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ABSTRACT 

The model used to estimate the capital required to cover unexpected credit losses in 

financial institutions (Basel II) has some drawbacks that reduce its ability to capture 

potential joint extreme losses in downturns. 

This paper suggests an alternative approach based on Copula Theory to overcome 

such flaws. Similarly to Basel II, the suggested model assumes that defaults are driven 

by a latent variable which varies as a response to an unobserved factor. On the other 

hand, the use of copulas allows the identification of asymmetric dependence between 

defaults which has been registered in the literature. 

As an example, a specific copula family (Clayton) is adopted to represent the 

association between the latent variables and a formula to estimate potential unexpected 

losses at a certain level of confidence is derived.  

Simulations reveal that, in most of the cases, the alternative model outperforms Basel II 

for portfolios with right-tail-dependent probabilities of default (supposedly, a good 

representation for real loan portfolios).  
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1. INTRODUCTION 

The current rule to calculate capital necessary to cover unexpected credit losses is 

based on structural models which define that joint defaults are driven by a latent 

variable which, in turn, is driven by an unobserved (economic) factor.  

The economic factor, the latent variable, and the specific (idiosyncratic) risk for each 

obligor are assumed to follow the standard normal distribution but there is vast evidence 

in the literature that those variables are not normally distributed. 

The dependence across pairs of latent variables and between each latent variable and 

the economic factor is measured by the correlation coefficient which is accurate only for 

normal data and does not detect tail dependence. So, the current model used to 

calculate the regulatory capital is deficient because it may not identify conjunct extreme 

occurrences. 

To overcome this problem, this paper proposes the application of copulas to link 

distributions of latent variables and evaluate unexpected credit losses in financial 

institutions. 

Copulas are functions used to express several types of dependence (with or without tail 

association) between variables regardless of their distributions. Hence, the suggested 

approach relaxes the assumption of normality and is able to identify tail dependence. 

The latent variables are considered to be survival functions of the probabilities of default 

( PDs ), i.e., high PDs  indicate low values of latent variables and vice versa.  

While traditional credit risk models use percent values, the copula approach is based on 

percentiles (ranks) of the variables. Considering that portfolios/segments are taken for 

homogenous, the levels (percentiles) of the latent variables that imply default are equal 

for all loans. Then, for each pair of debtors, the copula will associate two equal variables 

(percentiles of latent variables) in extreme conditions and will return the likelihood of 

both percentiles being simultaneously below a specific level (percentile of the latent 

variable’s historical average in this case). This is equivalent to the probability of 

potential losses being above the rank of the average (expected) PD .  

The method implementation is relatively simple and, alike models derived from Merton’s 

approach (Merton, 1974), is based on the interpretation that default happens when the 
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latent variable falls below a cutoff value. The suggested method focuses on joint 

defaults which occur when the latent variables of loans become smaller than their limit 

percentile at the same time. Losses are unexpected (above the average) when such 

underlying variables drop even more and reach percentiles smaller than their average’s 

percentile among the values that indicate default. Thus, for a particular level of 

confidence, “high” unexpected losses will be estimated by a copula that gives the joint 

probability of the historical latent variable’s average being below an extreme percentile.  

In principle, a general approach is presented to derive formulas based on any copula 

found to be representative of loan portfolios. If large datasets on PDs  are available, 

precise models may be built according to the steps proposed in this study. 

An example is given for the case where PDs  are assumed to be right-tail associated 

and, consequently, the latent variables present left-tail dependence. For convenience, 

the relationship between the latent variables is represented by the Clayton Copula. 

Simulations reveal that, in most of the cases, when compared to Basel II, the alternative 

model yields better estimations of the effective losses in portfolios with tail-dependent 

probabilities of default (which is expected to be a property of most credit portfolios in the 

financial market – see some references in section 5.1).  

In around 73% of the scenarios, the copula-based approach outperformed Basel II for at 

least one of the three credit classes analysed (revolving consumer, mortgage, and 

“other retail”). On average, the new method was better for all three categories in 52% of 

the cases. The results were sensitive to the confidence specified and the shape of the 

loss distribution. Normally-distributed losses generated the worst estimations for the 

suggested model at the confidence level used while the other three distributions tested 

(exponential, beta, and gamma) resulted in an outperformance ratio of 75%. 

The remainder of the paper is organized as follows. Basel Accords are addressed in the 

next section. Then Copula Theory is discussed. Section 4 summarizes a general 

approach to derive formulas based on assumed or empirically found dependence 

between probabilities of default. In section 5, PDs  are presumed to be right-tail 

dependent (i.e. high losses are more associated) and a formula based on Clayton 

Copula is derived to estimate unexpected losses. Next, the results from the formula 
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presented in the prior section are compared to capital calculated by the Basel formula. 

Section 7 concludes. 

 

2. BASEL ACCORDS 

The Basel Accord from 1988 stipulated that the capital charge on assets was 8% of the 

risk weighted assets. But due to many drawbacks in this Accord (see De Servigny and 

Renault, 2004), new rules were issued in June 2004.  

The Basel II Accord is based on three “pillars”: minimum capital requirements, 

Supervisory Review, and market discipline. Banks are allowed to use Internal Ratings 

Based approaches (IRB) to calculate the capital required and to do so, institutions 

should group their assets into homogenous “buckets” (segments, classes) with respect 

to credit quality.  

However Basel II also has some limitations. It assumes normally distributed loans’ 

performances and uses the correlation coefficient that does not capture oscillations in 

dependence when the level of variables changes. Thus, this may lead to excessive 

capital required in good economic scenarios or scarce requirements in downturns. 

Basically, for each segment, the capital required to cover unexpected losses in credit 

portfolios is calculated as the unexpected losses adjusted by the portfolio maturity. 

In mathematical terms: 

 

MaturityPDKLGDMaturityPDLGDKLGD VV *)](*[*]**[   

where: 

LGD is the “loss given default”, i.e. the percentage of exposure the lender will lose if 
borrowers default;  
PD stands for probability of default; 

VK is the expected default rate at the 99.9% percentile of the PD  distribution (“Vasicek 

Formula”) - see formula ahead;  
Maturity  corresponds to the maturity of corporate loans and is added to the calculation 

in order to give higher weight to long-term credits which are known to be riskier. See 
formula ahead; 

VK is calculated by the formula: 














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
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being that: 

N represents the standard normal cumulative distribution; 
1N is the inverse of the standard normal cumulative distribution; 

PD , as before, is the probability of default of the loan portfolio (average); 

)(1 PDN   is used to derive the default threshold (i.e. the cutoff level of obligors’ assets 

below which default occurs); 

)999.0(1N , which is equal to )001.0(1 N , is the level of the economy chosen to 

represent an extreme scenario in which unexpected losses may occur. Therefore, the 
systematic factor is assumed to be normally distributed. Intuitively, this is the confidence 
level (99.9%) for the default rate; and 

Rho (  ) is the correlation between returns of obligors’ assets.   is the linear 

correlation between the unobserved systematic factor and those asset returns. In Basel 

II, the correlation between asset returns is calculated as a function of PD  and (in the 
case of corporate debt) the size of debtors (measured in terms of annual sales). For the 
sake of brevity, the formula and parameters used to estimate   will not be presented 

here. See BCBS (2005, 2006) for more details. 
 

Readers interested in the derivation of models that assume that correlation between 

defaults is driven by an unobserved factor, should consult, for instance, Schönbucher 

(2000), Perli and Nayda (2004), and Crook and Bellotti (2010). For details on Vasicek 

distribution ( VK ), see Vasicek (1991, 2002). 

In general, the term VK
 
follows the main presumptions of structural models (see, e.g., 

Gordy, 2003). Each latent variable ( iY ) is a linear function of an unobserved single 

factor (systematic risk, E ) and specific characteristics of the respective obligor 

(idiosyncratic risk, i ). The single factor is assumed to be standard normally distributed 

and equally impacts all obligors (same correlation  ) and the latent variables are 

considered equicorrelated (same   for all pairs) and also follow the standard normal 

distribution:  

  1ii EY  

 

The maturity is applied only to corporate debt and is given by: 

 

)(*5.11

)(*)5.2(1

PDb

PDbM
maturity




  

[ 3 ] 

[ 4 ] 
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M is the average maturity of the credit portfolio; and 
2))log(*5478.011852.0()( PDPDb    

 

Thus, in expression [1], VKLGD*  gives the total potential loss and PDLGD*  

represents the expected losses. The difference between them is therefore the 

unexpected losses.  

The proposed formulas in this study are limited to replace the term )( PDKV  , which 

expresses the unexpected default rate, and do not consider possible shortcomings in 

the computation of LGD and the maturity adjustment.  

 

3.  A BRIEF VIEW ON COPULAS 

Broadly speaking, copulas are functions that link marginal (individual) distributions of 

variables to their joint distributions.  

In usual notation: 

))(),((),( yGxFCyxH   

 

The univariate functions )(xF  and )(yG  transform the variables x  and y  into their 

correspondent percentiles (ranks, commonly represented by ""u  and ""v ), i.e. they 

become uniformly distributed on the interval (0,1). Such transformations are explained 

by the “Probability Integral Transformation” (PIT) which states that a random variable 

""X , with continuous cumulative distribution function XF , applied to its own function 

generates a uniform variable between 0 and 1. That is1, )(xFX  )1,0(U . 

Copulas give the probability that the percentiles of x  and y  are simultaneously below 

the specified percentiles u  and v . 

Notwithstanding it is also possible to use copulas in order to calculate the probability 

that percentiles will be jointly above a specific point. These are the so called Survival 

Copulas and have the form: 

))(),((ˆ),( yGxFCyxH   

                                                           
1
 The proof of PIT is given, for example, in Casella and Berger (2002, pp. 54-55). 

[ 6 ] 

[ 5 ] 
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where ),( yxH is the joint probability ),Pr( yYxX   and )(xF  and )(yG  are survival 

(or reliability) functions )(1)Pr( xFxX   and )(1)Pr( yGyY  , respectively. 

Whilst the linear correlation coefficient   is accurate only for spherically or elliptically 

distributed data2 (see Embrechts et al., 2002)3, copulas are suitable for any type of 

distribution since they are based on ranks. 

The shape of the dependence (e.g. lower/upper tail association, symmetry/asymmetry) 

is defined by the family (formula) of the copula. The strength of the dependence is 

measured by the copula parameter  . Many families of copulas are described in Joe 

(1997, chapter 5) and Nelsen (2006, chapter 4). 

The parameter   is closely related to rank correlations Kendall’s tau ( ) and 

Spearman’s rho ( S  ) and can be inferred from4: 

 
2]1,0[

1),(),(4 vudCvuC  

and 

3),(12
2]1,0[

  vuuvdCS  

 

4. USING COPULAS TO ESTIMATE UNEXPECTED CREDIT LOSSES: A GENERAL 

APPROACH  

4.1 Characterization of default in the copula approach 

Traditional approaches employed in the financial industry, such as CreditMetrics® and 

KMV®, incorporate the basic idea of structural models and assume that default happens 

when a latent variable (for example, the log-return of debtors’ assets) falls below a 

cutoff point. The probability of default ( PD ) is given by the area on the left side of the 

cutoff under the curve of the latent variable’s (Normal) distribution. In other words, it is 

                                                           
2
 For a technical concept of spherical and elliptical distributions, see item 3.3 of Embrechts et al. (2002). 

Intuitively, in the bivariate case, we can identify such distributions through their contour diagrams (graphs 
of level curves) which have spherical and elliptical shapes respectively. The Normal distribution is an 
example of this class. 
3
 This study appeared first in 1999 as a working paper. 

4
 The proofs are given in Nelsen (2006, chapter 5). 

[ 7 ] 

[ 8 ] 
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the likelihood of the latent variable (Y ) being smaller than that particular value (the 

threshold cy ) as shown in Figure 1. 

 

 

 

FIGURE 5.1 – Diagram representing default in structural models  

as the probability of a latent variable being below a cutoff value (area below cy ). 

 

In this alternative method, PD  is viewed in a portfolio perspective and is defined as the 

area below a cutoff in the joint distribution of latent variables relative to the loans that 

compose the portfolio. Here, such latent variables are supposed to have a 

symmetrically inverse relationship with the probability of default. This means that when 

PD  increases (decreases), the latent variable decreases (increases) at the same 

“degree”. The identical magnitude (“degree”) of the variables’ opposite movements will 

be expressed by their percentiles in their respective distributions. Hence high (low) 

levels of PDs  are associated with low (high) levels of the latent variables and when PD  

moves “p” percentiles in its distribution, Y  moves p percentiles in its respective 

distribution in the opposite direction. 

This symmetric inverse behaviour may be captured by representing each latent variable 

(Y ) as a survival function5 of PD , which implies that the percentile of the latent variable 

is equal to one minus the percentile of PD : 

 

)(1)()( pdFpdFyF   

 

                                                           
5
 The use of the subscribed “t” to indicate the time dependence in survival functions was relaxed. 

[ 9 ] 

yc 

Y 

PD = Prob[Y < yc] 
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Note that  )(yF  and  )(pdF   are cumulative distributions of Y  and  PD , respectively, 

and give which percentiles are represented by the points y  and pd . For instance, 

20.0)( yF  indicates that y  is the 20th percentile of F . 

According to [9], Y  may be interpreted as the probability of non-default and expresses 

the “quality” of debtors. This idea resembles the survival function used by Li (2000) to 

define the likelihood that a security will reach a specific age. The higher this probability, 

the higher the asset quality. 

Since we are using percentiles of the variables Y  and PD , )(yF  and )(pdF  

respectively, Copula Theory may be applied and the resultant calculations are suitable 

for any kind of loss distribution.  

Like in the Basel approach, the capital needed to cover unexpected losses will be 

separately determined for each segment considered homogeneous in terms of credit 

quality. This means that PD  is presumed identical for all loans in each segment and 

)(pdF  values are also equal. Therefore, the average Y  is the same for every debtor 

within the segment and so is )(yF . This is true regardless of the number of debtors. 

The estimation of unexpected losses depends on an average point considering only the 

occurrences below the latent variable’s cutoff. Figure 2 – Panel A is a level curve of the 

joint cumulative distribution of the latent variables and represents the distinction 

between expected and unexpected losses in this context. When the percentile of each 

latent variable Y , )(yF , in a homogeneous portfolio falls below the percentile of the 

cutoff )( cyF , obligors default at the same time. The losses are considered expected 

(area EL in Figure 2 – Panel A) while each )(yF  keeps falling from )( cyF  until )( AyF , 

which represents the percentile of the average of historical values of the latent variable 

Y  in scenarios of default. On the other hand, when the latent variable becomes smaller 

than that average (area UL in Figure 2 – Panel A), the losses are unexpected (meaning 

that the obligors’ conditions – whose proxy is the latent variable – got worse than usual). 

Given that the latent variables and the losses for each loan have inversely symmetric 

percentiles, )(1)( pdFyF  , the joint function ),( AA yyH  is equivalent to the area 

above the percentiles of the average probability of default in a complete PD  distribution 
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EL 

UL 

0 

UL 
Joint  
probability = 0 

Joint 
probability = 0 

Y 

Y 

PD 

PD 

( )( ApdF  in Figure 2 – panel B), i.e. a distribution that includes non-default status. Thus, 

both areas UL in Panels A and B of Figure 2 are equal to each other and indicate 

unexpected losses.  

 

 

 

 

 

 

 

 

   

 

 

 

 

FIGURE 2 – Contour plots of cumulative distributions representing expected losses (EL), 
unexpected losses (UL), and non-default (ND) in a copula context (for homogenous portfolios). 
In Panel A, default at the portfolio level happens if the percentiles of the latent variable, F(y), of 

both loans fall below a specific point, F(yc); when each F(y) is smaller than F(yc) but greater than 
F(yA), the losses are expected; and when those percentiles drop below the point that indicates 
average default, F(yA), the losses are unexpected. Panel B shows ND, EL, and UL under the 
perspective of the probability of default which are equal to the equivalent areas in Panel A: 
F(pdc) =1-F(yc) and F(pdA)  =1- F(yA) are, respectively, the percentiles of PD above which 

default and unexpected losses happen. Since the focus is on percentiles, both panels are valid 

regardless of the PD  distribution’s family. 

 

What we should estimate is the likelihood of the joint probability of default for two 

obligors being above its average. Recalling the concept of Survival Copulas in [6] and 

that each debtor has the same PD , we have: 

 

))(1),(1(ˆ))(),((ˆ),( AAAAAA pdFpdFCpdFpdFCpdpdH   

 

(Panel A) (Panel B) 

F(yA) F(yc) 

 

F(yA) 

F(yc) 

ND 

ND 

EL 

UL 

F(pdA) 

F(pdA) 

F(pdc) 

F(pdc) 

0 

[ 10 ] 
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In the prior formula, Apd  stands for the average of the historical probability of default 

and the notation H  refers to a joint survival function. The expression gives the 

probability of both PDs  being above the historical average Apd  at the same time. The 

Survival Copula Ĉ  links the two univariate survival functions of )(1)( AA pdFpdF    to 

the bivariate function.   

Now, applying the definition introduced in [9] to the average PD , we have 

)(1)( AA pdFyF   and [10] becomes:  

 

),())(),((ˆ),( AAAAAA yyHyFyFCpdpdH   

 

where Apd  and Ay  are the historical average of PD  and of the latent variable, 

respectively; for homogenous pools of borrowers i  and j , such that PDPDPD ji   

and YYY ji  , Ĉ  is a copula that returns ),Pr( AA pdPDpdPD   = ),Pr( AA yYyY   

the probability of both PDs  (latent variables) being above (below) their observed 

average up to the moment or, in other words, the probability of unexpected losses.  

 

4.2 Finding the percentiles of the latent variable 

To apply this copula model we need the whole distribution of the latent variable so that 

we can calculate the percentile of Y  associated with the point of historical average loss, 

)( AyF . Given a group of obligors in default, the percentile of the cutoff )( cyF  would be 

obviously 1 and any area calculated under this circumstance, would return the likelihood 

of PD  being below or above a point and not the PD  itself. 

Based on Figure 2 – Panel A, we see that to find the unexpected losses (UL) we would 

need to know the percentile )( AyF  in the complete distribution of Y  (i.e. including non-

default status, ND). However, in principle, we do not have enough information to find 

that value. Otherwise, we could use )( cyF  to calculate the total losses (EL + UL) and 

subtract EL, which is known (the average PD  of the portfolio). But, again, we cannot 

find )( cyF  using solely the information available so far.  

[ 11 ] 
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One way to start solving this problem is considering a relationship between )( AyF  and 

)( cyF . Figure 3 – Panel A illustrates the density defaultf  of a latent variable  Y   that 

includes only default cases (i.e. all observations have values below the cutoff that 

indicates default). defaultF  is the correspondent cumulative distribution and )( A

default yF  is 

the percentile of the average latent variable in that distribution. The latter can be 

calculated from datasets of PDs  taken over several periods by finding the percentile of 

the average PD  and applying [9]: )(1)( A

default

A

default pdFyF  . The cutoff cy  is the 

largest value in that density function, so 1)( c

default yF . 

The distribution of the latent variable becomes complete if we add the non-default cases 

(when the latent variable is higher than the cutoff value) like in Figure 3 – Panel B.  The 

complete distribution F  is not observable and may have any shape.   

As an example, consider that the latent variables represent borrowers’ asset returns. 

For the sake of simplicity, the debt of all obligors will be assumed equal but this 

presumption can be easily relaxed if we work with the percentage of asset returns over 

the (different) liability of each obligor. If debts are equal to 100 monetary units, 100cy
 

and default happens when 100Y . Assume also that among all obligors that failed their 

payments, the average asset return ( Ay ) was 75 monetary units. 

We cannot observe Y  or its distribution but we know that its percentile is equal to one 

minus the percentile of the associated PD  in the PD  distribution. So, if expected losses 

(average PD  = Apd ) are, for instance, 5% and this value is the 60th percentile in its 

distribution restricted to default cases, according to [9], the percentile of Ay  in the latent 

variable’s distribution, )( A

default yF , will be 40.060.01)(1  A

default pdF . This reasoning 

also works for the complete unobservable distribution F . 

Regardless of the size of the non-default area (ND) in Figure 3 – Panel B, Ay  and cy  

are the same in both distributions ( F  and 
defaultF ) and their percentiles indicate the 

proportion of data occurrences below those specific points. )( A

default yF , for instance, 
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Ay  cy  

Ay  

Ay  

Ay  

cy  

Ay  

gives the number of Y  observations in distribution defaultF  below Ay , 
default

An , divided by 

the total observations, 
defaultn . Thus, 

default

c

default

defaultdefault

c

defaultdefault

c
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A
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n

n

nn
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yF
AA 

/

/

)(

)(
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FIGURE 3 – Density function of the latent variable (Y ). The shapes are merely illustrative. 
Panel A displays only the cases where losses happened whilst Panel B includes levels of Y  

that did not result in default (above the cutoff cy ). The percentile of each )( A

default

A yFy   is 

equal to one minus the percentile of the average PD , which can be inferred from datasets. 

1)( c

default yF . UL, EL, and ND represent unexpected losses, expected losses, and non-

default, in that order. )( AyF
 
and )( cyF are, respectively, the percentiles of the latent variable 

related to the historical average losses and to the cutoff value below which defaults happen.  

 

Regarding F , let An , cn , and n  denote, respectively, the number of observations below 

Ay , below cy , and in the complete distribution. Following the reasoning in the prior 

paragraph: 
c

A

c

A

c

A

n

n

nn

nn

yF

yF


/

/

)(

)(
.  

Since no data is included below cy  when the non-default area (ND) is added to 
defaultF  

in order to generate the entire distribution F , A

default

A nn   and c

default

c nn  .  Therefore, 

(Panel A) (Panel B) 

Probability of 
individual losses 
being below the 

average 

EL = F(yc) – F(yA)  

Probability of individual 
losses being above the 

average = )( A

default yF  

UL = F(yA) 

Y
 

Y  

Complete density function f  of 

the latent variable (Y) 

Density function 
defaultf  of the latent  

variable (Y) only for default cases 

ND 
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)(

)(

)(

)(

c

A

c

default

A

default

yF

yF

yF

yF
 . As stated before, 1)( c

default yF , thus
 

)( cyF  is always equal to 

)(/)( A

default

A yFyF .   

From Figure 2 – Panel A that represents homogenous segments/portfolios (same PD  

for all loans), it is easy to see that the joint area below cy  minus the joint area below 
Ay  

is equal to the expected probability of default (EL). In copula terms, 

 

 ))(),((ˆ))(),((ˆ AAcc yFyFCyFyFC  

PDyFyFCyFyFyFyFC AAA

default

AA

default

A  ))(),((ˆ))(/)(),(/)((ˆ  

 

where )( AyF , the percentile of the historical average latent variable, is the only 

unknown variable, )(/)()( A

default

Ac yFyFyF  , )( A

default yF  is the percentile of the 

historical average of  Y  in the distribution restricted to cyY  , and PD  expresses the 

expected (average) probability of default (EL). The notation Ĉ  (from [11] and based on 

Nelsen, 2006) was kept to indicate that we are dealing with a survival copula from a PD  

standpoint. The existence of a closed-form solution to calculate )( AyF  will depend on 

the copula chosen or empirically found to represent the association between the latent 

variables of the loans. 

After )( AyF  is estimated, the joint distribution ),( AA yyH  may be calculated as the 

copula ))(),((ˆ AA yFyFC  and will express the mean unexpected losses in a particular 

period (the sum of percent losses above the average in a period divided by the number 

of unit times considered – months, for instance).  

However, in bank regulation, the major concern is the maximum potential loss. In this 

copula-based method, the risk of severe unexpected losses comes from possible 

oscillations in the percentile of the past average (= expected) latent variable, i.e. 

changes in )( AyF  that may reach extreme values in spite of Ay  being constant. The 

augment of that percentile is interpreted as a response to the deterioration of the 

economic status.  

[12] 
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This situation can be depicted with the support of Figure 3 – Panel B. In downturns, 

latent variables smaller than Ay  tend to appear more frequently. In these 

circumstances, the percentage of non-default (ND) drops and, as the expected losses 

(EL) stay unaltered, the unexpected losses (UL) rise. Therefore the ratio UL/EL goes up 

and so does )( AyF . It is worth noting that Ay  remains steady and each new AyY   

makes Ay  “move” to the right side at the density representation and get closer to cy . 

The risk is “how far” Ay  can go, i.e. how close to )( cyF  )( AyF  can get.  

In order to estimate this potential increment of )( AyF , we should find an extreme 

percentile of the average latent variable in the distribution resultant from the inclusion of 

smaller latent variables, )( A

EXT yF , as illustrated in Figure 4 that follows the intuition of 

Figure 3. The confidence required will express the ratio UL/EL and may be understood 

as a measure of the economy’s degradation. In this fashion, when confidence equals 

100%, all losses are unexpected. Conversely, when it approaches zero (upturns), small 

unexpected losses are supposed to happen. So, like in Basel II and factor models, the 

latent variables of loans are driven by the (unobserved) economic status. Here, the 

latter is captured by the oscillation of the former which, in turn, are inferred from 

available data on probabilities of default. 

Using the example mentioned earlier, in which the latent variable is interpreted as 

obligors’ asset returns, Ay  is still 75 (the historical average) but due to the severe 

economical conditions, asset returns lower than that value are included in the 

distribution and the percentile of Ay  increases, i.e. )()( AA

EXT yFyF  .  

The copula calculated for the extreme percentiles of Ay  will give the maximum 

unexpected loss with the confidence demanded which defines the location of the 

average latent variable in the new distribution 
EXTF . Following the same reasoning in 

[12], we can find the extreme percentile for each loan, )( A

EXT yF , doing: 

 

PDyFyFCconfidenceyFconfidenceyFC A

EXT

A

EXT

A

EXT

A

EXT  ))(),((ˆ)/)(,/)((ˆ  

 

[13] 
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EL = )( c

EXT yF – )( A

EXT yF  

PD  is the average probability of default (EL),
 

confidenceyFyF A

EXT

c

EXT /)()(   and 

confidence (0,1] establishes the percentile of the average latent variable for each 

obligor in an adverse economic scenario.  

The final formula is intended to replace the term )( PDKV   in [1]. Thus, the capital to 

cover unexpected losses will be: 

MaturityyFyFCLGD A

EXT

A

EXT *))](),((ˆ*[  

 

 

 

 

 

 

 

FIGURE 4 – Density function of the latent variable (Y ) depicting a situation where the average 

of the historical latent variable ( Ay ) reaches an extreme percentile in an unfavourable scenario. 

The shapes are merely illustrative. In Panel A, the area below the extreme percentile of each 

loan, )(_

A

EXTdefault yF , is the model confidence, i.e., the probability that AyY   in 
EXTdefaultf _

. 

The percentile of the cutoff value of the latent variable below which default occurs is equal to 

one, 1)(_ c

EXTdefault yF . In Panel B, values of Y  above cy  (non-default status) are included in 

the density function. UL, EL, and ND stand for unexpected losses, expected losses, and non-

default, respectively. UL is given by )( A

EXT yF  which is associated with )( c

EXT yF  as 

confidenceyFyFyFyF A

EXT

A

EXTdefault

A

EXT

c

EXT /)()(/)()( _  .   

 

 

4.3 Defining the copula to be used  

If large datasets on probabilities of default are available, the dependence across pairs of 

latent variables may be found through the estimation of the best copula for "1" PD . 

UL = )( A

EXT yF  

(Panel A) (Panel B) 

Y
 

Y  

Complete density function 
EXTf  

of the latent variable (Y) in 
adverse scenarios 

Density function 
EXTdefaultf _

 of the 

latent variable (Y) in adverse 

scenarios only for default cases 

ND 

Ay  

Ay  

Ay  

Ay  

cy

 

Ay

 

confidence = )(_

A

EXTdefault yF = 

Prob [Y < yA] 

cy

 

Ay

 

[14] 
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Therefore it is not necessary estimating the best copula that expresses the dependence 

between PDs . What matters is the copula that will represent the dependence across 

the latent variables (which may be interpreted as returns of debtors’ assets or “time until 

default”, for instance). To estimate such dependence it suffices to have a series of PDs  

from a “homogeneous” credit segment/portfolio. 

Durrleman et al. (2000) and Cherubini et al. (2004, chapter 5) present some methods 

that can be used to empirically find the parameter, for each copula family, with the best 

fit to a dataset. A practical way to find the copula’s parameter is estimating it from the 

kendall’s tau of PD1  (by using [7]6) which is the same kendall’s tau for PDs  (which 

are observable). 

Berg (2009) and Genest et al. (2009) describe some goodness-of-fit tests that allow us 

to decide which copula (considering the estimated parameters) gives the best 

expression of the dependence related to the variables analysed.  

The use of empirically-found copulas gives more realistic results because the probability 

of unexpected losses and the dependence between the variables come from “real” data 

( PDs ).  

Following, an example shows the application of the model if we assume that high PDs  

are more linked. 

 

5. MODEL APPLICATION: AN EXAMPLE FOR RIGHT-TAIL-DEPENDENT LOSSES 

5.1 Assumptions 

Mandelbrot (1963) and Fama (1965) showed that asset returns in general are not 

normally distributed and therefore are more subject to extreme events than returns 

estimated by models based on assumptions of normality. Since then many empirical 

studies confirmed this behaviour for several classes of investments, including loan 

portfolios (Rosenberg and Schuermann, 2006). 

Moreover, it has also been found that returns are more correlated in the left tail (i.e. 

when investments result in losses or lower returns). See Ang and Bekaert (2002), 

                                                           
6
 Alternatively, [8] can be used to estimate the copula parameter as a function of Spearman’s rho (

S ). In 

the simulations run for this study, the results usually matched up to the second decimal place. 
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Patton (2006) and Ning (2006) who cites many other studies that reach this same 

conclusion. 

According to Di Clemente and Romano (2004) and Das and Geng (2006), amongst 

others, returns of credit assets also present asymmetric (tail) dependence.  

Based on this, it is assumed in this section that PDs  (probabilities of default, credit 

losses) have upper tail dependence (which means that high PDs  are more correlated 

than the other levels or, in other words, large losses of different obligors tend to be more 

associated whereas small losses are not very linked). This relationship can be 

represented by copulas such as Gumbel, Joe, Galambos, and Hüsler-Reiss. The 

Gumbel was chosen because, among those copulas cited, it has been more studied 

and its properties are better known.  

The scatter plot of a Gumbel-dependent random variable ""X  ( )10  X  looks like 

Figure 5. Consequently, the plot of the symmetrically inverse variable "1" X  will be like 

Figure 6. 

 

 

FIGURE 5 – Two random variables with Gumbel dependence (upper tail dependence). 
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Those figures are suitable for representing the dependence between PD  of loans and 

their latent variable Y  respectively, such that )(1)( pdFyF   as defined in [9].  

The Clayton Copula is a good representation for the second type of dependence 

(between latent variables) that indicates lower tail association. This relationship could 

be expressed by other copulas that express lower tail dependence (Raftery, for 

instance) but the Clayton Copula was chosen because it has been more studied and its 

formula is more tractable than the other alternatives.  

 

 

FIGURE 6 – Two random variables with lower tail dependence. 

 

5.2 The formula  

We are interested in calculating the joint probability of the latent variable’s historical 

average being below the percentile of an extreme point that indicates joint unexpected 

losses in adverse scenarios. To do so, we should estimate the copula 

))(),((ˆ A

EXT

A

EXT yFyFC  where )( A

EXT yF  is the percentile of the historical average latent 

variable of individual loans at an extreme location and refers to the confidence 

demanded.  
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Recall that both variables EXTy  used to calculate the probability are equal to each other 

because the segment/portfolio is assumed to be homogenous, so the percentile of the 

average Y  in the extreme distribution (= )( A

EXT yF ) is the same for all loans. 

Consequently, the extreme percentile of PD (= )( A

EXT pdF ) is also the same for all loans. 

Ĉ  is assumed to be a Clayton Copula to detect the supposed lower tail dependence of 

the latent variables: they are more related in downturns when their levels are lower. 

For this particular case, the Clayton Copula with parameter  is: 

 

 /1/1 ]1)(*2[]1)()([))(),((ˆ   A

EXT

A

EXT

A

EXT

A

EXT

A

EXT yFyFyFyFyFC  

 

This formula gives the probability of the latent variable being jointly smaller than its 

historical average when the latter reaches an unusually high percentile, )( A

EXT yF , in 

the respective distribution. This corresponds to the likelihood of losses being 

simultaneously above an extreme point and the expression above substitutes 

)( PDKV   in [1]. Therefore the capital to cover unexpected losses is:  

 

MaturityyFLGD A

EXT *)]]1)(*2(*[ /1     

 

where LGD and Maturity  are defined as in [1], )( A

EXT yF  is the extreme percentile of 

the average latent variable calculated in [13] according to the confidence required, and 

  is the parameter of the Clayton Copula, estimated from the rank correlation (Kendall’s 

tau or Spearman’s rho) of PD (following [7] and [8], respectively). 

 

5.3 Additional comments on this alternative model 

A prior use of copulas in order to suggest some improvements to Basel II was 

registered in Benvegnù et al. (2006). The main purpose was to capture diversification 

effects, since the Basel II determines the simple addition of all capital requirements for 

segments without taking correlations into account. Their analysis was focused on 

[ 15 ] 

[ 16 ] 
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corporate loans and concluded that the copula approach reduces the capital required by 

10 to 30%.  

However, “to be in line with the model used in the Basel II credit framework and the 

major industry models” (p. 497), the authors assumed that the loans have Vasicek 

distributions, the underlying factors that drive credit losses were joint normally 

distributed, and the dependence between them was also normal (Gaussian Copula). 

Such assumptions restricted the identification of joint extreme occurrences. 

Here, the relation between the latent variables is assumed to be satisfactorily 

represented by the Clayton Copula in order to find their lower tail dependence (i.e. lower 

levels of latent variables, which lead to defaults, are more correlated in lower economic 

levels).  

In short words, although copulas enable us to capture the diversification effects among 

different segments (which tend to reduce the capital necessary to cover unexpected 

losses, as in Benvegnù et al., 2006) some of their families identify higher level of 

dependence at the extremes (which may increase the capital needed). Thus, due to the 

assumption of tail dependence, the proposed formula in this paper is more conservative 

and it is aligned with regulators’ point of view (and practitioners who want to guarantee 

adequate capital to cover losses in severe scenarios). 

It could be said that if “real” data do not present intense tail dependence, the capital 

calculated by [16] will be excessive. But even if there are chances of overestimation, 

regulators and/or institutions that adopt this approach may reduce the confidence of the 

extreme average latent variable used as an input in the formula. 

Also, the current Basel Accord assumes an unrealistic distribution for the variables 

involved and measures the dependence between them by using the linear correlation 

coefficient which does not capture tail dependence.  

Furthermore, the copula-based approach has other advantages: it may be used for 

negatively correlated losses (provided that the rank correlation is positive) while Basel 

II’s model does not admit negative correlation; and it does not assume any specific type 

of distribution for credit losses, the latent variable, and the unobserved economic factor. 
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6. SIMULATIONS AND RESULTS FOR REQUIRED CAPITAL 

Simulations were used to test the efficiency of the alternative model. The capital 

required according to Basel method was computed for three types of consumer loans 

(to which the maturity adjustment is not applied)7: revolving credit, mortgage, and “other 

retail”. For simplicity, LGD was assumed equal to 100% (i.e. the Recovery Rate is 0%). 

The simulations were controlled for three variables, PD  (15 rates between 1% and 

15%, inclusive), PD  dependence expressed by the Gumbel Copula’s parameter8 (11 

values from 1.05 to 2), and the shape of 'PDs distributions (Normal/Gaussian, 

Exponential, Beta, and Gamma) which totalized 660 scenarios. Apart from the case of 

normal PDs , the other three distributions were simulated in such way that their 

parameters resulted in the mean ( PD ) chosen and in distributions skewed to the right 

indicating asymmetric high losses (following Kalyvas et al., 2006 who stated that credit 

losses present distributions skewed to the right). 

Note that the selection of Gumbel Copula implies the existence of upper-tail 

dependence for losses. The higher the parameter, the higher that dependence. The 

confidence9 of the proposed model was set at 0.90. Each scenario contained 1,000 

observations (equivalent to 1,000 periods) and was run 1,000 times to minimize 

possible randomness effects on results10. 

To calculate the “true” joint unexpected losses, two “correlated” variables (probabilities 

of default = PDs ) were simulated with the same features (mean, distribution’s family, 

and its parameters) since the segment or portfolio in terms of calculation of capital is 

assumed to be homogenous. Such pair of variables represents all pairs of dependent 

loans (all pairs have the same dependence) in the simulation criteria. Then it was 

checked the maximum loss when the variables were simultaneously above the mean 

(average PD ). 

                                                           
7
 These simulations can be run for corporate debt as well but some scenarios for the maturity adjustment 

should be also defined.  
8
 The smallest value allowed for the Gumbel parameter is 1 (which represents independence). 

9
 Other confidence levels were tested (not displayed here) but yielded lower ratios of outperformance over 

Basel II, mainly due to overestimations of the copula-based method. 
10

 The results presented in Table 2 are the averages of each variable simulated. Furthermore, the codes 
for data generation include some commands to guarantee that the loss dependence’s parameters are 
close enough to the stated values (divergence no greater than 0.01). 
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The performance of the models was measured according to the magnitude of the ratio 

between the “true” maximum unexpected losses and the capital estimated without 

taking into account if the capital was excessive or insufficient to cover the losses. Thus, 

for instance, if the real maximum unexpected losses were 20%, one particular method 

resulted in 25% and other method estimated 16%, the latter was considered better 

because the magnitude of its divergence (= 1 - (0.16/0.20) = 0.20 deficient) was less 

than the difference generated by the former model (= (0.25/0.20) - 1 = 0.25 in excess). 

Considering all 660 scenarios, Basel estimations for the three categories of consumer 

loans were concurrently better than the alternative model’s results in 26.52% of the 

cases. On the other hand, the copula approach was more efficient than traditional 

calculations for the three (at least one of the) consumer credit classes in 33.79% 

(73.48%) of the cases. However these ratios rise to 45.05% (92.32%) if the normally 

distributed losses are excluded. Therefore the performance of the copula-based method 

was directly related to the shape of the marginal loss distributions. 

Table 1 – Panel A presents the proportions of the alternative method’s outperformance 

tabulated according to loss distributions. The forecasts pertaining to exponential 

(normal) losses presented the best (worst) results. However, it was noticed in other 

simulations (not displayed here) that the results for normal PDs  could be improved if 

lower levels of confidence were employed.  

As for the classes of loans, revolving credit and “other retail” had superior performance: 

they were better than Basel II in around 68% and 66% of the scenarios, respectively 

(these figures go up to 90% and 87% if normal losses are not taken into account). The 

formula for mortgage was more accurate because the correlation for this group is, in 

general, higher and this avoided excessive underestimation in some circumstances. 

So, if the assumptions followed to generate the scenarios are valid for “real” portfolios, 

the alternative approach is liable to outperform Basel II especially for revolving credit 

and “other retail” whose losses are not normally distributed.  

A special warning about Basel results is the high percentage of underestimated 

maximum potential losses: 85% with respect to revolving credit and “other retail” and 

61% in mortgage portfolios. Typically, this drawback happened for non-normal losses. 
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As an additional analysis to get results closer to what financial institutions might 

experience in practice, the comparison was limited to levels of dependence of PDs  that 

are likely more representative of empirical credit portfolios. The proxy for the 

dependence of “real” consumer loans is based on the results of the empirical studies 

that supported Basel II Accord and found that retail credit’s (linear) correlation varies 

from11 0.03 to 0.16. The outperformance proportion of the alternative model with regard 

to portfolios correlated in that restricted range is displayed in Table 1 – Panel B. 

On average, the alternative approach yielded worse results for portfolios less correlated 

(Panel B compared to Panel A). This result is explained by the fact that the main benefit 

of using the Clayton Copula method is the identification of left tail dependence and the 

consequent higher number of joint occurrences in the extreme left side of the latent 

variable’s distribution (or, equivalently, in the right tail of the loss distribution). Since 

loans presenting lower correlation (as those in Panel B of Table 1) also have lower tail 

dependence, the poorer performance of the suggested model in these cases was 

expected. 

 

TABLE 1 – Proportion of outperformance of the alternative method over Basel II 
estimations for consumer loans 

Loss 
distribution 

Revolving 
credit 

Mortgage “Other 
retail” 

Three 
classes 

At least one 
class 

Panel A: All scenarios simulated 

Normal 0.00% 16.97% 3.64% 0.00% 16.97% 
Exponential 100.00% 84.85% 90.91% 78.79% 100.00% 
Beta 96.36% 38.79% 95.15% 38.79% 98.79% 
Gamma 73.94% 17.58% 74.55% 17.58% 78.18% 

Average 67.58% 39.55% 66.06% 33.79% 73.48% 

Panel B: Scenarios with correlation lower than or equal to 0.16 

Normal 0.00% 43.33% 10.00% 0.00% 43.33% 
Exponential 100.00% 93.33% 100.00% 93.33% 100.00% 
Beta 86.67% 33.33% 73.33% 33.33% 86.67% 
Gamma 66.67% 33.33% 53.33% 26.67% 66.67% 

Average 50.67% 49.33% 49.33% 30.67% 68.00% 

 

                                                           
11

 The correlations adopted by Basel II model are: 0.04 for revolving credit, 0.15 for mortgages and from 

0.03 to 0.16 (as a decreasing function of PD ) for “other retail credit”.  
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Table 2 shows some examples12 of capital estimated using the copula technique and 

Basel II for consumer portfolios with correlation compatible with empirical tests run by 

the Basel Committee on Banking Supervision (BCBS) – see the fourth column. The best 

approximations for the maximum unexpected losses observed in the simulated 

portfolios are highlighted in boldface. 

If regulators and/or practitioners wish to set particular dependence values for each type 

of loans instead of calculating them directly from every single portfolio, the copula model 

may still be used successfully through the definition of a copula parameter for each 

credit category (which may be inferred from rank correlations between losses by 

utilizing [7] or [8]). 

 

7. FINAL COMMENTS 

Due to the assumptions of normally distributed variables and the use of a linear 

measure of dependence (correlation coefficient), Basel II is not able to identify extreme 

events accurately. Therefore, the capital demanded to cover unexpected losses may be 

misestimated. 

The main contribution of this paper is considering potential tail dependence between 

related variables to calculate the probability of credit losses in adverse situations. By 

capturing joint extreme events more precisely without assuming any particular type of 

loss distribution, the alternative model improves the accuracy of estimations related to 

simultaneous large losses which usually happen in downturns. 

The formulas proposed can be easily implemented and are intended to replace the term 

in Basel II referent to the subtraction of the extreme default rate ( VK ) by PD (see [1] 

and [2]). Nevertheless, some basic assumptions of Basel II approach are kept, namely: 

the homogeneity of segments/portfolios and the fact that defaults are driven by latent 

variables which are impacted by an unobserved (economic) factor. Also, possible pitfalls 

related to the calculation of the loss given default ( LGD) and the maturity adjustment 

are not investigated.  

                                                           
12

 Among the 15 PDs  simulated, seven were selected: 0.01, 0.03, 0.05, 0.07, 0.10, 0.12, and 0.15. 
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TABLE 2 – Comparison between capital calculated by Basel Model and the alternative formula for some of the simulated 
credit portfolios (with linear correlation between 0.03 and 0.16, inclusive)* 

PD PD 
dependence 

(Gumbel ) 

Latent 
variable 

dependence 

(Clayton ) 

Linear 
correlation 

“True” 
maximum 

unexpected 
losses 

Alternative 
required 
capital 

Capital 
required 
Basel II 

(revolving) 

Capital 
required 
Basel II 

(mortgage) 

Capital 
required  
Basel II 

(“other retail”) 

Panel A : Normal distribution 

0.01 1.05 0.0997 0.0770 0.0132 0.0494 0.0306 0.1003 0.0814 
0.01 1.10 0.1999 0.1472 0.0141 0.0555 0.0306 0.1003 0.0814 
0.03 1.05 0.1010 0.0787 0.0396 0.1411 0.0687 0.1991 0.1116 
0.03 1.10 0.2005 0.1475 0.0425 0.1529 0.0687 0.1991 0.1116 
0.05 1.05 0.1003 0.0783 0.0670 0.2293 0.0973 0.2635 0.1181 
0.05 1.10 0.2003 0.1475 0.0701 0.2440 0.0973 0.2635 0.1181 
0.07 1.05 0.1029 0.0798 0.0927 0.3162 0.1207 0.3111 0.1231 
0.07 1.10 0.2011 0.1473 0.0993 0.3317 0.1207 0.3111 0.1231 
0.10 1.05 0.1037 0.0805 0.1320 0.4436 0.1491 0.3634 0.1343 
0.10 1.10 0.2024 0.1488 0.1406 0.4586 0.1491 0.3634 0.1343 
0.12 1.05 0.1038 0.0803 0.1589 0.5273 0.1649 0.3895 0.1434 
0.12 1.10 0.2013 0.1479 0.1693 0.5407 0.1649 0.3895 0.1434 
0.15 1.05 0.1023 0.0795 0.1996 0.6512 0.1847 0.4191 0.1575 
0.15 1.10 0.1998 0.1469 0.2115 0.6614 0.1847 0.4191 0.1575 

Panel B: Exponential distribution 

0.01 1.05 0.1033 0.1012 0.0469 0.0496 0.0306 0.1003 0.0814 
0.03 1.05 0.1017 0.1001 0.1446 0.1412 0.0687 0.1991 0.1116 
0.05 1.05 0.1006 0.0971 0.2366 0.2293 0.0973 0.2635 0.1181 
0.07 1.05 0.1012 0.1014 0.3346 0.3158 0.1206 0.3111 0.1231 
0.10 1.05 0.1039 0.1010 0.4808 0.4438 0.1492 0.3634 0.1343 
0.12 1.05 0.0984 0.0973 0.5706 0.5264 0.1649 0.3895 0.1434 
0.15 1.05 0.1046 0.0991 0.7012 0.6513 0.1847 0.4191 0.1575 

(continued on next page) 
(*) The maximum unexpected losses observed and the best estimation for each scenario are highlighted.  
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TABLE 2 (continued) – Comparison between capital calculated by Basel Model and the alternative formula for some of the 
simulated credit portfolios (with linear correlation between 0.03 and 0.16, inclusive)* 

PD PD 
dependence 

(Gumbel ) 

Latent 
variable 

dependence 

(Clayton ) 

Linear 
correlation 

“True” 
unexpected 

losses 

Alternative 
required 
capital 

Capital 
required 
Basel II 

(revolving) 

Capital 
required 
Basel II 

(mortgage) 

Capital 
required  
Basel II 

(“other retail”) 

Panel C: Beta distribution 

0.01 1.05 0.1024 0.1040 0.2136 0.0496 0.0306 0.1003 0.0814 
0.03 1.05 0.1043 0.1029 0.2813 0.1416 0.0688 0.1991 0.1116 
0.05 1.05 0.1040 0.1003 0.3149 0.2298 0.0973 0.2635 0.1181 
0.07 1.05 0.1029 0.0972 0.3344 0.3163 0.1207 0.3111 0.1231 
0.10 1.05 0.1010 0.0947 0.3574 0.4432 0.1491 0.3634 0.1343 
0.12 1.05 0.1040 0.0940 0.3717 0.5272 0.1649 0.3895 0.1434 
0.15 1.05 0.1024 0.0917 0.3817 0.6511 0.1847 0.4191 0.1575 

Panel D: Gamma distribution 

0.01 1.05 0.1015 0.1056 0.1494 0.0495 0.0306 0.1003 0.0814 
0.03 1.05 0.1026 0.1034 0.2027 0.1413 0.0688 0.1991 0.1116 
0.05 1.05 0.1025 0.0983 0.2336 0.2296 0.0973 0.2635 0.1181 
0.07 1.05 0.1050 0.0993 0.2654 0.3164 0.1206 0.3111 0.1231 
0.10 1.05 0.1012 0.0957 0.2980 0.4433 0.1492 0.3634 0.1343 
0.12 1.05 0.1041 0.0955 0.3126 0.5274 0.1649 0.3895 0.1434 
0.15 1.05 0.0985 0.0907 0.3383 0.6508 0.1847 0.4191 0.1575 

(*) The maximum unexpected losses observed and the best estimation for each scenario are highlighted.  
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Simulations of right-tail-dependent losses that controlled for several levels of PDs , 

their dependencies and marginal distributions confirmed the superiority of the 

suggested method when losses are not normally distributed. Hence, given that the 

literature has presented some evidence that credit losses do not follow the normal 

distribution and have tail dependence, the copula-based model is likely to outperform 

the current method in many (or most) of the loan portfolios held by financial 

institutions. 

Even if the dependence structure adopted in the exemplary model (Clayton Copula) 

is considered too rigorous, it still can be used without major concerns if the 

confidence is reduced. 

Naturally, the higher performance of the alternative model shown for some scenarios 

in section 6 is valid only if losses have upper-tail dependence. The next step to 

consolidate the application of this approach is the empirical search for the copula 

family and respective parameter(s) that best represent the relationship between 

latent variables (which may result in different families and parameters for distinct 

classes of credit, such as corporate, mortgage, revolving, and so on).  

Another promissory extension of this study is the use of Copula Theory to evaluate 

another component in the Basel formula: the loss given default ( LGD). 
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