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Modelling reaction kinetics inside cells

Ramon Grima† and Santiago Schnell‡,1
† Institute for Mathematical Sciences, Imperial College, London (r.grima@imperial.ac.uk)
‡ Indiana University School of Informatics and Biocomplexity Institute, 1900 E 10th St, Eigenmann
Hall 906, Bloomington, IN 47406 (schnell@indiana.edu).

Abstract
In the past decade, advances in molecular biology such as the development of non-invasive single
molecule imaging techniques have given us a window into the intricate biochemical activities that
occur inside cells. In this article we review four distinct theoretical and simulation frameworks: (1)
non-spatial and deterministic, (2) spatial and deterministic, (3) non-spatial and stochastic and (4)
spatial and stochastic. Each framework can be suited to modelling and interpreting intracellular
reaction kinetics. By estimating the fundamental length scales, one can roughly determine which
models are best suited for the particular reaction pathway under study. We discuss differences in
prediction between the four modelling methodologies. In particular we show that taking into account
noise and space does not simply add quantitative predictive accuracy but may also lead to
qualitatively different physiological predictions, unaccounted for by classical deterministic models.

Introduction
Over the past decade there has been an explosion of interest in methods for studying
intracellular reactions, in particular those focusing on the determination of kinetic parameters
[1]. Typically data obtained from experimental assays must be input into a mathematical model
before it can be meaningfully interpreted. The bulk of these models are based on the
macroscopic and deterministic models of classical physical chemistry [2]. A prominent
example of this analysis is the characterization of enzymes using the Michaelis-Menten
equation [3].

The use of any type of modelling methodology implicitly assumes that a number of physical,
chemical or biochemical constraints are satisfied. Using a model outside of its range of
application naturally implies that it is not possible to guarantee the accuracy of the model
predictions. In this essay we discuss the four main modelling strategies in the context of
intracellular kinetics. In particular we show how basic experimentally obtainable parameters
can be used to roughly determine which model is appropriate for studying the reaction pathway
under investigation. In section I, we discuss the homogeneity and continuum assumptions
inherent in the use of classical biochemical models. We show how the validity of these
assumptions can be checked by determining the fundamental length scales which characterize
a given system. In section II, we briefly survey literature on various intracellular biochemical
processes. We show that in a significant number of cases, it is not possible to uphold both the
continuum and homogeneity assumptions at the same time. These cases are amenable to study
via stochastic and discrete models, which are the topic of section III. In section IV, we discuss
the effects of noise (stochastic vs. deterministic models) and space (homogenous vs.
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heterogeneous models) on physiological predictions. We conclude with a brief discussion and
summary in section V.

I. Classical models of chemical reaction kinetics
All reaction pathways can be decomposed into a series of elementary reaction steps, each of
which is either unimolecular or bimolecular. By simulating each key step of a reaction, one
can thus construct a model of the original pathway, independent of its complexity [4]. For these
reasons we limit our discussion to modelling only these two types of elementary reactions.

Consider a chemical reaction occurring in a small cubic container with sides of length L. If the
mixture is homogeneous throughout the container at all times - a condition which can be
obtained by constant stirring - the state of the mixture at any point in time is fully described
by the total number of particles of each molecular species in the container. Let nI be the total
number of particles of species I in the container; then the concentration of the species, denoted

by [I], is equal to . For a reversible bimolecular reaction, , the forward rate of
reaction (i.e. the number of molecular events leading to successful reaction per unit volume
per unit time) is k1[A][B], whereas the backward rate of reaction is k−1[C]. The rate equation
(RE) for species C is then given by the familiar classical equation:

(1)

A crucial assumption implicit in REs is that the local concentration at each point in space inside
the container must equal the global concentration at all times. In other words, all concentration
gradients must be zero and, as a result, a non-spatial model is enough to describe the kinetics.
This is called the homogeneity assumption. In industrial applications this is easily satisfied by
constant (convective) stirring. Inside cells, homogeneity is only obtained if the effective
diffusion coefficients are sufficiently large. The latter cannot be assumed a priori. The exact
mathematical criterion for diffusion to suffice to maintain homogeneity inside our container is
Dτ ⪢ L2, where D is the molecular diffusion coefficient and τ is the average lifetime of a
reactant molecule [5]. The distance  is a measure of the distance travelled by a molecule
during its lifetime. It is sometimes referred to as the Kuramoto length [5,6]. If lk ⪢ L, then any
fluctuation in concentration at a particular point inside the container quickly diffuses to all
parts of the container and homogeneity is maintained at all times. On the other hand, if lk ⪡
L, the fluctuation remains localized in the region where it occurred and distant parts of the
container will have different concentrations and, as a result, homogeneity cannot be assumed.

Estimation of the Kuramoto length depends on a determination of the molecular lifetime. We
will illustrate how this calculation proceeds in the context of the following simple reaction

pathway, , where species A is continually supplied (so that the concentration
of A is constant at all times and equal to [Aconst]) while species B is depleted. Suppose that the
mixture of reactant molecules is initially perfectly homogeneous throughout the container and
that the reaction is at steady-state such that the concentration of C is equal to [Ceq]. The average
lifetime of a molecule of type C can then be obtained by substituting [A] = [Aconst] and [C] =

[Ceq] + δ[C] in the rate equation , where δ[C] is the fluctuation in
concentration. By ignoring terms involving δ[C]2 (i.e. assuming fluctuations are very small)
and solving for δ[C], one obtains the solution Δ[C]∝ e−t/τ where τ is the relaxation time given
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by . This timescale is a measure of the lifetime of a molecule of species C and can,
therefore, be used to estimate the Kuramoto length of species C [6]. Note that since τ is inversely
proportional to the reaction rate, the Kuramoto length scale represents the relationship between
diffusion and reaction rates.

In general, in order for homogeneity to be assumed, the Kuramoto length of each molecular
species in the pathway must satisfy the restriction that it be much larger than the container size.
If this is not the case, then one necessarily needs a mathematical description of the time
evolution of the local concentrations -- in other words, a spatial model in which diffusion is
explicitly described. This can be accomplished by dividing the volume of the container into
many small cubic elements of linear size δL, such that in each element homogeneity prevails,
i.e. δL ⪡ lk. The rate of change in the concentration of species C in each element is due to (i)
reaction between molecules of type A and B inside the element and (ii) due to diffusion of the
same molecules of type C from neighbouring elements. Then it follows that the dynamics in
each element is described by an equation of the same form as Equation (1) with an additional
diffusion term:

(2)

This is called a reaction-diffusion equation (RDE). While REs and RDEs differ by whether the
homogeneity assumption holds over the whole or parts of the volume in which the reaction
occurs, they do share a common implicit assumption: both are deterministic approaches. The
concentrations in these equations are mean concentrations and thus they can only be valid when
the stochastic fluctuations about the mean are very small. In a cubic region of space of size L
in which the average concentration is [C], the ratio of concentration fluctuation size to the

average is . Now the average intermolecular distance is given by li = [C]−⅓ from which

it follows that . Hence, REs and RDEs implicitly assume that the reaction volume is
much larger in size than the intermolecular separation, li ⪡ L and li ⪡ δL. This assumption is
known as the continuum assumption since it implies that the discreteness of molecules can be
ignored.

Note that in our discussion above, we have assumed that molecules could reach any part of the
container via diffusion. In this case it is clear that the size of the well mixed region of space
can only depend on the magnitude of the diffusion coefficients and the molecular lifetime (i.e.
the Kuramoto length scale). However, if physical structures exist inside the container which
constrain molecular movement to some specific spatial regions characterized by a length scale
Ls, then concentration homogeneity can only exist on a spatial scale δL if δL ⪡ min (Ls, Lk).

In summary, the classical approach is only valid if the reaction volume can be subdivided into
spatial elements (of linear size δL) which are small enough to ensure well-mixed conditions
inside each element (the homogeneity assumption: δL ⪡ min (Ls, Lk) but large enough to ensure
that molecular discreteness can be ignored (the continuum assumption: li ⪡ δL). These are the
two main assumptions implicit in the use of classical reaction kinetic equations. Diffusion-
limited coalescence is a well studied case in which the above compromise is not possible (see
[7] for a detailed discussion). We now turn to a discussion of whether both classical
assumptions hold when modelling intracellular reaction kinetics.
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II. Can we understand intracellular reactions using classical models?
Although there is limited information on the concentration and number of molecules inside
cells, diverse experimental evidence (see below) suggests that many intracellular biochemical
reactions involve nanomolar (nM) or smaller concentrations of reactant molecules [8-10]. In
absolute number terms, 1 nM concentration roughly corresponds to 2500 molecules inside an
average mammalian tissue culture cell (approximated as a sphere with a diameter equal to 20
microns), while 100 nM corresponds to 100 molecules inside an E. coli bacterial cell
(approximated as a cylinder with one micron diameter and two microns in length). Absolute
numbers of regulatory molecules have been reported to be approximately one thousand per
cell for two endogenous yeast proteins [11], at most a few thousand per cell for proteins
involved in the mammalian circadian clock [12], and to range from tens to hundreds per cell
[13-15] for molecules in some bacteria. In contrast, only a few hundred are required to induce
chemotaxis in amoeboid cells [8], to extend the growth cone in chick dorsal root ganglion cells
[16] or to induce an intracellular calcium response in HeLa cells [9].

A 1 nM concentration corresponds to an average intermolecular distance li approximately equal
to a micron while 100 nM corresponds to li approximately equal to a quarter of a micron. Note
that the magnitude of the intermolecular length scale is comparable to the typical size of many
intracellular compartments inside cells (e.g., the size of a lysosome is 0.2 to 0.5 microns, the
size of a mitochondrium is 0.5 to a micron and the size of a nucleus is 3 to 10 microns [17]).

It is important to remember that not all metabolites inside cells have concentrations in the
nanomolar range. A number of glycolytic intermediates in the bacterium L. lactis are reported
to be in the tens of millimolar range [18]. Such a concentration corresponds to an average
intermolecular distance li approximately equal to 10 nanometres, a length scale much smaller
than that of intracellular compartments.

The fact that nanomolar concentrations correspond to intermolecular distances comparable to
the size of intracellular compartments has important implications for the validity of the
continuum and homogeneity assumptions inside cells. The subdivision of eukaryotic cells into
functionally distinct, membrane-bound compartments means that a cell is far from being a bag
of well-mixed metabolites [19]. Compartments provide cells with functionally specialized
aqueous spaces, separate from the cytosol. Indeed it is known that the enzymes of several
metabolic pathways do not occur in the aqueous cytoplasm but are, instead, organized into
structural and functional units, usually residing on membranes or on components of the
cytoskeleton. Some examples include scaffold and adaptor proteins (serving as docking sites
for the assembly of various complexes at the plasma membrane) [20], enzymes involved in
lipid metabolism [17] and enzymes involved in glycolysis [21]. (See Luby-Phelps [22] for a
recent literature survey of this topic.)

Hence, the homogeneity assumption holds for length scales much smaller than both the typical
size of an intracellular compartment (the latter length scale is equal to Ls) and than the molecular
Kuramoto lengths. Since intermolecular distances are comparable to the size of intracellular
compartments, the number of reactant molecules in spatial regions of this size will typically
be so small that their discrete nature cannot be neglected and the continuum approximation
breaks down. Hence it is unlikely that both assumptions can simultaneously hold and,
consequently, the use of classical models appears inappropriate for modelling reactions with
nanomolar concentrations.

It thus appears inevitable that a reasonable model of intracellular chemical kinetics will need
to relax the requirement that the continuum approximation be valid for any length scale inside
the cell along with the constraint that the homogeneity approximation hold for fine enough
length scales. Such models are the subject of the next section.
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III. Discrete and stochastic models of chemical reaction kinetics
Discrete models (i.e., models in which the temporal change in the density of particles in a
region of space occurs by integer amounts), can be deterministic or stochastic. When
fluctuations of the average number of particles in a given volume are small, then a deterministic
model (in terms of mean concentrations) will typically suffice. Otherwise, a stochastic model
will be needed. In a cubic region of space of size δL in which the average number of particles
is equal to n, the fluctuation about the average is of the order . A 1nM concentration in a 2
micron cubic box (representative of the volume occupied by a typical organelle in a mammalian
cell) would imply approximately 5 ± 2 particles in the box. Since the fluctuation size is
comparable to the mean, a stochastic description of discrete chemical reaction kinetics seems
to be an unavoidable choice for intracellular processes where one or more of the metabolite
concentrations are in the nanomolar range.

There are two types of discrete and stochastic formulations of chemical kinetics, paralleling
exactly the classical RE and RDE approach discussed previously in this article. We will first
discuss the case where reactants are homogeneous and then the case where they are
heterogeneous in the container. In this case, the term container refers to the cell. The small
elements of space into which it is subdivided are the intracellular compartments or, perhaps,
even smaller spatial regions.

Stochastic kinetics in homogeneous conditions
Let us imagine a non-reversible bimolecular chemical reaction occurring in a container of size
L between two different chemical species, . We assume that reactions occur in well-
mixed conditions, i.e. L⪡lk , but do not require that L is much larger than the typical
intermolecular distance. We are, therefore, dealing with discrete (integer) numbers of
molecules instead of continuous, real-valued concentrations.

Since we are assuming well-mixed conditions, the positions and velocities of individual
molecules can be ignored and thus the state of the system at any time is completely specified
by the number of molecules of both species (the number of molecules of type C can be ignored
since they do not contribute to the reaction kinetics). Let P(nA,nB,t) be the probability that in
the container there are nA molecules of species A and nB molecules of species B at time t. The
state vector is (nA,nB). Applying the laws of probability yields the following equation
describing the time evolution of the system:

(3)

where T(nA′,nB′|nA,nB)Δt gives the probability of a single bimolecular reaction event occurring
in a time interval Δt and causing the state vector to change from (nA,nB) to (nA′,nB′). The first
term represents the state change (nA+1,nB+1)→(nA,nB) whereas the second term represents the
state change (nA,nB)→(nA−1,nB−1). Equation (3) is called the Master Equation or the Chemical
Master Equation (CME) for the bimolecular reaction. The function T is commonly referred to
as the propensity function. For the reaction under consideration, T has to be proportional to
both k (the familiar macroscopic rate constant) and to the number of A-B pairs in the reaction
volume but inversely proportional to the container volume (since a larger volume implies rarer

successful encounters). We, therefore, have ; this equation together
with Equation (3) completes the discrete and stochastic description of a bimolecular reaction.
A similar procedure can be used to derive CMEs for any reaction process. A detailed discussion
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of the general derivation of propensity functions from microscopic physics can be found in
[23].

CMEs can only be exactly solved in a few simple cases and, as a result, computer simulation
is frequently essential. The most common simulation method is the stochastic simulation
algorithm (SSA) of Gillespie [24,25]. A discussion of this approach and its variants in the
context of reactions inside cells can be found in the recent review by Turner et al [26]. There
are several readily available stochastic simulation software packages for the simulation of
CMEs via the Gillespie algorithm, e.g., Dizzy [27], BioNetS [28] and Dynetica [29].

Many of the current models assume well-mixed conditions throughout the whole volume of
space in which the intracellular processes of interest occur. These models are built by
decomposing the relevant reaction pathway into a series of unimolecular and bimolecular
elementary reaction steps and then writing master equations for each step. Such a procedure
has now been applied to study a significant number of intracellular processes, including genetic
regulatory networks [30], enzymatic substrate cycles (a recurring control motif in biological
molecular networks) [31], single enzyme kinetics [32,33] and the circadian clocks of
Drosophila, Neurospora [34] and of mammals [12].

We finish this section by noting that up till now we have assumed that the collision frequency
is proportional to the product of the number of particle species; this is evident in both the form
of Equation (1) and in the propensity function. If the Maxwell velocity distribution is
maintained [5, 25] then the above assumption is correct. When the dominant transport process
is anomalous diffusion, the molecular velocities do not obey the Maxwell distribution; this is
the case when there exists significant molecular crowding effects in the region of the cell where
the reactions occur (three examples of this are protein motion inside cell membranes [35], in
the nucleoplasm [36] and in the cytoplasm of HeLa cells and E. coli [37, 38]). The description
of reaction kinetics in the presence of crowding requires more sophisticated approaches than
the CME.

Stochastic kinetics in heterogeneous conditions
We now consider the case where the molecular Kuramoto lengths are much smaller than the
container thus leading to significant spatial heterogeneity in the concentrations. To derive the
stochastic equations governing such conditions, we adopt the same conceptual approach used
previously to derive the deterministic reaction-diffusion equations with one important
distinction: the continuum approximation is not made. We divide the reaction volume into m
small cubes with side length δL , such that the reaction is well-mixed in each cube, i.e.
δL⪡lk. The reaction inside each cube can be treated in the same way as in the previous section.
We must now, however, consider diffusion between neighbouring cubes (as was also the case
for RDEs) . Diffusion of species A between two adjacent cubes, i and j, can be represented as

 where kD = D/zδL2 is the rate at which molecules diffuse between the two cubes (z is
the number of nearest adjacent cubes). Hence, we see that diffusion is mathematically
equivalent to a set of unimolecular processes. We can therefore describe both reaction and
diffusion throughout space by writing the CME for the set of reaction processes

. This is frequently termed a multivariate master
equation [39] or a reaction-diffusion master equation (RDME). A thorough analytical treatment
of these equations can be found in the recent paper by Isaacson and Peskin [40].

Efficient simulations of RDMEs in biological contexts can be achieved by extensions and
variants of the Gillespie algorithm e.g. SmartCell [41] and MesoRD [42]. A crucial issue to be
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resolved before any spatially extended system can be simulated using RDMEs is the
determination of the size δL of the small cubic elements in which homogeneity is assumed to
prevail. The most straightforward way to ascertain the appropriate cube size to use for a given
simulation requires the comparison of the frequency of molecular transfer (due to diffusion)
between adjacent cubes, fd, and the frequency of chemical reactions occurring inside the cubes,
fc. When fd ⪢ fc, homogeneity inside each cube is guaranteed; otherwise, a smaller cube size
must be selected [43].

It is important to note that, in addition to the use of RDMEs (and their simulation via variations
of the Gillespie algorithm), there are other mathematical and simulation frameworks available
for modelling stochastic kinetics in heterogeneous conditions. Field-theoretic renormalization
group methods (see [44] for a review) provide an alternative analytical approach whereas
software based on Brownian dynamics (e.g., Smoldyn [45], Virtual Cell [46] and M-cell
[47]) provides spatial stochastic simulation with single molecule detail (the latter feature is
absent in software based on the Gillespie algorithm).

There have been only a few instances to date where spatial stochastic models have been used
to model realistic intracellular kinetics; these include the bacterial chemotaxis signalling
pathway [48], Min-protein oscillations in E. coli (see MesoRD website
http://mesord.sourceforge.net/), neurotransmission in the chick ciliary ganglion [49] and
calcium waves in differentiated neuroblastoma cells [50].

In the above treatment we considered kD to be a constant throughout space; by allowing this
parameter to be a function of space one obtains a stochastic and discrete model of intracellular
reactions and the complex intracellular environment in which they occur. For example, a
permeable membrane could be modelled by requiring the value of kD for each cube discretizing
the membrane to be different than the value of kD for each cube discretizing the surrounding
cytosol. In this manner any number of complex cytoplasmic geometries may be easily
modelled. We note that intracellular processes in which anomalous diffusion is the dominant
transport process can be modelled with RDMEs by introducing a spatial distribution of
impenetrable obstacles in the reaction volume (for a discussion of the relationship between
anomalous diffusion and obstacle concentration see Saxton [51]).

IV. Homogeneous vs. Heterogeneous models. Stochastic vs. Deterministic
models

As remarked in the previous section, the majority of current stochastic models of intracellular
kinetics assume well-mixing in the intracellular region where the reactions occur. It is important
to remember that that these models are simply an approximation of spatially-extended
stochastic models and, as such, their predictions can be expected to be physically realistic only
when the Kuramoto length of each interacting molecular species is significantly larger than
the cell diameter. If the rate coefficients and the approximate number of molecules are known
then the above condition can be checked by explicit calculation using the formulas discussed
in the beginning of this essay. Otherwise, one may experimentally tag key molecular species
with green fluorescent protein and analyze the spatial distribution over a period of time.

In general, if the reaction scheme under consideration involves one or more diffusion-limited
reactions, i.e., one in which the probability of reaction upon encounter is close to one (e.g.,
models of the kinetics of super-efficient enzymes), then the predictions of homogeneous
models may be incorrect. In these cases reactant molecules move a small distance before
reacting, implying that concentrations in different regions of space will evolve with time in a
different manner. For example, homogeneous stochastic simulations of the diffusion-limited
bimolecular reaction  with equal initial reactant concentrations via the Gillespie
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algorithm and analysis via the Van-Kampen expansion [52] show that the mean reactant
concentration follows the classical decay law [A] = [B]∝1/t (in all spatial dimensions) whereas
spatially extended simulations [53] show that the correct long-time decay law is [A] = [B]∝1/
t−d/4, where d is the dimension of space. Note that the reaction proceeds more slowly than
predicted by the corresponding non-spatial models; this is because, during the course of the
reaction, alternating domains of A-only and B-only particles are formed and the reaction can
thus proceed only at the domain boundaries rather than throughout the whole volume of space,
as assumed by non-spatial models (Figure 1). A thorough discussion of this phenomenon can
be found in Ben-Avraham and Havlin [7].

Note that discrepancies between the concentration decay laws predicted by non-spatial and
spatial models increase with decreasing dimension. This has profound implications for the
modelling of intracellular biochemical networks in which some of the reactions occur via an
effective lower-dimensional motion. The use of combinations of three-dimensional (in the
cytosol) and one or two-dimensional diffusion (e.g., gliding along a linear polymer or a
membrane surface) is a mechanism first proposed by Adam and Delbruck [54]. This facilitates
target location [55] and hence it is likely quite common inside cells, e.g., the one-dimensional
gliding of the tetrameric E. coli lac repressor and RNA polymerase along the DNA chain to
locate specific binding sites [56,57].

Next we briefly discuss the predictions of stochastic and discrete models with those of the
corresponding deterministic and continuous models for a given biological or biochemical
system. Although it is now recognized that stochastic effects play important roles in cell
biology, “they are often thought of as providing only moderate refinements to the behaviours
otherwise predicted by the classical deterministic system description” ([31], p. 2310). Indeed
there are many cases in which a deterministic description suffices to capture the approximate,
qualitative physiological behaviour exhibited by a real biological system. Some examples
include models of the budding yeast cell cycle [58], of the glycolysis pathway in yeast [59]
and L. lactis [60] and of feedback regulation in the lactose operon [61]. However, there are
also many instances in which it has been shown that stochastic effects lead to physiological
predictions which cannot be reproduced qualitatively or quantitatively by the corresponding
deterministic models. Prominent examples of such cases occur in models of biochemical
oscillations (e.g., circadian rhythms, calcium oscillations, and oscillations of ADP and ATP
concentrations in glycolysis) where it has been shown that noise generally expands the region
of parameter space in which cycles are predicted to occur by deterministic models (Figure 2)
[12,31,62,63]). In some cases noise may even induce oscillations in systems in which the
corresponding deterministic model predicts that no oscillations are possible over the entire
parameter space. For example, noise may induce cycles in reaction schemes involving just two
chemical agents whereas deterministic models predict that at least three chemical agents are
necessary [63]. In general, it has been found that fluctuations may lead to steady-states in
chemical reaction-diffusion systems which are not predicted by RDEs [6].

V. Discussion
In this essay we have discussed the four main methodologies for modelling reaction kinetics
in cells (Figure 3). The determination of which model is most relevant for the analysis of a
particular intracellular reaction pathway is closely tied to the physical nature of the intracellular
region in which it occurs and also with the typical chemical concentrations involved in the
reaction.

In particular one needs to estimate the Kuramoto length scale, the size of the intracellular region
in which reaction occurs and the average inter-molecular distances. These can be estimated
from knowledge of the diffusion coefficients, the reaction constants and molecular

Grima and Schnell Page 8

Essays Biochem. Author manuscript; available in PMC 2009 September 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



concentrations. For example consider a reaction confined to an intracellular compartment of
micron size and in which the reacting species have a hydrodynamic radius equal to 4nm (D ∼
0.05nm2/ns), a bimolecular rate constant equal to k = 0.5×106 M−1s−1 and a typical
concentrations of 1μM. This implies lk ∼ 10 microns and li ∼ 0.1 micron; since the
compartment size is much smaller than lk and significantly larger than li then a rate equation
approach may suffice. If crowding caused the molecular diffusion coefficient to be reduced by
five times, the typical concentration was 100nM and the rate constant was equal to k =
5×106M−1s−1 then lk ∼ 4.5 μm and li ∼ 0.3 μm. If this reaction forms part of a pathway which
involves both the nucleus (3–10 μm) and mitochondrium (0.5–1 μm) of a mammalian cell then
both homogeneity and continuum assumptions do not hold and a RDME approach will be
needed.

Roughly speaking, reactions involving concentrations in the millimolar range will probably
satisfy the continuum assumption whereas those involving smaller concentrations, such as
nanomolar ones, will not. Reactions occurring exclusively in a small intracellular compartment
will favour the homogeneity assumption; those involving multiple transport between several
compartments and the cytosol or in regions where molecular crowding is significant will not
satisfy this assumption.

As mentioned in the introduction, choosing the right model for the application at hand ensures
the appropriate interpretation of experimental data. An example of this is the analysis of data
obtained from single-molecule imaging techniques (SMI) [64-68]. The large fluctuations
inherent in this data would necessarily have to be ignored if analysis proceeds via a
deterministic framework. However, analysis via the stochastic framework of master equations
has shown that such fluctuations may contain important information about molecular
behaviour; for example, it was recently shown that fluctuations in the rate constants of a single
enzyme yield information regarding its conformational dynamics [33,69].

We conclude by noting that in general it is not possible to a priori rule out the effects of noise
or space on a given intracellular reaction scheme of interest. It is important to be aware of the
fact that non-spatial deterministic models (based on classical REs) constitute only a first
approach to modelling intracellular dynamics; their physiological predictions should be
carefully checked against those of spatial stochastic models which correspond more closely to
reality.

Summary
• Intracellular reaction kinetics can be modelled using four main different approaches (RE,
RDE, CME, RDME); the right model choice for a particular reaction pathway under study
depends on the concentrations and Kuramoto lengths of all molecular species, the size of
intracellular space in which reaction occurs and the extent of macromolecular crowding in this
region.

• In general, stochastic effects, typical of reactions involving nanomolar concentrations, do not
simply add moderate quantitative refinements to the behaviours otherwise predicted by the
classical deterministic models (RE, RDE). Noise may induce novel and qualitatively different
physiological behaviour than that predicted by deterministic models.
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Figure 1.
Snapshot of the particle positions in two dimensional space, at a particular time, of two types
of particles, A (white circles) and B (solid black circles), which are involved in a bimolecular
reaction, A+B→C. The simulation is spatial and stochastic. The segregation into A-rich and
B-rich domains leads to a reduced reaction rate compared to the prediction of non-spatial
models. (Reprinted with permission from Journal of Chemical Physics, Vol. 78, D. Toussaint
and F. Wilczek, Particle-antiparticle annihilation in diffusive motion, pp. 2642-2647.
Copyright 1983, American Institute of Physics.)
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Figure 2.
Comparison of the predictions of RE (A) and CME (B, C) models for the circadian oscillator
in Drosophila. The parameter V (x-axis) is the gene transcription rate whereas Mp frequency
(y-axis) is the frequency of the mRNA concentration cycles. The colour represents the log
power of the frequency. Note that oscillations are paradoxically enhanced by noise; for low
transcription rates, the stochastic models predict significant oscillations whereas the
deterministic one predicts none. (Reprinted from Journal of Theoretical Biology, Vol. 230, D.
Orrell and B. Hamid, Control of internal and external noise in genetic regulatory networks, pp.
301-312, 2004, with permission from Elsevier.)
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Figure 3.
Schematic showing the four modelling strategies and the conditions underlying their use and
validity. The magnitude of the Kuramoto lengths and the intermolecular distances compared
to the system size determines whether the homogeneity and continuum assumptions hold,
respectively.
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