a dynamic structure

at telomeres (Laroche et al., 2000; Smith et al., 2003). This dy-

namic nucleoprotein structure is essential for telomere silencing,

telomere end protection, and telomere length regulation. In

S. cerevisiae, two major telomeric DNA-binding proteins are

Rap1 and Cdc13. While Rap1 binds duplex C1-3A/ TG1-3 DNA re-

peats (Conrad et al., 1990; Wright et al., 1992; Wright and Zakian,

1995), Cdc13 binds the single-stranded TG1-3 30 overhang

(Bourns et al., 1998). Cdc13 has been implicated as the major

regulator of telomere access by the telomerase complex (Evans

and Lundblad, 1999; Hughes et al., 2000; Lendvay et al., 1996;

Lin and Zakian, 1996; Nugent et al., 1996). Cdc13 can interact

with two distinct complexes that either positively or negatively

regulate telomere elongation (Chandra et al., 2001). Association

of Cdc13 with Est1 is essential for recruitment of the telomerase

holoenzyme, which contains the protein catalytic subunit Est2

and the integral RNA template TLC1, as well as Est1 and Est3

(Lendvay et al., 1996). Cdc13 also interacts with the Stn1-Ten1

protein complex, which negatively regulates telomere elongation

and plays an essential role in telomere end protection (Grandin

et al., 2001). Hence, Cdc13 tightly regulates telomere elongation

through its interactions with both the Est1-Est2-Est3-TLC1 com-

plex and the competing Stn1-Ten1 complex (Chandra et al.,

2001). However, the mechanism by which Cdc13 coordinates

the binding of these two complexes during telomere elongation

had not previously been analyzed.

Telomere length homeostasis is maintained through a dynamic

process. Telomerase extends the telomeric TG1-3 single-

stranded DNA overhang by copying the intrinsic telomerase

RNA template, while lagging strand synthesis by DNA polymer-

ases a and d is inferred to fill the terminal 50 gap during each cell

cycle (Diede and Gottschling, 1999). Previous studies have

shown that telomere elongation by telomerase is restricted to

late S to G2 phases in vivo (Diede and Gottschling, 1999; Marcand

et al., 2000). The timing of telomere elongation in late S and G2

phases correlates with the binding of protein factors involved in

telomere elongation, including Est1, Est2, and Cdc13 (Schramke

et al., 2004; Taggart et al., 2002). These data have suggested that

the assembly of a functional telomerase complex at the telomeres

is restricted to late S to G2 phases of the cell cycle.
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In budding yeast, the G-rich overhang is very short (about 13

bases) throughout most of the cell cycle but becomes longer

around late S to G2 phases (Larrivee et al., 2004; Wellinger

et al., 1993). Available data have suggested that Cdk1 activity

is required for the generation of this extended 30 single-strand

overhang, although the details of the mechanism were unknown

(Frank et al., 2006; Vodenicharov and Wellinger, 2006). In-

creased binding of Cdc13 to such an extended 30 single-strand

overhang could serve to subsequently recruit telomerase

through the interaction of Cdc13 with Est1. Of the four telome-

rase components, Est1, Est2, TLC1, and Est3, only the expres-

sion of Est1 is cell cycle regulated, peaking at late S and G2

phases (Osterhage et al., 2006). Hence, expression of Est1 at

late S and G2 phases likely restricts the assembly of functional

telomerase complex to late S and G2 phases. How cells coordi-

nate cell-cycle progression and the recruitment of telomerase

complex to telomere has been an open question.

In budding yeast, the regulation of cell-cycle progression de-

pends on a single cyclin-dependent kinase, Cdk1 (Cdc28).

Cdk1 regulates cell-cycle progression by phosphorylating hun-

dreds of different protein substrates (Ubersax et al., 2003). The

association with various, periodically expressed cyclins regu-

lates the substrate specificity of Cdk1. While it is known that telo-

mere elongation is cell cycle dependent, no Cdk1 substrates that

regulate telomere elongation have been identified. Here we show

that Cdk1-dependent phosphorylation of Cdc13 at threonine 308

plays an important role in the efficient recruitment of the telome-

rase complex to telomeres in late S to G2 phases of the cell cycle.

Both the telomerase complex and the Stn1-Ten1 complex are re-

cruited to telomeres during late S and G2 phases of cell-cycle

progression. Therefore, since these two complexes counteract

each other in terms of telomere length regulation, it is necessary

to coordinate their binding to telomeres in order to ensure active

telomerase function. Our data show that phosphorylation of

Cdc13 by Cdk1 plays such a key regulatory role, by coordinating

the subsequent recruitment of these two complexes to telomeres

to ensure proper telomere elongation and telomere protection.

RESULTS

Cdc13 Is Phosphorylated by Cdk1-as1 In Vitro
To identify potential Cdk1 substrates among components of the

telomerase and telomere complexes that might contribute to the

coordination of telomere elongation and cell-cycle progression

in budding yeast, we utilized a previously developed strategy

for specific labeling of substrates by a single kinase (Ubersax

et al., 2003). In this approach, the conserved phenylalanine 88

in the ATP-binding domain of Cdk1 is replaced by glycine

(Cdk1-as1). Previous data have shown that Cdk1-as1 is func-

tional in vivo and exhibits a much higher affinity and selectivity

for the bulky ATP analog N6-Benzyl-ATP (Bishop et al., 2000;

Ubersax et al., 2003). Cdk1-as1/cyclin complexes were purified

from an asynchronous yeast culture (Figure 1A). Thus, the puri-

fied Cdk1-as1/cyclin complexes contain various Cdk/cyclin

complexes with kinase activity for different cell-cycle stages.

We chose this strategy because we did not know when any

potential Cdk1 substrates from telomerase and telomere

complexes might be phosphorylated in vivo. For in vitro kinase

assays using this preparation, 6xHis tagged recombinant protein

versions of two telomerase subunits (Est1 and Est3) and two

telomere-binding factors (Cdc13 and Ten1) were used as sub-

strates (Figure 1B). As a control for Cdk1-as1 phosphorylation

specificity, we used a 6xHis-Cdc13-7A, in which alanine resi-

dues replace all seven predicted Cdk1 phosphorylation sites

(as indicated in Figure S1A available online). Figure 1C shows

that only wild-type Cdc13 recombinant protein is specifically

phosphorylated by the Cdk1-as1 in the presence of [g-32P]N6-

Benzyl-ATP, with only background phosphorylation detected

for 6xHis-Cdc13-7A, 6xHis-Est1, 6xHis-Est3, and 6xHis-Ten1.

For Est2 and Stn1, insufficient protein was obtained from the

bacterial expression system. Instead, we used partially purified

Est2-13myc and Stn1-13myc proteins from yeast lysates as sub-

strates. However, no specific Cdk1-as1 phosphorylation was

identified for these proteins in vitro (data not shown).

To identify the putative Cdk1 phosphorylation sites in Cdc13

phosphorylated by Cdk1-as1 in vitro, we engineered and purified

6xHis-Cdc13 recombinant proteins containing an alanine muta-

tion at each of the seven individual potential Cdk1 phosphoryla-

tion sites in turn (as indicated in Figure S1A). As shown in

Figure 1D, mutation of Cdc13 threonine 308 to alanine (T308A)

dramatically reduced the phosphorylation by Cdk1-as1 in vitro.

Since some residual phosphorylation of Cdc13 was seen in the

presence of the single threonine 308 to alanine mutation

(Figure 1D, bottom panel, compare lanes 4 and 6), we further en-

gineered and purified 6xHis-Cdc13 recombinant proteins con-

taining the T308A mutation in combination with each of the other

six additional potential Cdk1 phosphorylation site mutations. As

shown in Figure 1E, when both threonine 308 and serine 336 in

Cdc13 were mutated to alanine, no phosphorylation above

background was observed (Figure 1E, bottom panel, compare

lanes 3 and 6). Mutation of the other five putative Cdk1 phos-

phorylation sites in addition to the T308A mutation did not affect

phosphorylation by Cdk1-as1 in vitro. These results suggested

that both threonine 308 and serine 336 could be phosphorylated

by Cdk1-as1 in vitro.

Phosphorylation of Cdc13 by Cdk1 In Vivo
To determine whether both Cdc13 threonine 308 and serine 336

are phosphorylated in vivo, we first asked whether mutation of

either threonine 308 or serine 336 affected telomere length reg-

ulation. A diploid yeast strain (A364a background) heterozygous

for the threonine 308 to alanine mutation cdc13-T308A or the

serine 336 to alanine mutation cdc13-S336A was sporulated

and dissected. The telomere length of each individual yeast col-

ony derived from the dissected spores was measured after�100

population doubling (PD100). Southern blot hybridization using

a telomere probe (teloblot) showed that the cdc13-S336A muta-

tion did not affect telomere length maintenance (Figure 2, com-

pare lanes 1 and 2 to lanes 3 and 4). In contrast, the cdc13-

T308A mutation resulted in 75 ± 10 bp telomere shortening (a

25% reduction in normal telomere length; Figure 2, compare

lanes 5 and 6 to lanes 7 and 8). Such telomere shortening had

largely taken place by �50 cell divisions after sporulation

(Figure S2). Similar results were observed in the S288C yeast

strain background (Figure S3A). Simultaneous mutation of thre-

onine 308 and serine 336 to alanine or mutation of all seven
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putative Cdk1 phosphorylation sites to alanine caused telomere

shortening similar to that of cdc13-T308A alone (Figure 2, com-

pare lanes 9 and 10 to lanes 11 and12; lanes 13 and 14 to lanes

15 and 16). Replacement of Cdc13 threonine 308 with aspartic or

glutamic acid to provide a negative charge similar to phosphor-

ylation failed to rescue the telomere shortening phenotype

(Figure 2, compare lanes 17 and 18 to 19 and 20; lanes 21 and

22 to 23 and 24), suggesting that phosphorylation itself, rather

than the negative charge associated with the phosphorylation

event, is important for Cdc13 function in vivo.

Since mutation of Cdc13 threonine 308 to alanine results in

dramatic reduction of phosphorylation by Cdk1-as1 in vitro

and significant telomere shortening in vivo, these findings

suggested that Cdc13 threonine 308 may be phosphorylated

and this phosphorylation event may be necessary for normal

telomere maintenance in vivo. Consistent with this hypothesis,

analysis of the Cdc13 amino acid sequence alignments across

different fungal species in the yeast genome database shows

that Cdc13 threonine 308 is well conserved, but serine 336 is

not (Figure S1B).

Mutation of threonine 308 to alanine did not result in obvious

changes in Cdc13 protein mobility on SDS-PAGE (data not

shown). To ask whether Cdc13 threonine 308 is phosphorylated

in vivo, we raised a Cdc13 threonine 308 phospho-specific rabbit

Figure 1. Phosphorylation of Cdc13 by Cdk1-as1 In Vitro

(A) A silver-stained gel showing the purification of TAP-tagged Cdk1-as1 and copurified cyclins from asynchronous yeast cell cultures.

(B) Coomassie blue stain gel showing the input of recombinant 6xHis tagged telomerase subunits and telomere-binding proteins. Cdc13-7A is used as negative

control with all seven potential Cdk1 phosphorylation sites mutated to alanine. Asterisks mark proteins of expected molecular weight.

(C) Autoradiograph showing the specific phosphorylation of wild-type Cdc13 by Cdk1-as1/cyclin complexes in vitro in the presence of [g-32P]N6-Benzyl ATP but

not Cdc13-7A, Est1, Est3, or Ten1.

(D) In vitro phosphorylation assay of mutant Cdc13 proteins that contain mutations at individual putative Cdk1 phosphorylation site as indicated. Mutant Cdc13

with threonine 308 to alanine mutation results in dramatic reduction of phosphorylation by Cdk1-as1/cyclins in vitro.

(E) In vitro phosphorylation assay of mutant Cdc13 proteins that contain putative Cdk1 phosphorylation site mutations in addition to threonine 308 to alanine

mutation. Mutation of both threonine at position 308 and serine at position 336 results in complete loss of phosphorylation by Cdk1-as1 in vitro.
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polyclonal antibody. As shown in Figure 3A, this Cdc13 threonine

308 phospho-specific antibody recognized endogenously ex-

pressed wild-type Cdc13-13myc protein immunoprecipitated

from asynchronous A364a yeast cell lysate but not the Cdc13-

T308A-13myc mutant (Figure 3A, top panel). Reprobing the

same western blot with anti-myc antibody showed that the ex-

pression levels of Cdc13-13myc and Cdc13-T308A-13myc mu-

tant proteins are comparable (Figure 3A, bottom panel), suggest-

ing that this threonine 308 phospho-specific antibody is specific.

As shown in Figure 3B, lambda phosphatase treatment results in

the loss of Cdc13 detection by the phospho-specific antibody,

while untreated lysate or lysate treated with lambda phosphatase

in the presence of phosphatase inhibitor still results in specific de-

tection of Cdc13 by the threonine 308 phospho-specific antibody

(Figure 3B, top panel, compare lane 3 to lanes1 and 2). Thesedata

confirm that Cdc13 threonine 308 is phosphorylated in vivo.

To confirm that Cdc13 threonine 308 is phosphorylated by

Cdk1, it is important to show that the phosphorylation of threo-

nine 308 in vivo is dependent on Cdk1 activity. Previous studies

have shown that in a yeast strain carrying the Cdk1-as1 allele,

the activity of CDK can be inhibited by 5–25 mM of 1-NM-PP1

within 10 min (Bishop et al., 2000). This rapid inhibition of

Cdk1-as1 activity by 1-NM-PP1 reduces the potential for indirect

effects due to shift of cell-cycle position. As shown in Figure 3C,

addition of 10 mM 1-NM-PP1 to asynchronous yeast culture at

30�C results in rapid loss of Cdc13 detection by the threonine

308 phospho-specific antibody within 15 min (Figure 3C, top

panel, compare lane 1 to lanes 2 and 3). These data suggest

that Cdc13 threonine 308 is phosphorylated by Cdk1 in vivo.

Treatment of the asynchronous yeast culture with 1-NM-PP1

also results in some enrichment of yeast in G1 phase of the

cell cycle, as shown by FACS analysis of cellular DNA content

(Figure 3D, compare 0 min to 15 and 30 min time points).

To identify the specific cell-cycle stages during which Cdc13 is

phosphorylated, alpha-factor synchronized yeast cultures were

analyzed in a series of time points every 15 min. As shown in Fig-

ure 3E, phosphorylation of Cdc13 can be readily detected in the

time span from 45 min to 75 min after alpha-factor release. FACS

analysis of cellular DNA content suggested that the phosphory-

lation of Cdc13 occurred in late S to G2 phases of the cell cycle

(Figure 3F), which coincides with the ability of telomerase to per-

form telomere elongation in vivo, as shown previously (Diede and

Gottschling, 1999; Marcand et al., 2000; Schramke et al., 2004;

Taggart et al., 2002). Consistent with these data obtained in the

A364a yeast strain background, phosphorylated Cdc13 could

also be detected in asynchronous S288C yeast lysates but not

from alpha-factor arrested S288C cell lysate (Figure S3B).

Cdc13 Phosphorylation Affects Telomerase-Dependent
Telomere Maintenance
To further understand the functional significance of Cdk1-

dependent phosphorylation of Cdc13, we tested whether the

phosphorylation of Cdc13 threonine 308 is involved in telome-

rase-dependent or telomerase-independent telomere mainte-

nance pathways. For this purpose, we compared the telomere

length in the cdc13-T308A single mutant with single mutants of

known telomerase-dependent telomere maintenance factors

(est2D, tlc1D, tel1D, mec1D, yku70D, and yku80D) as well as in

double mutants containing cdc13-T308A in combination with

est2D, tlc1D, tel1D, mec1D, yku70D, or yku80D. As shown in

Figure S4, mutation of Cdc13 threonine 308 to alanine did not

result in additive or synergistic telomere shortening phenotypes

with est2D, tlc1D, tel1D, mec1D, yku70D, or yku80D deletions,

indicating that Cdk1-dependent phosphorylation of Cdc13 likely

plays a role in the telomerase-dependent telomere maintenance

mechanism. As predicted from these findings, no accelerated

senescence phenotype was observed in cdc13-T308A est2D

or cdc13-T308A tlc1D double mutants compared to est2D or

tlc1D single mutants (Figure S5).

Cdc13 Phosphorylation Is Necessary for Efficient
Telomerase Recruitment to the Telomeres
Several functional domains have been identified in Cdc13, as

shown in Figure S6A. Previous data from yeast two-hybrid

Figure 2. Cdc13 Threonine 308 Mutation Results in Telomere Short-

ening In Vivo

Diploid yeast strains heterozygous for wild-type and putative Cdk1 phosphor-

ylation site mutations in CDC13 were sporulated and dissected. The telomere

length of each individual yeast colony derived from the dissected spore was

measured at �PD100. Mutation of CDC13 threonine 308 to alanine results in

telomere shortening (lanes 5–8).
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analysis also identified several protein interaction regions in

Cdc13, including the N-terminal region (amino acids 1–252)

that is necessary for interaction with Pol1, Imp4, Sir4, and

Zds2 (Hsu et al., 2004), the Est1-interacting region (recruitment

domain, RD) from amino acids 190–340, and the Stn1-interact-

ing region from amino acids 252–924 (Figure S6A) (Petreaca

et al., 2006). To understand the molecular function of Cdc13

phosphorylation, we first tested whether the mutation of Cdc13

threonine 308 to alanine affects the recruitment of Cdc13 to telo-

meres during cell-cycle progression. Chromatin immunoprecip-

itation (ChIP) and Q-PCR analysis (Figure 4A) showed that wild-

type Cdc13 is recruited to telomeres in a cell-cycle-dependent

manner, as previously reported (Schramke et al., 2004; Taggart

et al., 2002). Mutation of threonine 308 to alanine did not affect

this cell-cycle-dependent recruitment of Cdc13 to telomeres

(Figures 4A and S7). These results are consistent with the loca-

tion of threonine 308 being outside the Cdc13 DNA-binding motif

(Figure S6A). Mutation of threonine 308 to alanine also did not

significantly affect the cell-cycle-regulated generation of sin-

gle-stranded G-rich overhangs (Figure S8). Although the sin-

gle-stranded overhang signal in CDC13 yeast appears slightly

stronger than that in cdc13-T308A yeast during S/G2, this is

Figure 3. Cdk1-Dependent Phosphoryla-

tion of Cdc13 Threonine 308 during Late

S/G2 Phases of Cell Cycle

Endogenously expressed Cdc13 is tagged at its C

terminus with a 13-myc tag.

(A) Cdc13 phospho-threonine 308-specific anti-

body detected wild-type Cdc13 but not Cdc13-

T308A mutant protein from asynchronous yeast

cell lysates (top panel). The same blot was strip-

ped, then reprobed with anti-myc antibody to

detect the total amount of Cdc13 protein (bottom

panel).

(B) Threonine 308 phosphorylation is sensitive to

lambda phosphatase treatment.

(C) Inactivation of Cdk1-as1 activity by 1-NM-PP1

results in rapid loss of Cdc13 phosphorylation

in vivo. An asynchronous yeast culture was treated

with 10 mM 1-NM-PP1 and harvested 0, 15, or

30 min after treatment.

(D) FACS analysis shows slight changes of cell-

cycle progression after 1-NM-PP1 treatment.

(E) Phosphorylation of Cdc13 threonine 308 is cell

cycle dependent, enriched around 45–75 min after

alpha-factor synchronization release.

(F) FACS analysis showing cell-cycle progression

after alpha-factor synchronization. At 45–75 min

after alpha-factor synchronization release, the

cell cycle has progressed into late S to G2 phases.

likely due to the fact that the CDC13 yeast

is more efficient in elongating telomeres

(during S/G2 phase) and hence elongat-

ing the G-rich strand more.

Since threonine 308 lies in both the

Est1- and the Stn1-interacting regions

(Figure S6A), we next asked whether

Cdk1-dependent phosphorylation of
Cdc13 plays a role in coordinating the interaction of Cdc13

with Est1 and Stn1. As previously reported, we could not detect

the interaction of endogenous Cdc13 with Est1 or Stn1 by coim-

munoprecipitation (Chandra et al., 2001; Petreaca et al., 2007).

However, when 13myc-Est1 or 13myc-Stn1 was overexpressed

using a galactose-inducible promoter, we readily detected the

interaction of 13myc-Est1 or 13myc-Stn1 with endogenously ex-

pressed Cdc13-3HA. Mutation of threonine 308 to alanine did

not abolish the interaction of Cdc13 with Est1 or Stn1

(Figure 4B, top panel, compare lanes 3 and 4, lanes 5 and 6), al-

though the interaction of Cdc13-3HA with 13myc-Est1 seems to

be slightly stronger than that of Cdc13-T308A-3HA (Figure 4B,

compare lanes 3 and 4 on top panel). To address whether

T308A mutation affects the interaction of Cdc13 and Est1 in

a quantitative way under physiological conditions, we took ad-

vantage of the fact that the interaction of Cdc13 and Est1 is nec-

essary for the telomeric recruitment of telomerase holoenzyme

(which contains the integral RNA template component, TLC1)

by Cdc13. By using QRT-PCR to analyze the amount of TLC1

that coimmunoprecipitated with Cdc13, we were able to address

whether phosphorylation of Cdc13 affects its interaction with

Est1 quantitatively. Indeed, mutation of threonine 308 to alanine
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results in 30% reduction of TLC1 coimmunoprecipitated with

Cdc13 but not of the control actin mRNA (Figures 4C and

S9A). The recruitment of Est1 to telomeres was also correspond-

ingly reduced by at least 25% in the cdc13-T308A mutant as

shown by ChIP from unsynchronized yeast culture (Figure 4D).

We further demonstrated that cell-cycle-dependent recruitment

of Est1 and Est2 to telomeres is also reduced in yeast harboring

the Cdc13 threonine 308 to alanine mutation compared to wild-

type (Figures 4E, 4F, and S10). Together, these data indicated

that Cdk1-dependent phosphorylation of Cdc13 is necessary

for maximal recruitment of the telomerase complex to telomeres

during cell-cycle progression but is not absolutely required.

In S. cerevisiae, the double-stranded telomeric DNA-binding

protein Rap1 associates with Rif1 and Rif2 through its C-terminal

domain and has been shown to negatively regulate telomere

lengthening through a potential Rap1/Rif1/Rif2 counting mecha-

nism (Levy and Blackburn, 2004; Marcand et al., 1997). In yeast

strains lacking the Rap1 C terminus, Rif1, or Rif2, telomere length

homeostasis is disabled and long telomeres ensue (Levy and

Blackburn, 2004; Marcand et al., 1997). Reduction of Rap1,

Rif1, and Rif2 association with telomeres—similar to the situation

Figure 4. Cdc13 Threonine 308 Phosphory-

lation Is Necessary for Efficient Recruitment

of Telomerase Complex to Telomere

(A) ChIP assays show that Cdc13 threonine 308

mutation does not affect binding of Cdc13 to

telomeres during cell-cycle progression.

(B) Cdc13-T308A still interacts with Est1 and Stn1

when Est1 and Stn1 are overexpressed.

(C) Coimmunoprecipitation of Cdc13 and TLC1

in vivo. Reduced telomerase recruitment effi-

ciency by Cdc13-T308A as indicated by reduced

association of Cdc13-T308A and TLC1 (p values

< 0.01), quantified by real-time QRT-PCR.

(D) ChIP assays show that recruitment of Est1 to

telomeres is reduced in cdc13-T308A yeast com-

pared to wild-type yeast expressing Est1-13myc

(p values < 0.01).

(E) ChIP assays show that cell-cycle-dependent

recruitment of Est1 to telomeres is reduced in

cdc13-T308A yeast compared to wild-type yeast

expressing Est1-13myc (p values < 0.01).

(F) ChIP assays show that cell-cycle-dependent

recruitment of Est2 to telomeres is reduced in

cdc13-T308A yeast compared to wild-type yeast

expressing Est2-13myc (p values < 0.01).

when an individual telomere is short-

ened—results in telomeres being elon-

gated. Such telomere elongation induced

by rap1DC, rif1D, or rif2D is telomerase

dependent (Marcand et al., 1997). To

ask whether Cdk1-dependent phosphor-

ylation of Cdc13 is important for coordi-

nation of this increased telomerase action

during cell-cycle progression in yeast

lacking Rif1 or Rif2, we first compared

the telomere length of haploid strains ob-

tained via dissection of sporulation prod-

ucts from cdc13-T308A/rif1D or cdc13-T308A/rif2D diploid het-

erozygotes. As shown in Figure 5A, the telomere overelongation

induced by the absence of Rif1 or Rif2 depended on Cdk1-

dependent phosphorylation of Cdc13. This impairment in telo-

mere overelongation in cdc13-T308A rif1D or cdc13-T308A

rif2D yeast was attributable to lower telomerase recruitment by

the mutant Cdc13-T308A compared to wild-type Cdc13, as indi-

cated by reduced association of Cdc13-T308A with TLC1 in

coimmunoprecipitation experiments (Figures 5B and S9A). Con-

sistent with the long telomere length in rif1D or rif2D cells harbor-

ing wild-type Cdc13, a strong increase of telomerase recruitment

by Cdc13 was observed, as indicated by increased coimmuno-

precipitation of Cdc13 and TLC1. The increase in Cdc13 associ-

ation with TLC1 is roughly proportional to the telomere overelon-

gation in the strains harboring rif1D or rif2D (Figures 5B and S9A).

The expression level of endogenous Cdc13 or Cdc13-T308A

was not affected by loss of Rif1 or Rif2 (Figure S9B). Since chro-

matin shearing in the preparation for ChIP using sonication will

result in preferential underrepresentation of subtelomeric se-

quence in yeast with the dramatic telomere lengthening caused

by rif1D, it was difficult to accurately quantify telomere sequence
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enrichment using a standard Y0 subtelomeric PCR primer set

(data not shown). However, ChIP clearly showed increased

Est1 recruitment to telomeres in CDC13 rif2D yeast, which was

reduced in cdc13-T308A rif2D yeast (Figure 5C). Together these

data suggested that phosphorylation of Cdc13 threonine 308

plays a central role in coordinating telomerase recruitment to

telomeres during telomere elongation in yeast lacking Rif1 or

Rif2.

Stn1-DC199 Rescues Cdc13-T308A Deficiency
Since Cdc13 threonine 308 is also located inside the Stn1 inter-

action domain (Figure S6A), we tested whether Cdc13 phos-

phorylation affects the recruitment of Stn1 to telomeres. ChIP

analysis showed that cell-cycle-dependent recruitment of

Stn1-13myc to telomeres (Figures 6A and S7) was generally sim-

ilar in CDC13 or cdc13-T308A cells. The Stn1 telomere associa-

tion peaked in late S to G2 phases, coincident with the recruit-

ment of the telomerase complex during cell-cycle progression,

as shown previously (Schramke et al., 2004; Taggart et al.,

2002). Because both the telomerase complexes and the Stn1-

Ten1 complexes are recruited to telomeres during late S and

G2 phases of cell-cycle progression and potentially counteract

each other in terms of telomere length regulation, we asked

whether the phosphorylation of Cdc13 plays a role in coordinat-

ing its interaction with these two distinct complexes. Yeast lack-

ing wild-type Stn1 and expressing Stn1-DC199 (which has the C

terminus necessary for its interaction with Cdc13 deleted,

Figure S6B) are viable but show dramatic telomere lengthening

(Petreaca et al., 2006), as shown in Figure 6B. Deletion of

RAD52, which is required for homologous DNA recombination

events in yeast, did not affect telomere elongation in this

stn1-DC199 strain, indicating that telomere overelongation in

stn1-DC199 strains is due to an effect on telomerase

(Figure 6B, compare lanes 1 and 2 to lanes 5 and 6). Therefore,

we tested whether the mutation of Cdc13 threonine 308 to ala-

nine affected telomere elongation in stn1-DC199 yeast. In strik-

ing contrast to rif1D or rif2D yeast, loss of Cdc13 phosphoryla-

tion did not affect telomere lengthening in stn1-DC199 yeast

(Figure 6B, compare lanes 5 and 6). Consistent with this obser-

vation, stn1-DC199 also rescued the inhibition of telomerase

recruitment by the cdc13-T308A mutation, as indicated by

dramatically increased and similar association of Cdc13 and

Figure 5. Phosphorylation of Cdc13 Threonine 308 Is Necessary for Efficient Recruitment of the Telomerase Complex to Telomeres in rif1D

or rif2D Yeast

(A) Rapid telomere elongation in yeast strains with rif1D or rif2D is strongly inhibited by Cdc13 threonine 308 to alanine mutation, as shown by teloblot.

(B) Coimmunoprecipitation of Cdc13 and TLC1 in rif1D or rif2D yeast. Deletion of RIF1 or RIF2 results in a dramatic increase of telomerase recruitment by

Cdc13 (as indicated by dramatically increased coimmunoprecipitation of Cdc13 and TLC1 RNA) that is hampered by Cdc13 threonine 308 to alanine mutation

(p values < 0.01).

(C) ChIP assays show that recruitment of Est1 to telomeres is compromised in cdc13-T308A rif2D yeast compared to CDC13 rif2D yeast expressing Est1-13myc

(p values < 0.01).
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Cdc13-T308A with TLC1 (Figures 6C and S9A). The increased

associations of Cdc13 and Cdc13-T308A with TLC1 are also

commensurate with the degree of telomere elongation in

stn1-DC199 yeast, compared to wild-type yeast (Figure S9A).

The expression level of endogenous Cdc13 or Cdc13-T308A

was not affected by Stn1-DC199 (Figure S9B). Hence, these

data provide evidence that interaction of Stn1 and Cdc13 is re-

sponsible for the inhibition of telomerase recruitment to telo-

meres that we observed in cdc13-T308A yeast. This is likely

due to the increased competition of Stn1-Ten1 complex with

telomerase complex for binding to Cdc13 in the absence of

Cdk1-dependent phosphorylation. Since it is very difficult to

accurately quantify the recruitment of Est1 or Est2 to telomeres

using ChIP in stn1-DC199 yeast, due to the extremely long telo-

meres, it was still possible that the Cdc13-T308A mutation may

affect the binding of Stn1 or Est1 to Cdc13 indirectly. To further

address these possibilities, we showed that overexpression of

Stn1 in yeast with wild-type CDC13 resulted in telomere short-

ening (Figure 6D, lanes 5 and 6) as previously shown (Chandra

et al., 2001; Dahlseid et al., 2003). Overexpression of Stn1 in

Figure 6. Stn1-DC199 Rescues the Telo-

mere Shortening Phenotype Induced by

Cdc13 Threonine 308 to Alanine Mutation

(A) ChIP assays show that recruitment of Stn1 to

telomeres is cell cycle regulated in yeast strain

expressing Stn1-13myc.

(B) Dramatic telomere lengthening in yeast strain

harboring stn1-DC199 mutation is not affected

by Cdc13 threonine 308 to alanine mutation (com-

pare lanes 5 and 6) or RAD52 deletion (compare

lanes 1 and 2 to lanes 5 and 6).

(C) Coimmunoprecipitation of Cdc13 and TLC1 in

stn1-DC199 yeast. Dramatic increase of telome-

rase recruitment by Cdc13 in stn1-DC199 yeast

is not affected by Cdc13 threonine 308 to alanine

mutation (indicated by substantially increased

coimmunoprecipitation of both Cdc13 and

Cdc13-T308A with TLC1, p values = 0.559).

(D) Overexpression of Stn1 in yeast with wild-type

CDC13 results in telomere shortening. Overex-

pression of Stn1 in yeast with cdc13-T308A re-

sults in further telomere shortening.

(E) Overexpression of Est1 in yeast with wild-type

CDC13 results in slight telomere elongation. Over-

expression of Est1 in yeast with cdc13-T308A also

results in slight telomere elongation but not com-

plete rescue of the telomere shortening resulting

from the cdc13-T308A mutation.

cdc13-T308A yeast resulted in further

telomere shortening (Figure 6D, lanes 7

and 8). In contrast, overexpression of

Est1 in yeast with wild-type CDC13 re-

sulted in slight telomere elongation

(Figure 6E, lanes 2 and 6). Overexpres-

sion of Est1 in yeast with cdc13-T308A

also resulted in slight telomere elonga-

tion but not complete rescue of the telo-

mere shortening attributable to the
cdc13-T308A mutation (Figure 6E, lanes 4 and 8). In summary,

these data indicate that phosphorylation of Cdc13 by Cdk1

plays a central role in regulating the access of the telomerase

complex to telomeres via competition with the Stn1-Ten1 com-

plex during cell-cycle progression.

DISCUSSION

We have shown that Cdc13 is phosphorylated by Cdk1 in vivo

during late S to G2 phases of the cell cycle, a time in the cell cycle

that coincides with the previously reported recruitment of the tel-

omerase complex to telomeres (Schramke et al., 2004; Taggart

et al., 2002). Our data provide evidence that phosphorylation

of Cdc13 is important in regulating the recruitment efficiency of

the telomerase complex to telomeres by competing with the

Stn1-Ten1 complexes during telomere elongation. Uncoupling

of this cell-cycle-dependent event by inactivation of Cdc13

phosphorylation results in less telomerase recruitment to telo-

meres during cell-cycle progression and compromised telomere

elongation.
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To put these findings in context, we note that Cdk1 phosphor-

ylation of Cdc13 at T308 will, in turn, need to be coordinated with

other levels of Cdc13 regulation. In addition to Cdk1, the Tel1

and Mec1 kinases (homologs of mammalian ATM and ATR)

have previously been shown to play important roles in telomere

length maintenance. Tel1 and Mec1 control the DNA-damage re-

sponse in budding yeast through phosphorylation of proteins

involved in checkpoint control (such as Rad53) and DNA replica-

tion (such as RPA) (Brush et al., 1996; Sanchez et al., 1996). In

budding yeast, in contrast to Mec1, Tel1 plays a minor role in

the cellular response to DNA damage but a major role in telomere

length maintenance. Loss of Tel1 results in telomere shortening

(Lustig and Petes, 1986). While tel1 mec1 double mutants have

a senescence phenotype (Ritchie et al., 1999), they have normal

telomerase enzymatic activity (Chan et al., 2001). Consistent

with this observation, Tel1 and Mec1 are required for normal

levels of association of Est1 and Est2 with telomeres, suggesting

a potential role in promoting the recruitment of telomerase com-

plex to telomeres (Goudsouzian et al., 2006). Recent studies also

showed that Tel1 kinase activity is crucial for preferential recruit-

ment of telomerase to a shortened telomere (Chang et al., 2007;

Hector et al., 2007; Hirano and Sugimoto, 2007; Sabourin et al.,

2007). Furthermore, Tel1 and Mec1 can phosphorylate Cdc13 at

multiple sites in vitro. Single mutation of either of these in vitro

phosphorylation sites (serine 249 and serine 255) to alanine re-

sulted in telomere shortening, and double mutation of these

two potential phosphoylation sites resulted in progressive telo-

mere shortening and senescence in vivo (Tseng et al., 2006).

While combination of Cdc13 T308A with S249A and S255A mu-

tations did not result in obvious synergistic telomere shortening

(Figure S11), it is still conceivable that phosphorylation of Cdc13

by Cdk1 and by Tel1 and/or Mec1 may act synergistically to

determine which telomere is elongated through preferential

recruitment of a functional telomerase complex in late S to G2

phases. Further identification of potential Tel1/Mec1-dependent

phosphorylation sites in Cdc13 and confirmation of these Tel1/

Mec1 phosphorylation events in vivo using phospho-specific

antibodies will be important to probe their potential roles in telo-

merase action on telomeres.

Based on the results reported here and on previous data, we

propose the following model: cell-cycle progression into late S

phase results in telomere end processing and elongation of the

G-strand overhang. Cdk1 phosphorylates Cdc13 at T308. As

depicted in Figure 7, the threonine 308 phosphorylated Cdc13

on the G-strand overhang results in preferential recruitment of

the telomerase complex through its interaction with Est1 be-

cause the T308 phosphorylation biases the binding of Cdc13

toward Est1. Conversely, lack of T308 phosphorylation results

in reduced interaction of Cdc13 and Est1, hence increasing the

association of Cdc13 with the Stn1-Ten1 complex. Thus, this

Cdk1-dependent phosphorylation of Cdc13 provides a mecha-

nism that coordinates cell-cycle progression with the recruit-

ment of telomerase relative to the Stn1-Ten1 complexes to telo-

meres in late S to G2. Deletion of the Stn1 C terminus results in

loss of Cdc13 binding, hence alleviating negative telomere

length regulation by the Stn1-Ten1 complex and resulting in

Figure 7. A Schematic Model for Potential Function of Cdc13 Threonine 308 Phosphorylation
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overelongation of telomeres. The results using the stn1-DC199

mutant also argue against the cdc13-T308A mutation affecting

the processing of single-strand G-rich overhangs. If cdc13-

T308A caused an end processing phenotype, we should have

seen a telomere length difference between CDC13 and cdc13-

T308A yeast strains in the stn1-DC199 background. In addition

to Cdk1-dependent phosphorylation, we suggest that the prefer-

ential recruitment of Tel1 to short telomeres and subsequent

phosphorylation of Cdc13 (at serine 249 and serine 255 or other

unidentified phosphorylation sites) by Tel1/Mec1 on the short

telomere may preferentially synergize with the cdk1 phosphory-

lation to promote the recruitment of telomererase complex (likely

through preferential binding to Est1) to that short telomere in

a cell-cycle-dependent manner (Figure 7).

Previous data have shown that loss of Stn1 results in signifi-

cant telomere elongation, while Stn1 overexpression results in

telomere shortening (Chandra et al., 2001; Dahlseid et al.,

2003; Grossi et al., 2004). It was therefore proposed that the in-

teraction of the Stn1-Ten1 complex with Cdc13 could compete

with the recruitment of telomerase complex by Cdc13, thereby

inhibiting telomerase-dependent telomere addition (Chandra

et al., 2001; Pennock et al., 2001). Consistent with this hypothe-

sis, we found that the telomere shortening induced by loss of

Cdk1-dependent phosphorylation of Cdc13 is fully alleviated in

stn1-DC199 yeast, in which the interaction of Stn1 and Cdc13

is disrupted. Hence, since Cdc13 can no longer interact with

Stn1, phosphorylation of Cdc13 threonine 308 is no longer nec-

essary to promote the competing interaction with Est1. Using

ChIP analysis, we also detected recruitment of Stn1 to telomeres

during late S to G2 phases of the cell cycle in Cdc13 or cdc13-

T308A yeast. Such cell-cycle-dependent recruitment of Stn1 to

telomeres was recently reported by others (Puglisi et al., 2008).

Interestingly, the magnitude of Stn1 telomere binding is indepen-

dent of telomere length (Puglisi et al., 2008). Our data also

suggest that the interaction of both Cdc13-3HA and Cdc13-

T308A-3HA with overexpressed 13myc-Est1 is stronger than

with 13myc-Stn1, so that even with the Cdc13 threonine 308 to

alanine mutation, Est1 can still recruit the telomerase complex

in the presence of Stn1-Ten1 competition, albeit less efficiently.

This can explain why we only see a moderate telomere shorten-

ing in cdc13-T308A yeast but not an ever shorter telomere (EST)

phenotype or senescence.

It will also be of interest to find out whether similar regulatory

mechanisms modulate telomerase action in human cells. Such

regulatory mechanisms may provide new targets for potential

cancer therapy and for anti-aging research.

EXPERIMENTAL PROCEDURES

Yeast Strains and Plasmid Constructions

See Supplemental Data for details.

In Vitro Kinase Assays

Active Cdk1-as1-TAP/cyclin complexes were purified from sic1D pGAL-

cdc28-as1-TAP yeast cells as previously described (Puig et al., 2001). His-

tagged Cdc13, Ten1, Est1, and Est3 recombinant proteins were expressed

and batch purified from Tuner (DE3) codon plus bacteria (Novagen) using Ni-

NTA beads. In vitro kinase assays were performed as previously described

(Ubersax et al., 2003).

Antibodies and Western Blot Analysis

Whole-cell extracts were prepared by bead beating in lysis buffer and were

subjected to immunoprecipitation as described (Anderson et al., 2008). For

western blot analysis, anti-Myc 9E10 antibody (Covance), anti-HA 3F10

(Roche), and affinity-purified rabbit anti-Cdc13 threonine 308 phospho-

specific antibody (raised against phospho-peptide (Ac-CYIQSQ(pT)PERKTS-

amide, QCB) were used.

Phosphatase Treatment of Yeast Lysates

Yeast extract from asynchronous cell cultures were prepared by bead beating

in yeast lysis buffer without phosphatase inhibitor but with complete EDTA-

free protease inhibitor tablet (Roche). For treatment with lambda protein phos-

phatase (Upstate), MnCl2 (final 2 mM), DTT (final 1 mM), and lambda protein

phosphatase (final 1000 U/ml) were added. For lambda protein phosphatase

treatment with phosphatase inhibitor, NaF (final 50 mM), b-glycerol phosphate

(final 50 mM), and Na3VO4 (final 1 mM) were added. The lysates were incu-

bated at 37�C for 1 hr followed by immunoprecipitation and western analysis

as described above.

Coimmunoprecipitation of TLC1 RNA

Yeast lysates from asynchronous cultures were immunoprecipitated using

anti-myc (9E10) antibodies with Dynabeads protein G beads (Invitrogen). Total

RNA on the beads was purified using RNeasy mini kit (QIAGEN) followed by

on-column DNAase digestion. The amount of TLC1 and Actin mRNA copuri-

fied were quantified using real-time QRT-PCR (Stratagene). The enrichment

of TLC1 was expressed as the ratio of TLC1 amount coimmunoprecipitated

in the presence of anti-Myc 9E10 antibody in samples versus lysate from

nontagged control strain (background) after normalization to total input

(TLC1test IP/TLC1test input)(TLC1no tag input/TLC1no tag). The enrichment of Actin

mRNA was also calculated in the same way and used as control. The results

show an average of three experiments. Statistically significant differences in

data sets were established by using a Student’s t test. The error bars represent

standard deviation.

Southern Blot Analysis and Telomere Length Measurement

Yeast genomic DNAs were digested with XhoI, separated by 0.8% agarose gel

electrophoresis, and transferred to Hybond-XL membrane (Amersham). The

blot was probed for telomeric C1-3A sequence with the 32P-end-labeled oligo-

nucleotide (TGTGGTGTGTGGGTGTGGTGT). The in-gel native hybridization

was previously described (Dionne and Wellinger, 1996).

Chromatin Immunoprecipitation

ChIP analysis was performed as previously described (Taggart et al., 2002).

PCR primers were specific for amplification of 114 base pair sequence at

XII-L Y0 subtelomeric sequence (TEL) and 372 base pair ARO1 sequence

(ARO1, as negative control). Enrichment of telomere sequence is expressed

as the fold of Y0 subtelomeric DNA immunoprecipitated per reaction from

tagged strain relative to that from the nontagged strain after normalized to total

input (TELtest IP/TELtest input)(TELno tag input/TELno tag). As a control, the enrich-

ment of ARO1 sequence was quantified similarly. The results show an average

of three experiments. Statistically significant differences in data sets were

established by using a Student’s t test. The error bars represent standard

deviation.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, one

table, and 11 figures and can be found with this article online at http://www.
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