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The Michaelis-Menten (MM) equation is the basic equation of enzyme kinetics; it is also a basic

building block of many models of biological systems. We build a stochastic and microscopic model of

enzyme kinetics inside a small subcellular compartment. Using both theory and simulations, we show that

intrinsic noise induces a breakdown of the MM equation even if steady-state metabolic conditions are

enforced. In particular, we show that (i) given a reaction velocity, deterministic rate equations can severely

underestimate steady-state intracellular substrate concentrations and (ii) different reaction schemes which

on a macroscopic level are indistinguishable because they are described by the same MM equation obey

distinctly different equations in subcellular compartments.

DOI: 10.1103/PhysRevLett.102.218103 PACS numbers: 87.16.A�, 82.20.Uv, 82.39.Fk

The Michaelis-Menten (MM) equation has been a cor-
nerstone of enzyme kinetics for almost a century [1]. Its
popularity stems from the fact that it provides a simple and
straightforward recipe for characterizing the kinetic prop-
erties of enzymes. Determination of these properties is
useful, for example, in the comparison of wild-type and
mutant enzyme samples, which can lead to insight into the
nature of certain diseases and also for the accurate model-
ing and simulation of large metabolic networks inside
cells. The simplest enzyme-catalyzed reaction can be rep-

resented as Sþ E Ðk0
k1

C!k2 Eþ P. Substrate molecules (S)

reversibly bind to enzyme molecules (E) with rate con-
stants k0 (forward reaction) and k1 (backward reaction) to
form transitory enzyme-substrate complex molecules (C)
which then decay with rate k2 into enzyme and product
molecules (P). The enzyme acts as a catalyst, effectively
speeding up the reaction by orders of magnitude. In clas-
sical physical chemistry, chemical kinetics are described
by rate equations based on the law of mass action; the
solution of these ordinary differential equations (ODEs) for
the above enzyme-assisted reaction in quasisteady-state
conditions (i.e., when the complex concentration is ap-
proximately constant) leads to a relationship between the
rate of product formation and the substrate concentration
(the MM equation):

d½P�
dt

¼ vmax½S�
KM þ ½S� ; (1)

where vmax ¼ k2½Et� and KM ¼ ðk1 þ k2Þ=k0 is the
Michaelis-Menten constant. The square brackets denote
concentrations; note that since enzymes can either be in
free (E) or complexed states (C), it follows that ½E� þ
½C� ¼ ½Et�, where [Et] is a constant denoting the total
concentration of enzyme. This is the case of a batch
reaction, namely, one in which the system is instantane-
ously prepared with some initial amount of substrate at
time t ¼ 0 and the reaction proceeds after this event with-
out substrate replenishment; in such conditions, quasi-

steady-state conditions ensue if the initial amount of sub-
strate is much larger than that of enzyme [2] and the MM
equation approximates well the kinetics. Note that [S] in
this case is changing with time, albeit the decay is so slow
that it can be considered constant. If one considers the
reaction to occur under metabolic steady-state conditions,
for example, due to constant substrate replenishment, then
in the limit of long times, the MM equation becomes exact
from the point of view of the classical rate equations. It is
the latter case which is the focus of this article.
The MM relation is derived from deterministic ODEs

which intrinsically assume that (i) the reaction volume is so
large that the effects of noise due to molecular discreteness
are negligible, (ii) the environment is well mixed via
normal diffusion. Both of these assumptions are unlikely
to be valid inside cells: (i) reactions typically occur in very
small volumes and hence a low copy number of molecules
are involved, (ii) high molecular crowding in the cytoplasm
significantly hinders diffusion and makes active transport a
more desirable mode of transport in a number of situations
[3]. In this Letter, we relax the first assumption, namely,
that of large reaction volumes and show that the MM
relation breaks down even if perfect steady-state conditions
are enforced at all times. It will furthermore be shown that
different reaction schemes described by the sameMM rela-
tion in the framework of ODEs obey different rate equa-
tions on a mesoscopic scale and are hence distinguishable.
We consider a model of enzyme kinetics inside a single

subcellular compartment. The reaction scheme is general-
ized from the one considered in the introduction to:

!kin AÐ
kf

kb
Sþ EÐk0

k1
C!k2 Eþ P. Molecules of type A are con-

tinuously supplied at a rate kin to the compartment. They
reversibly change to a second species S which is the
substrate which binds to the enzyme and leads to formation
of product P. In the simplest possible scenario, A and S are
isomers involved in a spontaneous isomerization reaction
or in a catalyzed pseudo-first-order isomerization reaction.
Isomerization via keto-enol tautomerization is very com-
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mon in biochemistry, for example, featuring prominently
in glycolysis [4]; the keto form is typically the one which is
involved in enzyme reactions. Another possible physical
interpretation is that A and S represent two different mo-
lecular species which interchange between each other via a
combination of first-order and/or pseudo-first-order reac-
tions. If we ignore the fact that subcellular compartments
have very small volumes and instead assume a compart-
ment volume which is large enough so that molecular
discreteness can be ignored and furthermore assume
well-mixed conditions then the kinetics are described by
the conventional deterministic and macroscopic ODEs:

d½A�=dt¼kin�kf½A�þkb½S�; d½P�=dt¼k2½C� (2)

d½S�=dt ¼ �ðkb þ k0½E�Þ½S� þ kf½A� þ k1½C�; (3)

d½C�=dt ¼ k0½E�½S� � ðk1 þ k2Þ½C�: (4)

If the rate of input is less than the rate at which substrate is
maximally converted into product, i.e., kin � k2½Et�, then
the system achieves a steady state in the concentrations of
substrate and enzyme. In this regime, it is easy to verify
that the rate of product production is related to the steady-
state substrate concentration by the MM equation, Eq. (1);
the equation is exact since steady-state conditions are
enforced. Note that this is independent of the rate constants
kb and kf and hence it follows that at the macroscopic

scale, given two reaction schemes with different values of
kb or kf but with same vmax, KM and reaction velocity, one

cannot distinguish between the two reactions from mea-
surements of [S]; this property generally follows for any set
of intermediate reactions preceding the bimolecular
enzyme-substrate reaction and is not a special property of
the reaction scheme under consideration. If we now relax
the condition that the reaction volume is very large then
due to the expected low copy number of molecules and the
consequent noisy dynamics, the mathematical description
necessarily becomes probabilistic and in terms of integer
number of molecules. The state of the system at any time is
now described by the joint probability distribution function
� and the equation of motion governing the time evolution
of � is frequently called a master equation (for an intro-
duction, see [5]). For our set of reactions, the governing
master equation is

d�

dt
¼kin�ðE�1

A �1Þ�þk0
�
ðEþ1

S E�1
C �1ÞnSnE�

þkbðEþ1
S E�1

A �1ÞnS�þkfðEþ1
A E�1

S �1ÞnA�
þk1ðEþ1

C E�1
S �1ÞnC�þk2ðEþ1

C E�1
P �1ÞnC�; (5)

where � ¼ �ðnA; nS; nE; nC; nP; tÞ is the joint probability
distribution function describing the system at any point in
time t, � is the volume of the compartment, and E�1

X

are the step operators defined by their action on a general
function gðnXÞ as E�1

X gðnXÞ ¼ gðnX � 1Þ. The quantities

nX denote the integer number of molecules of type X. The
master equation is nonlinear and cannot be solved exactly
but it is possible to systematically approximate it by using
an expansion in powers of the inverse square root of the
volume of the compartment [5]. The method is as follows.
The stochastic quantity nX=� fluctuates about the macro-
scopic concentrations [X]; furthermore these fluctuations
are known to be of the order of the square root of the
number of particles:

nX ¼ �½X� þ�1=2�X; (6)

where �X represents noise. Accordingly the joint distribu-
tion function and the operators can now be written as

functions of �X: � ¼ �ð�A; �C; �S; �P; tÞ and E�1
X ¼ 1�

��1=2@=@�X þ 1
2�

�1@2=@�2X þOð��3=2Þ; using these

new variables the master equation Eq. (5) takes the form

@�

@t
��1=2

�
d½A�
dt

@�

@�A
þd½C�

dt

@�

@�C
þd½S�

dt

@�

@�S
þd½P�

dt

@�

@�P

�

¼a1�
1=2�þa2�

0�þa3�
�1=2�þOð��1Þ; (7)

where

a1¼�
�
ðkin�kf½A�þkb½S�Þ @

@�A
þk2½C� @

@�P
þðk0½E�½S�

�ðk1þk2Þ½C�Þ @

@�C
þðkf½A�þk1½C�

�ðkbþk0½E�Þ½S�Þ @

@�S

�
; (8)

a2¼1

2
kin

@2

@�2A
þkf

�
@

@�A
� @

@�S

�
�Aþkb

�
@

@�S
� @

@�A

�
�S

þ1

2

�
@

@�S
� @

@�A

�
2ðkf½A�þkb½S�Þþ1

2

�
@

@�S
� @

@�C

�
2

�ðk0½S�½E�þk1½C�Þþk1

�
@

@�C
� @

@�S

�
�C

þk2

�
@

@�C
� @

@�P

�
�Cþ1

2
k2

�
@

@�P
� @

@�C

�
2½C�

þk0

�
@

@�S
� @

@�C

�
ð�S½E���C½S�Þ; (9)

a3¼1

2

�
@

@�S
� @

@�C

�
2ðk0�S½E��k0�C½S�þk1�CÞ

�k0

�
@

@�S
� @

@�C

�
�S�Cþ1

2
k2

�
@

@�P
� @

@�C

�
2
�C

þ1

2

�
@

@�S
� @

@�A

�
2ðkf�Aþkb�SÞ: (10)

Note that �E does not feature in the expansion because it
is not an independent variable but is equal to ��C. Note
also that in Eq. (10) terms which involve products of first
and second-order derivatives, third-order derivatives, or
higher have been omitted—these do not affect the low-
order moment equations which we will be calculating. To
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make Eq. (7) a proper expansion in powers of ��1=2, it is

necessary to equate the terms proportional to�1=2 on both
sides of the equation; this leads to the macroscopic equa-
tions, Eqs. (2)–(4). Note that this is an important bench-
mark, since it verifies that in the limit of very large
volumes, the microscopic stochastic equation Eq. (5) leads
to the correct macroscopic law that one would write down
based on mass action. This leaves us with an equation of

the form @�=@t ¼ a2�þ a3�
�1=2�þOð��1Þ; this

equation contains information regarding the deviations
from the macroscopic rate laws and is thus central to the
topic of this Letter.

First we consider terms in the expansion to order�0; the
resulting equation is a multivariate Fokker-Planck equa-
tion. The nth moments of the noise h�nXi can be obtained by
multiplying both sides of the equation by �nX and integrat-
ing over all variables on which � is dependent. The first
moments at equilibrium take the trivial values h�Ai ¼
h�Ci ¼ h�Si ¼ 0; from Eq. (6) it follows that to this order
there are no new corrections to the values of the steady-
state concentrations predicted by the macroscopic equa-
tions, i.e., hnX=�i ¼ ½X�. The second moments are much
more laborious to compute; they are given by a set of 6

coupled linear differential equations of the form @
dtZ ¼

M � ZþN. The column vectors Z and N are defined by
ZT ¼ h½�2S; �2C; �2A; �A�S; �A�C; �S�C�i and NT ¼ ½ðk0½E�þ
kbÞ½S�þ k1½C�þ kf½A�; k0ðKM½C�þ ½S�½E�Þ; kinþ kf½A�þ
kb½S�; kf½A�� kb½S�;0;�k0ð½S�½E�þ k01½C�Þ�. The nonzero
entries of the 6� 6 matrix M are the following: M11 ¼
�2k0ð½E� þ k0bÞ, M14 ¼ 2kf ¼ �M33 ¼ 2M43 ¼ 2M65,

M16 ¼ 2k0ðk01 þ ½S�Þ ¼ 2M45 ¼ 2M62,M22¼�2k0ð½S�þ
KMÞ, M26 ¼ 2k0½E� ¼ 2M61, M34 ¼ 2kb ¼ 2M41, M44 ¼
�k0ðk0f þ k0b þ ½E�Þ, M66¼�k0ðk0bþKMþð½E�þ½S�ÞÞ.
The primed quantities indicate that they are divided by k0.
Note that these equations are independent of �p since the

product is the end result of the reaction and hence can in no
way influence the fluctuations in the number of molecules
of types A, S, and C. This set of linear equations is exactly
solvable though the algebra is tedious because of the high
dimensionality of the system; we compute fluctuations in
the limit t ! 1 when all initial transients have decayed.
Here we give only the expression for the correlator of the
noise in the concentrations of complex and substrate,
though the others can be computed in a similar fashion:

h�S�Ci ¼
ð1� �Þ2KM½Et�ð�1½Et��2 þ �3�þ KMkfk0Þ

½Et��2ð�1½Et��2 þ �3�þ KM�12Þ þ KM�
2
2�þ k0K

2
M�2

; (11)

where �1 ¼ k0ðk2 þ kfÞ, �2 ¼ kb þ kf, �12 ¼ �1 þ k0�2

and �3 ¼ k2f þ kb�1 and � ¼ 1� kin=vmax (steady-state
concentrations of substrate occur only over the range 0 �
�< 1). Note that the correlator is evaluated using the
steady-state concentrations given by the deterministic
equations; this is since, as previously noted, to this order
there are no corrections to the latter equations. Now we
consider terms of order ��1=2 and ignore higher orders;
these terms give information about how the equilibrium
fluctuations are affected by (i) the nonlinear terms in the
macroscopic equation (i.e., the bimolecular interaction of
substrate and enzyme) and (ii) single-particle events, such
as those occurring when the enzyme is close to saturation
and there are few available free enzyme molecules for
substrate binding [5]. Computing the first moments of the
noise in the complex concentration gives

dh�Ci=dt ¼ �k0ð½S� þ KMÞh�Ci þ k0½E�h�Si
� k0�

�1=2h�S�Ci: (12)

This equation of motion can also be obtained by a com-
pletely different approach. Arguing on purely physical
grounds, one expects dhnC=�i=dt ¼ hfðnC=�; nS=�Þi
with the proviso that in the limit � ! 1, the function f
becomes equal to the right-hand side (rhs) of Eq. (4).
Taylor expanding fðxþ dx; yþ dyÞ to second order with
x ¼ ½C�, y ¼ ½S� and dx ¼ ��1=2�C, dy ¼ ��1=2�S, tak-
ing the average over noise, and equating to dhnC=�i=dt
one obtains exactly Eq. (12). Note that this alternative

derivation relies solely on the macroscopic equations,
though the evaluation of the cross correlator h�S�Ci can
only be obtained from the master equation. The steady-
state condition, dhnP=�i=dt ¼ kin ¼ k2hnC=�i and kin ¼
k2½C�, implies that the average concentration of complex
cannot possibly be affected by noise but it has to be equal
to the macroscopic value (no such condition exists for the
substrate concentration); from this it follows that h�Ci ¼ 0
to any order in the expansion for the master equation.
Substituting the latter in Eq. (12) results in h�Si> 0, which
implies

� ¼ hnS=�i
½S� ¼ 1þ h�S�Ci

KM½Et�ð1� �Þ� : (13)

The correction factor on the rhs of this equation can be
estimated using the value of h�S�Ci given by the expansion
to order�0. Thus Eqs. (11) and (13) together approximate
the deviations from the MM equation due to intrinsic noise.
The deviations are in the range 1<�< 1þ ð�KMÞ�1.
The expansion of the master equation is about the macro-
scopic concentrations and hence one expects Eq. (13) to
hold when the 2nd term on the rhs is not very large.
However, the alternative derivation of Eq. (12) (and also
the simulations—see later) suggest the condition for its
validity is not so restrictive. It is found that all higher-than-
second-order terms in the alternative derivation yield no
corrections to Eq. (12). This strongly suggests that the
accuracy of Eq. (12) [and hence of Eq. (13)] is simply
limited by the accuracy of the estimate of h�S�Ci. Note that
the deviations from the MM equation are pronounced for
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small values of KM, in which case the bottleneck in the
catalytic process is the decay of a complex rather than an
enzyme-substrate combination, leading to correlations be-
tween successive binding events. Simulations of the reac-
tion scheme were carried out using Gillespie’s exact sto-
chastic simulation algorithm, conveniently implemented in
the standard software, Dizzy, to test the accuracy of our
predictions [6]. For a given fixed set of rate constants and
total number of enzyme molecules, the rate of particle in-
put into the compartment kin was varied incrementally
from 0 to vmax; for each different value of kin, the number
of substrate particles nS was measured in the limit of long
times. Ensemble averaging the latter over a number of
independent simulations yielded hnSi from which one can
calculate �. Figures 1(a) and 1(b) show the results of
simulations testing the dependence of the corrections to
the MM equation on KM and � for the case in which the
backward reaction S ! A is not allowed, i.e., kb ¼ 0. The
predictions are in very good quantitative agreement with
the numerics over the whole range of � for large KM�
[Fig. 1(a)] but underestimate the simulation results for
intermediate values of � if KM� is relatively small
[Fig. 1(b)]; the latter is to be expected since as KM� !
0, the fluctuations become very large and necessarily the
expansion’s predictions would not be expected to be highly
accurate. However, the good match at small � is surprising
and does suggest that terms beyond ��1=2 in the master
equation expansion have little effect on the corrections to
the MM equation [this is also suggested by the alternative
derivation of Eq. (12), as previously mentioned]. In
Fig. 1(c) both forward and backward reactions of A inter-
converting into S are allowed; given the choice of parame-
ters [see Fig. 1 caption], the macroscopic equations would
predict that this case should be no different than that of
Fig. 1(b). However, this is not the case; because the sto-
chastic corrections to the MM equation depend on kf and
kb, it follows that at the mesoscopic scale, for a given rate
of product formation (as given by �), the substrate con-
centration depends on the details of any reactions preced-
ing the enzyme-substrate reaction. These corrections are of

relevance only when � is small, i.e., when the enzyme is
nearly saturated with substrate.
The mesoscopic theory developed in this Letter inter-

polates between the classical case of many enzyme mole-
cules in a macroscopic volume (described by the MM
equation) and the microscopic case of a single enzyme in
a small volume (for example, see [7], which also predicts a
breakdown of the MM equation for a single-enzyme sys-
tem) thus spanning a wide range of biologically relevant
scales. Since the range of KM is approximately
1–5000 �M [8] and compartments are typically larger
than 50 nm diameter (vesicles being at this lower end limit
[3]), it follows that the amplification factor � can take
values as high as �25 inside cells. This upper limit is
achieved when the enzymes operate near saturation.
Besides the clear breakdown of the MM equation in such
cases, this also suggests that for given rates of product
formation, there can be significant discrepancies between
the steady-state intracellular metabolite concentrations and
those measured in macroscopic volumes.
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FIG. 1 (color online). Dependence of the deviations from the MM equation� on the parameter � ¼ 1� kin=vmax for relatively large
(A) and small KM� (B),(C) for a system with 1000 enzyme molecules in a compartment of unit volume. The solid lines show the
theoretical predictions [Eq. (13) together with Eq. (11)] while the data points are those obtained from simulation. The parameters are as
follows: KM ¼ 5=2 (red or gray diamonds) and KM ¼ 5=8 (magenta or light gray circles) in (A); KM ¼ 1=5 (red or gray diamonds)
and KM ¼ 1=12 (magenta or light gray circles) in (B). In (A) and (B), the backward reaction S ! A does not occur: kf ¼ 1, kb ¼ 0.

(C) has the same parameters as (B) but now both backward and forward reactions involving A occur: kf ¼ kb ¼ 1. In all cases, k1 ¼ 1,

k2 ¼ 4; KM is varied through k0.
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