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1. Introduction

In ‘‘Grand challenges for decision support” Sittig et al. [51] set
out 10 critical problems for ‘‘designing, developing, presenting,
implementing, evaluating, and maintaining all types of clinical
decision support capabilities for clinicians, patients and consum-
ers”. Sittig et al.’s identification and prioritization of obstacles to
the successful development and deployment of clinical decision
support (CDS) technology drew on the experience of the authors
and a number of consultants who are recognised leaders in the field.
Their top 10 challenges include many that others in the field would
strongly agree with; indeed they were identified and prioritized on
the basis of empirical experience and with the expectation that
overcoming these challenges will depend heavily on practical prob-
lem solving and finding out ‘‘what works” in clinical use. They pub-
lished their discussion in order to ‘‘inspire stakeholders in a
position to advance the state of CDS technology and practice”.

As active participants in this field we take the position that an
empirical approach to design must be accompanied by sound the-
oretical principles and safe engineering methods. We illustrate this
with an approach to CDS design that starts with a formal model of
knowledge-based decision-making, clinical processes and distrib-
uted care services, identifying four key pillars of theory, and rela-
tionships between them. Sittig et al.’s challenges are reviewed to
consider how such a framework can facilitate application design
and implementation, clinical use, service interoperability etc. We
do not claim a formal approach to design is an alternative to empir-
ical evolution of clinical services but is a foundation on which prac-
tical experience can be understood, shared and built upon.

The background to this discussion of course is that we are cur-
rently seeing rapid growth of policy, and national development
programs, in the area of eHealth (for example, see [42] and the
www.OpenClinical.org website. There is also considerable growth
of applications and services for medical knowledge management
and clinical decision support in the commercial sector (the Open-
Clinical portal currently lists 280 suppliers worldwide1 and this is
certainly incomplete). However, Sittig et al. observe that ‘‘There
are few CDS implementations to date in routine clinical use that
have substantially delivered on the promise to improve healthcare
processes and outcomes, though there have been an array of suc-
cesses at specific sites in individual domains”.

The fragmentation and slower take-up of CDS technology than
many of us expected are a consequence of many factors [27]. Key
challenges for large-scale take-up of CDS technology include the
need for integration with standards (e.g. [54]) and the creation of
mechanisms for capturing medical knowledge with good proper-
ties of verifiability, scalability, reusability, interoperability etc.

While published evidence supports the view that clinical suc-
cesses are still limited and the field is fragmented Sittig et al. seem
to us to be taking an overly pessimistic position. Technologies based
on the PROforma decision-modelling and workflow-design language
[53], for example, have been used to build many applications which
have been successfully trialed [19,20].2 Nevertheless we endorse
many of Sittig et al.’s observations from a UK perspective and we wish
to add to their analysis by offering a complementary view that, as in
other fields of engineering, the empirical identification of practical
issues and evolution of pragmatic solutions needs to be accompanied
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by principled approaches to design and implementation. A combina-
tion of good design theory and learning from practical experience
is the way forward for successful delivery of CDS technologies.

The many technical, pragmatic, social and political challenges
have frequently led to ad hoc design and delivery of decision sup-
port services. We believe this is in part an inevitable consequence
of the research community being early in the learning curve, but
that this is changing. As we will try to show in this discussion a for-
mal approach to design can help in analysing practical problems,
suggest possible solutions, and inform the design and implementa-
tion of the chosen solution.

2. Goals and approach

We have been pursuing a particular theoretical direction in our
own research for many years, and we believe that this has proved
to be more productive than might be anticipated from Sittig et al.’s
analysis. We attribute PROforma’s successes in large part to the
power of taking a formal and declarative approach to modelling
the logical and procedural aspects of clinical decision-making,
and the availability of tools and a development lifecycle which
support this approach. Declarative modelling techniques have
guided language design; logic programming has been extensively
used in application engineering, and mathematical logics of vari-
ous flavours provide the formal foundations for the work. Our ap-
proach to modelling clinical expertise also draws heavily on work
in cognitive science, AI and knowledge engineering.

We have chosen to discuss Sittig et al.’s paper around this par-
ticular approach because it is the one we know best and because
our aim is to illustrate in concrete terms one theory-based ap-
proach to design. We wish to acknowledge at the outset, however,
that other approaches might have been taken, and that others may
prefer to take, such as those based on statistical approaches to
decision-making, operations research and organisation theory,
and rigorous software engineering methodologies will play a key
role in delivering the kinds of informatics services we discuss.
We have no doubt that readers with a different bent could argue
that such methods also provide the basis of a principled approach
to the design of clinical decision support services, and that this
might well yield different or even greater benefits. However, we
would reiterate Sittig et al.’s invitation for all to participate in
the discussion of grand challenge problems in the field, and the
benefits of other approaches to achieving our shared objectives.

The discussion that follows is grounded in four key dimensions,
covering decision-making and decision theory, process modelling
and workflow, knowledge representation, and organisational the-
ory. Each of the dimensions is also a major research area in its
own right. However, we do not provide a review of the relevant re-
search literature here. We are not setting out to review the field
any more than was the original essay that we were responding
to. Like Sittig et al., we wish to use our discussion as a vehicle to
make methodological and strategic observations and to contribute
to the debate they initiated.

Lastly, discussions with our colleagues frequently reveal ‘‘grand
challenge problems” that do not appear in Sittig et al.’s list of 10,
nor in our list. It is not our aim to propose a complete view of
the key challenges facing the field (nor was it Sittig et al.’s) but only
to use some of the widely acknowledged research challenges to
motivate the development of an engineering framework which will
inform the sound design and safe deployment of CDS applications.

3. The scope of ‘‘clinical decision support

We start by revisiting the question of what CDS is, since this
determines the scope of any design theory that will be fit for pur-

pose. Sittig et al. define a CDS system as ‘‘providing clinicians or pa-
tients with computer-generated clinical knowledge and patient-
related information, intelligently filtered or presented at appropri-
ate times to enhance patient care”. In a recent systematic review of
clinical decision support Garg et al. [22] reviewed 100 different
published trials. A classification of these systems is given in Table 1.
This is consistent with Sittig et al.’s definition: the majority of CDSs
published to date offer relatively simple functions such as alerts
and reminders, and information search, retrieval and filtering
services.

However, the definition contrasts somewhat with Greenes’ [27]
observation that the purposes of decision support systems are di-
verse, leading to a need for a variety of capabilities including
answering questions, actively making decisions and monitoring
and optimising processes and workflow (p87). Only a small num-
ber of the service types in Table 1 offer help in identifying options,
weighing evidence for the options and making recommendations
based on evidence. Furthermore, none of the applications reviewed
by Garg et al. appear to be aimed at supporting extended clinical
workflows or management of information and decision-making
in plans that unfold over time (e.g. chronic disease management
and multi-disciplinary care pathways).

While the provision of patient-specific and timely reminders
and filtered information to decision-makers is important our view
is that the aspiration of CDS developers should be to support as
many elements of the clinical decision process as possible, and that
decision-making, workflow management and care planning and
monitoring are important aspects of clinicians’ work that can
clearly benefit from computer support. Guideline modelling lan-
guages such as Asbru [49], GLIF [41], and PROforma [18,53] have
in contrast set out to provide formalisms for specifying decisions
in the context of clinical workflow and care plans. The data in Ta-
ble 1 are telling as they suggest not only that it is more difficult to
deliver the more sophisticated forms of CDS but also that the
chances of success, shown in the final column, fall with increased
complexity.

This inevitably invites pessimism about the potential clinical
value of more complex services and hence an emphasis on ‘‘chal-
lenges”. Our own interpretation is more optimistic: we are still
learning how to develop and deliver CDS technologies of all kinds,
and at this point it is not surprising that it is easier to build simple
rather than sophisticated applications. However, we should not
limit the scope of our discussion to applications with simple tech-
nical solutions since our technical capabilities will no doubt
progress.

Different developers have different priorities for decision sup-
port R&D. Greenes, for example, [27] sees workflow support as
complex and relatively low priority. Tu et al. [54] limit their objec-
tives in developing the SAGE guideline platform to ‘‘workflow
aware” decision support. However, we argue that the research
community needs to understand how decision-making fits into

Table 1
A selective classification of different types of clinical decision support systems
reviewed by [22]. The third column shows the number of each type and column 4 the
number of these which demonstrated significant clinical benefits.

Capabilities Example techniques Instances

Monitoring, alerts and reminders Algorithmic and rule based
methods

41 30

Modelling and prediction Calculators, Statistical
modelling

35 24

Focusing and information
retrieval

Search engines, navigation,
InfoButtons

11 6

Framing and making decisions Decision analysis, logical
decision models

7 2

Support for complex and multi-
disciplinary care

Workflow 0 0
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the larger procedural and organisational context of care in order to
ensure that current technologies are realistic and safe, and to open
up options for more sophisticated CDS services in the future.

4. Foundations for CDS design

We conceive of clinical decision support technology as based on
four theoretical ‘‘pillars”: decision theory, theories of knowledge
representation, process design, and organisational modelling. As
remarked above we do not regard this particular choice as com-
plete or unique; however, we do believe it is important to have a
consistent and sufficiently broad theoretical framework, whatever
it may be, as a basis for rigorous work on CDS technologies.

4.1. Decision theory: Descriptive and normative approaches

A precondition for a well conceived approach to CDS design is
surely an understanding of the nature, strengths and limitations
of human decision-making in the clinic. There is a well established
research literature on human judgment (covering reasoning, prob-
lem solving and decision-making, see e.g. [8,25] and how this re-
search illuminates the nature of clinical judgment including the
causes and prevention of medical errors (e.g. [13,47]). Errors arise
from everyday mistakes, such as forgetting or not being aware of
key information, but also from not-so-simple judgmental biases
of which we are generally unaware [55]. Cognitive biases and other
sources of error have long been recognised in clinical settings (e.g.
[14]) as has the potential for their mitigation with decision support
technologies.

There is an even larger research tradition in ‘‘rational” reasoning
and decision-making. These subjects have been investigated for-
mally in many disciplines, including applied mathematics, statis-
tics, and computer science and applied to medicine, economics
and in many other fields. Orthodox theories of rational medical deci-
sion-making usually adopt a quantitative approach, such as decision
models based on multi-attribute and expected-utility theory (see
e.g. [52]). These can be contrasted with proposals in computer sci-
ence and AI where symbolic frameworks and logic languages for
formalising medical knowledge have been more prominent.3

Our own approach to decision-making in the clinical context is
based on a cognitive view of rational decision-making which sub-
sumes a number of distinct types of logical inference [17]. By ‘‘infer-
ence” we mean any process that derives conclusions from data, and
by ‘‘rational” we mean inference that is consistent with defensible
norms. The main kinds of inference within this framework are:
(1) inferring clinical goals; (2) generating decision options or candi-
dates which will satisfy a goal; (3) identifying relevant evidence and
constructing arguments for each candidate based on the evidence;
(4) assessing and comparing the overall merit of the candidates;
and (5) making commitments based on relative merit and other cri-
teria, such as safety criteria. As remarked earlier our purpose is not
to justify this particular framework here but only to use it to dem-
onstrate the feasibility and utility of one theory-grounded approach
to the design of decision support systems.

4.2. Process theory: Formal representation of processes and plans

A second important foundation for CDS design is an understand-
ing of clinical processes. CDS research has in the main focused on

individual points of care rather than processes of care. Whether we
consider aids like clinical alerts and reminders or more sophisti-
cated data interpretation and decision-making, CDS developers
tend to focus on individual tasks rather than care plans or pathways
which are extended in time and are structurally more complex. A
striking feature of Table 1 is that the majority of evaluations to date
deal with clinical systems which are limited to a single point in time
where data need to be recorded, alerts flagged or decisions made
and orders issued. There have been relatively few studies of how
to integrate CDS systems into care planning or clinical workflow.

In contrast, research on business process modelling has devel-
oped formal notations for automating workflows but there has
been little work on situation interpretation or decision-making.
However, with the growing success of CDS technologies the re-
search community is turning its attention to more ambitious goals.
The clinical guidelines community has recently developed compu-
tational models which combine decision-making with clinical pro-
cess modelling. These can be used to specify clinical pathways,
guidelines and protocols, care plans and other processes in an exe-
cutable form, dubbed Task Network Models (TNMs) by Peleg et al.
[43]. TNM languages such as Asbru, GLIF, and PROforma (op cit)
are designed to capture clinical processes in a way that formalises
tasks and execution constraints as clinicians perceive them.

There is also growing interest in comparing and combining
TNM concepts with Petri Net formalisms which are popular in
business process modelling [26,39] and this may provide a firmer
basis for formal analysis of clinical workflow. The 1st International
Workshop on Process-oriented Information Systems in Healthcare
took place in Brisbane, Australia in 2007, where central themes
of the meeting were the use of clinical guidelines and decision sup-
port in the context of business process and workflow models.

4.3. Knowledge theory: Formal representations of knowledge

A third foundation is the need for a sound theory of knowledge
representation. Clinical decision-making and process planning ap-
ply medical knowledge in interpreting data and achieving clinical
goals. Knowledge is formalised in AI and knowledge engineering
using semantically rich representations of medical concepts and
tasks. In the 1980s expert systems appeared as an alternative to
quantitative decision-theoretic frameworks, in which decisions
and processes were modelled using semantic networks; if. . .then. . .

rules; task agendas; and so on. While showing promise these
methods were criticised for lack of theoretical principles but have
since evolved into very powerful and principled techniques. In our
own work we have found first-order logic and associated logic pro-
gramming techniques (e.g. [2]) to be highly expressive for repre-
senting medical knowledge and applying it in clinical process
modelling and application development. These subsume a range
of knowledge representation formalisms with well understood
computational properties and efficient software interpreters.

Given continuing developments in medical knowledge repre-
sentation it would be premature to insist on any particular formal
framework for knowledge representation. However, our expecta-
tion is that all medical data and knowledge will in due course be
modelled using semantically rich models, such as formal ontolo-
gies of medical concepts4 based on first-order representation tech-
niques such as description logics.

4.4. Organisation theory: ‘‘Agents” and shared care

A final foundation for CDS design is a principled approach to
understanding organisations, particularly distributed ones. Histor-

3 Despite the scale and quality of the research, quantitative techniques for
modeling clinical reasoning and decision-making under uncertainty have had modest
influence on clinical practice. The dependence on hard-to-acquire objective data
(such as statistical and cost-benefit data) and difficulties, shared by clinicians and
patients, in understanding and acting appropriately on quantitatively framed decision
models has limited adoption. 4 http://www.openclinical.org/ontologies.html.
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ically the responsibility for the detection and diagnosis of a patient
condition and subsequent treatment and follow-up were localised,
in that the knowledge, actions, and responsibilities required for
these duties were centered upon a specialist team of professionals
working in a particular physical place. However, clinical practice is
increasingly complex, distributed and service oriented. Actions are
performed at numerous specialist sites between which responsibil-
ities for care are distributed (and patients move between them to
access services). Tasks may still be localised but responsibilities
are often distributed and/or shared between individuals who have
limited knowledge of each other’s expertise.

The pressures driving clinical practice in this direction seem
irresistible because they derive from increasing demand for health-
care provision. This might, at first sight, seem to spell trouble given
Sittig et al.’s observation that clinical decision support systems
have been effective only when narrowly applied. It is now possible,
however, to formally specify specialist services such as decision
support and workflow management, and we know how to confed-
erate such systems without unduly compromising the autonomy of
each local service.

Fig. 1 illustrates this with a model of a multi-disciplinary orga-
nisation that we developed for scoping decision support services
for women with (or at risk of) breast cancer. The theoretical frame-
work underlying our approach to organisational modelling as-
sumes that clinical processes and their component tasks are
carried out by autonomous specialist agents (human or software)
that can provide decision-making, care plan management and
other knowledge-based services when requested to by other
agents. Each block in Fig. 1 consists of a nested set of services for-
malised in PROforma, where each service may provide support for
clinical data capture, alerts, order entry, decision-making, local
workflow management, communication and coordination, and so
on. The service model includes over 220 local services and sub-
sumes more than 65 different points in the pathway where clinical
decisions need to be taken and which, if not taken correctly or
properly coordinated, have the potential for patient harm (see vi-
deo at http://acl.icnet.uk/credoweb/videos/credo_short_hq.asx).

Each service or collection of services in this model is viewed as
an independent agent that communicates information and re-
quests for service to other agents in the organisation. Specialist
agents can send messages to each other, seek advice and explana-
tions for advice, manage workflows and care pathways, and iden-
tify other agents to take responsibility for particular aspects of a
patient’s care. We argue later that organisational and cultural as-
pects of deployment also often need to be considered in CDS design
but theoretical foundations are weakest in this area and we see this
as a key area for research. The use of multi-agent technology for

healthcare applications is a rapidly growing area of research, see
e.g. Nealon and Moreno [40].

5. From theories to challenges

Each of these four theoretical pillars is a substantial field of
study. However, our experience has been that many of the practical
challenges for CDS lie at the intersections between these fields. This
is useful as it allows us to conveniently organise our discussion of
practical challenges within the six pair-wise intersections between
the pillars A–D, although we do not attach any theoretical weight
to this organisation. These six crossover areas are:

Decisions and plans:

E: Knowledge representation for decision-making (A + C).
F: Framing and making decisions within plans (A + B).
G: Knowledge of and reasoning about processes and plans

(B + C).

Sharing decisions and plans:

H: Joint and distributed decision-making where responsibility
is shared (A + D).

I: Shared and distributed execution of plans in organisations
(B + D).

J: Managing distributed knowledge and data within and across
organisations (C + D).

These topics seem relevant whatever theoretical point of view is
adopted with respect the design of decision support services. In the
remainder of this section we briefly outline how each offers a dis-
tinct challenge to CDS research and development.

5.1. Knowledge requirements of decision-making

What information is important in making a particular decision?
This question underpins concerns about filtering and summarisa-
tion of information, and the efficient design of human–computer
interfaces, which are both challenges identified by Sittig et al. It lies
at the intersection between theories of decision-making and
knowledge representation (pillars A and C). There are many ways
to approach this challenge depending on which theoretical plat-
forms one chooses to adopt for decision-making and knowledge
representation.

Logic is an expressive, versatile and intuitive language in which
to formalise knowledge for decision-making. Fig. 2 shows an exam-

Fig. 1. Process model of a multi-disciplinary care pathway for patients with suspected breast cancer: the pathway should overall be read left to right (control flows through
detection, work-up, treatment and follow-up phases) but many of the services within each box can run sequentially or concurrently depending on specific data flows shown
by the arrows.
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ple of a decision support system which applies specialist domain
knowledge of breast cancer in framing and making a decision
about treatment. Here the user sees candidate therapies in order
of relative overall preference, based on logical pros and cons, with
acceptable candidates checked. The format can also be naturally ex-
tended to provide an evidence-based rationale for recommenda-
tions [21,24]. The underlying logical form of the arguments also
facilitates presentation of information in other ways, as shown in
the patient-oriented version at the bottom of Fig. 2.

However, there are significant research questions here,
including:

� How can a logical model handle conflicting evidence and val-
ues? For example, a recommendation by a CDS for the manage-
ment of a specific condition may be inappropriate for some
patients but not others (e.g. one cancer patient values increased
survival over poor quality of life due to an aggressive treatment,
while another has the opposite valuation).
� Analogous issues arise whether one adopts an orthodox (e.g.

expected utility) theory of decision-making or a more qualita-
tive perspective on the underlying medical logic expressed as
an argument net. A key question concerns the relationship
between the clinically familiar and semantically intuitive con-
cepts of ‘‘benefits” and ‘‘harms” versus the abstract quantitative
notion of mathematical utility in decision theory.
� Is it possible to combine the naturalness and expressive power

of logic with the benefits of quantitative decision models? This
raises difficult technical challenges (see [32]).

5.2. Framing and making decisions within plans

Most CDSs are developed with one, relatively isolated decision
in view (for example, what drug to prescribe, or whether to refer
a patient to a specialist). However, in clinical practice decisions fre-
quently cannot be viewed in isolation, because they may depend
upon the results of previous ones or influence future decision
points in a plan that have not yet been reached. The challenge is
to apply theories of decision-making in the context of a framework
for understanding processes and plans – the intersection between
areas A and B.

Much of clinical practice can be understood in terms of creating,
modifying or interpreting plans which are extended in time (treat-
ment plans, trial protocols, care pathways etc.) and subsume many
decision points that potentially interact to reduce treatment effec-
tiveness, clinical efficiency or patient safety. This point is well illus-
trated by the work of Peter Hammond ([17], chapter 8) who carried
out a detailed review of more than 50 cancer treatment protocols
in order to identify potential interactions between treatment ac-
tions that had possible safety implications, and developed formal
rules that would guide the management of these interactions. An
example of a Hammond rule concerns the need to avoid action side
effects that could diminish the benefits of treatment or exacerbate
known hazards, and ensure that actions are scheduled in the safest
way. These principles were captured as programmable rules ex-
pressed in first-order logic. For example:

If Action1 has been decided as a part of Plan and

Action2 has been decided as a part of Plan and

Fig. 2. CDS for breast cancer therapy based on the argumentation framework (see text).
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Action1 followed by Action2 causes Effect and

Effect is hazardous

Then Action1 should be performed after Action2 in

Plan

Despite the importance of plans and planning in clinical
practice there appears to be little scientific research into how clini-
cians actually plan care. Planning is demanding in terms of cogni-
tive resources [23] and time. This creates pressure to minimise
individualisation of care, despite wide agreement on the need
for increased personalisation. As with experts in other domains
[35] clinicians reduce the need to generate plans from scratch
by learning large numbers of simple, stereotyped plans during
their training and practice, which they may adapt to different
situations.

The management of a patient over time can be viewed as the
traversal of clinical ‘‘scenarios” and associated actions and further
decision points along a single path rather than constructing de-
tailed individual care plans ab initio. Johnson et al. [29] draw on
this idea in their proposal for a care planning model in which sim-
ple rule-in and rule-out conditions are associated with each clinical
scenario to determine the next course of action. However, we are
not aware of any systematic efforts to formally model decision-
making within care planning. As remarked earlier most work on
CDSs has focused on individual decision points; extensions of clin-
ical decision models into the temporal and process domains seem
overdue.

5.3. Reasoning about tasks and plans

As clinical informatics moves beyond simple risk calculators
and treatment choices and towards supporting complex treatment
pathways extended over time, the demands on the formal the-
ory underpinning the systems become correspondingly greater.
For example, we would like formal strategies for analysing
whether a computerised guideline really is a faithful representa-
tion of the authors’ intentions, or to check for issues like ambiguity,
incompleteness, inconsistency, violation of regulations or opera-
tional constraints. Unless there are defensible principles for
checking and updating plans there will be implications for patient
safety.

Plans can be described formally in a number of notations,
including workflow modelling notations such as BPMN [58], plan-
ning languages developed in AI (see e.g. [6]), graph formalisms
such as Petri nets [44], and languages for modelling clinical guide-
lines and pathways, such as task network languages [43]. What-
ever one’s choice of process modelling style there are a number
of potential benefits of using a formal process representation.

� The model can be directly translated into an executable form, so
that decision support can be delivered as part of a workflow
management service.
� Automated verification techniques can be used to check that a

care pathway or patient plan is consistent, complete and satis-
fies critical constraints, such as timing, resource or safety
constraints.
� Use of time and clinical resources can be optimised.

Relatively little work has been done to date on the formal anal-
ysis of temporal processes in medicine. However, the use of Petri
Nets (PNs) and their higher level variants (Coloured PNs, time
PNs, and hierarchical PNs) are being increasingly studied for their
potential use for the integration of decision support and executable
clinical workflow models and guidelines [26,39]. However, this
modest body of work only scratches the surface of what we believe
to be a key problem; how to formalise decisions in a context-sen-
sitive way within extended care plans and workflows.

5.4. Joint and distributed decision-making for shared care

In modern healthcare systems treatment decisions are often
made jointly by clinicians with different expertise who share
responsibility for care (and the patient is increasingly involved as
well). A comprehensive breast cancer service, for example, involves
many individual professionals from half a dozen disciplines, and a
number of key decision points in the treatment process require in-
put from multiple clinicians. One mechanism for managing this is
the ‘‘multi-disciplinary meeting” (MDM) in the management of
cancer, in which the whole clinical team comes together to review
a list of current patients and the therapeutic and other clinical
decisions.

Shared responsibility for decision-making is likely to become
increasingly common throughout medicine as the explosion of
new knowledge forces greater specialisation, yet individual spe-
cialists only see part of the clinical picture – with consequent risks
for reduced quality of care and patient safety. CDS systems will be
expected to support such joint decision-making, for which we be-
lieve new collaborative decision models and technologies will be
needed.

There is considerable research relevant to understanding group
decision-making in, for example, the social psychology literature
(see e.g. [12,16]). We have found it useful to view the challenges
of joint decision-making as lying at the intersection between deci-
sion theory and organisation theory (pillars A and D). Issues within
these areas that impinge on this challenge centre around commu-
nication and coordination of the information needed to make good
decisions between participants [11]. Frameworks grounded in
quantitative decision models, formalised medical logics, computa-
tional frameworks for multi-agent systems, or combinations of
these and other approaches, are all potential candidates for provid-
ing the required theory.

5.5. Joint and distributed execution of plans within organisations

It is common today for doctors, specialist nurses and technical
staff to take responsibility for different steps in a patient’s care
plan. A care pathway may include many planned services, as illus-
trated in Fig. 1, each being the responsibility of a different special-
ist team, and each service subsuming multiple workflows and sub-
plans. In multi-disciplinary cancer care each of these services, sub-
plans, workflows etc. can be modelled as sets of interlocking guide-
lines and specialist decisions that should be enacted in a coordi-
nated fashion. These include ordering investigations and
specialist technical services such as imaging, capturing clinical
data and recording adverse events, identifying clinical trials for
which the patient may be eligible, and so forth.

Clinical computing and communication researchers have not
extensively considered the theoretical issues of maintaining the
integrity of complex, flexible processes that span groups of inter-
acting people and systems, although some attention has been gi-
ven to this problem by researchers viewing the organisational
care pathways of clinical institutions in terms of large-scale flow
of clinical work and information [45].

Applications have polarised somewhat into those which are
highly centralised (coordinating all services and interactions
through a server) versus more experimental work on distributed
and multi-agent systems (e.g. [28,37,59]; Han, 2008). Multi-agent
systems technology does not as yet have proven benefits for
healthcare applications, and indeed raises significant issues for
security, safety etc, but there are strong arguments that a wholly
centralised approach to decision support and process management
will not be viable in the medium term [3]. Issues of scalability and
the desire for openness in accessing and using medical, scientific
and other kinds of knowledge are key drivers for the need to
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develop a more distributed perspective as we discuss in the
Section 3.2.6.

5.6. Managing distributed knowledge and data within and between
organisations

While agreeing with Sittig et al.’s view that impact of CDSs is
most easily achieved by building systems that are focused on spe-
cific tasks and domains this view is not consistent with the aspira-
tion to provide support for joined-up and multi-disciplinary
healthcare. Our final challenge therefore lies at the intersection be-
tween knowledge representation and organisational modelling
(pillars C and D) and concerns the management and maintenance
of healthcare information that is distributed across organisations
rather than held centrally. Addressing this will require a step
change in the way medical information is managed, not simply
connecting up many conventional computer systems.

In clinical institutions each component service of the overall
system relies for its effectiveness on being focused and modular.
However, decisions and plans must be carried out by specialist pro-
fessionals working together in a coordinated way even though the
medical knowledge and clinical data they need to work effectively
are increasingly distributed over a wide variety of sources: a vast
and growing medical literature; patient records and notes; dat-
abases local to different clinical services; and countless medical
systems and devices with their own specialised data management
functions. This specialisation, and the particular local needs and
circumstances of each clinical unit, make it increasingly unlikely
that large-scale centralisation of information systems will be help-
ful or practical. We will need more agile styles of integration.

The intersection of internet technology with knowledge engi-
neering is producing such methods. New formats for standardising
of the representation of knowledge passed between agents are
emerging [36]; new infrastructures, such as peer to peer and grid
environments (see e.g. [50]) can support flexible interaction and
offer acceptable guarantees of anonymity and availability. New
languages offer formal ways to specify interactions between agents
(e.g. [7,46]). The fact that such facilities can now be delivered on
the internet means that it is becoming possible to pull together evi-
dence and data that lie largely outside the frontiers of any one
healthcare provider, even one on the scale of the UK National
Health Service. Instead of viewing openness as something to be
suppressed, which is unachievable, technologies and methods are
now emerging that can make it work in our favour and give us bet-
ter decisions as the global knowledge base increases.

Having set out the main areas where we see key challenges to
the development of theory and practice of decision support sys-
tems we can now revisit the 10 specific challenges identified by
Sittig et al. in the light of this framework. Our approach is comple-
mentary to theirs; while they concentrated on issues that obstruct
the adoption of current types of decision support we are discussing
broad technical and scientific areas which introduce research chal-
lenges which, if not solved, will severely restrict the capabilities of
CDSs into the future. We do not claim that our approach is un-
iquely correct, but we do insist that there should be some suffi-
ciently versatile and demonstrably sound framework to underpin
design in any field where safety issues are pervasive.

5.7. What should CDS applications provide?

5.7.1. Summarise patient-level information
‘‘No one can retain and process the entire content of a compli-

cated patient’s data”. This remark by Sittig et al. refers to one of
the major causes of human error and motivates the high priority
they give to the problem of summarising patient information. In
their short essay they do not consider what this might imply in de-

tail, nor what principles distinguish good and relevant summarisa-
tions from bad ones, but it is certainly a key problem.

There are many different ways of summarising patient data,
ranging from disease-based or intervention-focused summaries
to episodic and time-based overviews. For a practical example take
the multi-disciplinary cancer meeting (MDM) referred to above.
This mechanism is widely used as a coordinating and decision-
making mechanism in the management of solid tumours in the
UK. An MDM typically includes 20+ patients whose treatment is
to be decided or reviewed in an hour or so, so there is a premium
on brevity and relevance to the decision context. Fig. 3 gives two
examples of summarisation screens from MDT Suite which has
been developed for this setting5 in the management of colon cancer
at the John Radcliffe Hospital in Oxford, England.

Fig. 3a is an overview screen which is designed to give a fast re-
minder of each case before discussing the specific therapy decision.
This summarisation mechanism uses a domain ontology describing
cancer and related conditions and formalised in OWL, covering
symptoms, signs and test results, and a ‘‘patient history” class.
Each concept in the ontology knows how to summarise itself based
on its property values and so a summary of the patient is generated
recursively by asking the patient instance to summarise itself. The
argumentation approach to decision-making creates further sum-
marisation opportunities, such as considering arguments ‘‘which
could be true” if certain data were known, leading to a missing data
summary at the top right of Fig. 3b. The summariser identifies any
arguments for each candidate for the decision for which a data va-
lue for one or more premises are missing, and then forms a com-
ment describing how that argument could affect the decision
regardless of what value it might be. These summaries are gener-
ated in a succinct form by including only items at the most general
conceptual level determined by the colon cancer domain ontology
[1].

A role of theory here is to guide the summarisation of data in a
form that is natural for clinical users and relevant to their perceived
task and responsibilities. As we see in MDT Suite various kinds of
summarisation fall out of a logic-oriented decision theory in a
straightforward way (area A above). However, the summarisation
challenge also touches on area E (formal knowledge requirements
for sound decisions); H (joint and distributed decision-making);
and J (distributed representation of knowledge and data within
organisations).

5.7.2. Prioritize and filter recommendations to the user
Sittig et al. call for a robust, reliable, evidence-based CDS model

which can automatically prioritize recommendations according to
a ‘‘multi-attribute utility” model. Our own approach to this is
based on the argumentation framework that lends itself well to
the use of multi-attribute decision criteria, and the prioritization
and presentation of the options with the associated evidence-
based rationale (area E, knowledge representation for effective
decision-making). Fig. 4 illustrates this for a decision about the
choice of imaging modality in the initial assessment of women
with suspected breast cancer [56]. In this particular example argu-
mentation logic is used in a straightforward way. If arguments can
be constructed that a candidate action is appropriate to the clinical
situation, that candidate is presented to the user (filtering). Priori-
tization can be simply on the basis of the number of relevant argu-
ments that can be constructed for and against each candidate
action. In practice this simple approach is often highly effective
though it can be enhanced with more precise quantitative tech-
niques where required.

5 Taken from MDT Suite, a decision support technology developed by Mark Austin
and Matthew Kelly using a variant of the argumentation framework described earlier
[1].
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In terms of the framework outlined above we view this research
challenge as firmly within area E but, as observed earlier, this
observation is neutral about the specific decision procedure to be
adopted, which may include logical, quantitative or hybrid
methods.

5.7.3. Improve the human–computer interface
Kawamoto et al. [34] observe that the ability to support a clini-

cian’s decision-making at the point of care is one of the major suc-
cess criteria for CDS systems. A common and well justified
complaint, however, concerns the poor standard of user interfaces
in many CDS applications (indeed in medical software generally).
Sittig et al. list a variety of areas for attention, ranging from clearer
displays to reduced intrusiveness (‘‘proportional to the importance
of the information”). Unfortunately the many different weaknesses

they identify are unlikely to be abolished by a couple of neat design
ideas. Here we would again urge the benefits of an approach to de-
sign based on general principles as well as a pragmatic assessment
of what has worked in the past.

An understanding of the nature of clinical decision-making is
important for a successful CDS interface. In particular we see areas
A (decision theory) and E (knowledge representation for effective
decision-making) as providing the most relevant theoretical
underpinnings. Two pieces of evidence for this claim come from
the domain of clinical genetics. The RAGs system for taking family
history and carrying out risk assessment for breast and ovarian
cancer [15], and the REACT system for planning the care of women
with a genetic predisposition to these diseases [23] both exploit
argumentation in making and explaining clinical recommenda-
tions: 96% of GPs who used RAGs preferred the argument-based re-

Fig. 3. Screen shots from MDT Suite (see text). (a) Top: summary screen to assist MDM members to recall patient case (many team members) will have seen the patient before
but with so many other patients a name or ID may not cue the appropriate context. (b) Bottom: treatment options summary with logical argumentation and reminders of
missing data and possible relevance.
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port to a statistical display of genetic risk [30,31]; 7/8 initially
sceptical genetic counsellors found REACT’s user interface to be
clear and effective as a basis for working with patients during
counselling (see Fig. 5). The combination of quantitative risk dis-
plays and argument-based explanations in REACT appears to pro-
vide effective mitigation of some of the cognitive demands
created by the complex task of interpreting risk information and
developing care plans [23].

In short, to improve usability of clinical user interfaces we advo-
cate basing design around a firm theoretical understanding of the
clinician’s perspective on the medical logic in a decision, the qual-
itative as well as quantitative aspects of the decision, and provid-
ing an evidence-based rationale for all recommendations offered
by a CDS.

5.7.4. Combine recommendations for patients with co-morbidities
‘‘The challenge” according to Sittig et al. ‘‘is to create mecha-

nisms to identify and eliminate redundant, contraindicated, poten-
tially discordant or mutually exclusive guideline-based
recommendations for patients presenting with co-morbid condi-
tions or multiple medications. ‘‘. . . Addressing this challenge may
require new combinatorial, logical, or semantic approaches to
combining and cross-checking recommendations from two or
more guidelines”.

Combining two plans logically is a non-trivial problem, and we
see a particular challenge in providing sufficiently rich representa-
tions of process, rationale, and consequences of planned actions to
allow this to be done in practice. Such a process may, for example,
require knowledge not just of the particular steps in a clinical pro-

Fig. 4. An example of a PROforma decision support service for advising on selection of imaging modality, ultrasound and/or mammography. The arguments for the option are
listed under each candidate – arguments for are in green and marked with a plus, with arguments against in red (minus). The user can pull up the evidence that justifies any
argument (e.g. clinical guideline, published trial) where required. All arguments are given equal weight in this example but where there is information to quantify the
strength of arguments this can be displayed and incorporated into the recommendations. (For interpretation of references to color in this figure legend, the reader is referred
to see the web version of this article.)

Fig. 5. The REACT system for planning under risk. The system has four main panels. Panel 1 shows a timeline and the set of events and actions on this time line (the user
manipulates this directly). Panel 2 shows how risk changes over time during the proposed plan. Panel 3 shows the arguments for and against any selected action in the plan.
Panel 4 highlights conflicts or other alerts. Risk, argumentation and conflicts are updated in real time if the user modifies or changes the timing of planned interventions.
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cess but of the clinical goals those steps are intended to achieve
(because these goals may be compromised in the combined plan
even if the individual steps in the processes are correctly carried
out). Another type of knowledge that is required is the expected re-
sult of combinations of clinical actions, for example, the action of
drug A (required by treatment plan 1) in the presence of drug B
(in treatment plan 2). In many cases this knowledge is available;
contra-indications and interactions are well known for many clas-
ses of interventions, although they may not be familiar to the clini-
cians involved. However, in other cases predicting the combined
effect of two medications may require a deep understanding of
the domain, for example, in the form of a detailed physiological
and pharmo-kinetic model.

Critical issues to be addressed within area I include how to
combine plans specified in some formal language(s), identify inter-
actions between concurrent treatment plans and identify inconsis-
tent constraints and the knowledge required for their resolution.

Aspects of this challenge also fall within area E – formal knowl-
edge requirements for sound decisions – because we need to deter-
mine the minimum amount of information that needs to be passed
between clinicians in different specialities in order for them to
make sound decisions, area H – joint and distributed decision-
making – because we need to support negotiation between users
when plans conflict, and area J – distributed representation of
knowledge and data within organisations – because we need to
understand how to make the right connections between distrib-
uted sources of information to ensure that all interactions between
care plans are identified.

5.8. How to deliver CDS services better

5.8.1. Disseminate best practice in CDS design, development, and
implementation

Sittig et al. view ‘‘best practice” largely in terms of the features
that have made clinical decision support systems successful in the
past. A conclusion of their commentary is that a challenge for the
future is ‘‘primarily a matter of identification, communication,
and education” to ensure that CDS designers are aware of what
has been done and what they need to do to have a successful sys-
tem. We share their concerns about the need for a community
memory to avoid reinventing the wheel; our own contribution to
addressing this problem is the OpenClinical information service
and web portal (www.openclinical.org). This aims to promulgate
awareness of past and ongoing research, the state of the art in de-
sign and engineering of clinical decision support and knowledge
management services, as well as practical successes in clinical re-
search and in the commercial sectors.

This challenge is of course at a rather different level to previous
ones. Dissemination of new practices in any technical field has to
confront sociological, political and business obstacles (particularly
where the research and development community is international)
and these are distinct from the scientific and technical problems of
identifying best practice. Consequently the purely technical frame-
work we are discussing here is not directly relevant to this chal-
lenge. However, we would note some technical aspects of ‘‘best
practice in CDS design” which would be mitigated by an explicit
and rigorous engineering approach.

We would suggest, firstly, the importance of a sound profes-
sional knowledge of the four pillars of the field: decision theory,
formal knowledge representation, process modelling and organisa-
tion modelling. Secondly, we would insist on the need for and use
of good software engineering practices in CDS design and imple-
mentation – this is after all a field which is intimately bound up
with human safety. Thirdly, it is critical to support norms of best
clinical practice so the design, development and delivery of CDS
applications should be accompanied by evidence or other form of

rationale for all recommendations. Lastly, designers and engineers
need a broad appreciation of non-technical factors which will
determine which CDS proposals are likely to be useful and which
not and should not depend solely on technological expertise as a
foundation for design.

5.8.2. Create an architecture for sharing CDS modules and services
This challenge concerns the modularisation of CDSs in order to

simplify fabrication and delivery of new services. As Sittig et al. put
it ‘‘The goal is to create standards based interfaces to externally
maintained CDS services that any EHR could subscribe to in such
a way that healthcare organisations and practices can implement
new [CDS interventions] with little or no extra effort”.

The SAGE decision support infrastructure [54] emphasises a re-
lated need for standard formats which are integrated into the
guideline model (e.g. SNOMED CT and LOINC for terminology,
HL7 Reference Information Model or the GELLO expression lan-
guage). To this list we might add standards for decision-modelling
and for process modelling and workflow (including guideline inter-
change formats). In fact, as Fig. 6 shows, there are many potentially
relevant standards covering a wide range of medical services, with
new standards constantly emerging to extend or replace older
ones. For example, any of the potential standards for modelling
clinical guidelines (Asbru, GLIF, PROforma, SAGE etc.) may need
to interoperate with CDS components formalised in a number of
inference-related standards, including the HL7 standard GELLO,
the Argument Interchange Format AIF developed in the EU funded
ASPIC project [9] or Microsoft’s XML standard for Bayesian net-
works XBN.

Sittig et al. consider the issues of standards and interoperability
from the perspective of rapid deployment of services. Focusing on
existing standards seems to be a sensible direction to take if one
intends to build a CDS for the here and now, but adoption of spe-
cific standards is always a trade-off between the benefits that stan-
dardisation brings and the inflexibility and restrictions entailed in
standards as circumstances change. In our view attention needs to
be given to developing a more flexible framework that begins with
the assumption that nothing is set in concrete: new standards will
appear and must evolve as technological capabilities advance. We
believe that a standards ‘‘meta-model” is needed to facilitate
change, accommodating new decision support concepts and other
service possibilities and formalisms as they appear.

A possible approach to take here lies squarely in research area B,
in which the community would seek to agree a meta-standard,
using a sufficiently expressive formal framework, such as ontolog-
ical modelling in a description-logic with sufficient expressive
power. On this model a standard and its component parts are seen
as instances or sub-classes of a generic standard model. For exam-
ple, all standards might be required to specify a controlled termi-
nology (technical and/or medical); a syntax or grammar for
defining predicate and function terms and expressions; mapping
rules between ontological concepts and expressions in different
standards etc. Intermediate nodes (sub-classes) in the meta-stan-
dard ontology would inherit these attributes.

We may also require that any CDS or guideline modelling stan-
dard makes reference to concepts like decisions, workflows, and
communications. All proposals for decision support standards
could be required to provide a syntax and semantics for represent-
ing options, evidence rules, and commitment rules; all proposed
standards for modelling plans, care pathways or workflows might
be expected to make explicit the steps of the plan, safety rules/
abort conditions, and co-morbidity constraints.

The feasibility of a meta-ontology that would cover a range of
decision support, process models, and related standards is specula-
tive. Among the benefits of such a model, however, would be that it
would guide definition of new standards, encourage discussion
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between standards groups and help to ensure interoperability at a
standard-to-standard level. Experience using an ontological ap-
proach to defining a meta-framework for modelling argumentation
systems [9] suggests that these benefits are real though the evi-
dence is scanty. Our primary objective, however, is to draw atten-
tion to the need for some kind of unified approach to standards
without which, we believe, the current slow pace of adoption could
well get worse as the number of legacy standards increases and be-
gins to make interoperability of systems and components harder
rather than easier.

5.9. Content development, use and reuse

The successful introduction of CDS systems is not just a matter
of developing sound technologies and successful applications; the
creation of bodies of knowledge (content) will also be critical for
building clinical credibility and the business cases that industry
will require if it is to invest in the field. Greenes [27] argues that
the deployment of CDS technology will continue to progress at a
slow pace until we have put a number of critical ‘‘lifecycles” in
place that address challenges of supply, curation, and deployment
of knowledge in an appropriate, scalable and safe way.

5.9.1. Create internet-accessible CDS repositories
Although there are many public repositories of text clinical

guidelines these documents have limited effect in changing clinical
practice (e.g. [10]). We need to find ways of building on the huge
global effort on guideline compilation in a way that does influence

practice. Greenes [27] and Sittig et al. summarise the challenge as
building ‘‘one or more internet-accessible repositories of high qual-
ity, evidence-based, tested, clinical decision support knowledge
modules . . .which can be easily downloaded, maintained, locally
modified, installed and used” . . . ‘‘with appropriate business mod-
els to ensure sustainability”.

We agree that the move to internet-based guideline reposito-
ries, and especially the development of sustainable business mod-
els and ecosystems around them, are key. A number of repositories
broadly of this type are already in development (e.g. EBMeDS in
Finland,6 DeGeL in Israel [48], the MEDAL medical algorithms project
in development in the US [33] and OpenClinical.net.7

To achieve scalability and interoperability on a large-scale, we
believe this effort will need to draw upon a deep understanding
of the nature of clinical decisions and other tasks as well as the for-
malisation of knowledge. However, a move to internet-based
guideline repositories is inevitable given the volume of guidelines
currently in circulation and the increasing computer literacy of
medical practitioners. We see many of the challenges in this area
as practical rather than technical but hard technical challenges also
remain of course – for example, Greenes [27] identifies the need for
a systematic approach to knowledge authoring and curation, which
is realistic about the sources of knowledge (in clinical research),
quality of content (rigorous development, testing, and mainte-
nance lifecycles) and the wide adoption of standards which facili-

Fig. 6. Some of the areas in which informatics standards exist that are likely to impact on the development and maintenance of CDS services (centre). Boxes which are
hatched refer to data representation standards; others refer to standards for implementing clinical services. The particular set of ‘‘standards” are intended for illustration only;
the maturity and level of acceptance is variable and the specific selection included are likely to date rapidly as new standards emerge.

6 http://www.kaypahoito.fi/kotisivut/sivut.koti?p_sivusto=1434.
7 http://www.openclinical.net.
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tate reusability of content and interoperability or applications as
discussed earlier. Here it seems that we will face theoretical as well
as practical challenges in knowledge representation (area B), mod-
elling clinical decisions (A) and processes (C).

5.9.2. Prioritise CDS content development and implementation
Given the current state of the art Sittig et al. believe that the

development of content on a convincing scale will take many
years, and that we will need to prioritise this development to max-
imise value on the shortest possible timescale. For example, we
may choose to prioritise chronic care applications over acute care,
or patient demands over clinical value. This seems to be a political
challenge more than one of informatics, concerning the policy
opportunities and choices created by technical developments
rather than the technical problems themselves. In fact we wonder
whether this is a ‘‘challenge” that the research community can ad-
dress at all. Priorities can be set in a centralised way but large
healthcare organisations and national programmes, such as the
NHS or the National Institute for Clinical Excellence in the UK
struggle to retain control as patients vote with their feet and clini-
cians with their clinical judgement. We do not take a strong posi-
tion on this but we note that many observers feel that national and
other priorities will be set by the beneficiaries – including com-
mercial content providers and patient lobbies as well as healthcare
organisations – not by the R&D community.

What we as researchers in the technical aspects of CDS are per-
haps able to contribute is ways of making the process of develop-
ing CDS content easier and quicker. One way in which we believe
this will happen is through the gradual creation of internet-based
communities of practice (see challenge 7), which, if appropriate
infrastructure is available, can establish a ‘‘virtuous cycle” in which
more and more people and organisations can participate in the
development, review, use and refinement of guideline content.
This could lead to progressive increases in the efficiency of the con-
tent development processes, validation and deployment processes.

5.9.3. Mine large clinical databases to create new CDSs
As part of the scalability agenda Sittig et al. identify the need to

develop ‘‘new algorithms . . . to mine large clinical data repositories
to expand the global fund of clinical knowledge, which . . . under-
pins CDS interventions [and] improved outcomes”. This point is
orthogonal to, though not independent of, CDS R&D because it cen-
tres on generating new knowledge rather than applying the knowl-
edge. Their key point is that we need automated machine learning
as well as manual data mining techniques.

There is abundant evidence that the huge amount of medical
information that we already have – generic knowledge and per-
sonalised data – has insufficient influence on clinical decision-
making. Increasing the store of knowledge, while clearly an
improvement, does not address the specific challenges of providing
effective CDS services (in fact it makes the situation more challeng-
ing). We would therefore prefer to separate the issues of informa-
tion generation and information use in order to focus more clearly
on the immediate problems of making effective use of the knowl-
edge we already have, so that we can do justice to the acquisition
of new knowledge which advances in machine learning and data
mining will undoubtedly bring.

5.9.4. Use free text information to drive clinical decision support
‘‘We need methods of extracting the clinical information con-

tained in the free text portions of our electronic health record sys-
tems into a form that would allow clinical decision support
systems to access and utilise this information”. Unlike challenge
9 this challenge is not so much about acquisition of new knowl-
edge as about the conversion of data in one form (written, infor-
mal) into another form (machine encoded, formal).

This is certainly a fascinating and an important problem, but we
see the challenge involved in accurate, automatic extraction of
information from free text as currently intractable. The issue here
is that it is far from clear that semantic interpretation of free text
will be developed in the visible future to the point where clinical
decision-making could safely rely on it – bearing in mind that the
whole issue could also become irrelevant with the gradual phasing
in of fully computer-interpretable electronic health records using
controlled vocabularies/ontologies and other standardised coding
schemes. Despite our own enthusiasm for natural language tech-
niques for decision support interfaces (e.g. see [5] in this journal)
we suspect that restrictions on artificial languages for describing
clinical data will provide a far more secure basis for CDS design,
and pragmatic pressures towards standardisation and interopera-
bility are likely to continue to drive policy in this direction.

6. Closing remarks

Having argued that there is nothing as practical as a good the-
ory we must also acknowledge that there is nothing as disastrous
as a bad theory. Most medical informaticians think that clinical
medicine is more complex, busier, more diverse and has more
traps for the unwary than, say, most business domains. Imposing
neat theoretical ideas from basic computer or cognitive sciences
is naive if we do not understand the complexities of everyday clin-
ical practice, and is a recipe for failure at best and the disdain of
one’s clinician colleagues at worst.

A notable danger lies in assuming that elegant theoretical ideas,
such as abstract notions of rationality and scientific theories of
medical thinking and clinical decision-making, can be directly ap-
plied to clinical practice. Modern medicine is scientifically
grounded but even in the contemporary period of evidence-based
practice many practitioners maintain that clinical work is an ‘‘art
not a science”, in that it must combine scientific perspectives with
an understanding of individual human values and emotions. Right
or wrong, technologies based on ‘‘rational theories”, however,
powerful, will not get their vote.

However, the scale and complexity of modern healthcare sys-
tems is increasing relentlessly. The sheer quantity of medical infor-
mation, even within a single specialty, is already beyond the power
of one person to comprehend [4,17]. Evidence is accumulating that
failing to provide standard treatment is a problem of epidemic pro-
portions [38]. Over 10% of patients admitted to NHS hospitals
experienced an adverse event; around half of these events were
judged preventable with ordinary standards of care. A third of ad-
verse events led to moderate disability or death [57].8 Like Sittig
et al. and many others we believe that decision support technologies
offer a new option for preventing and mitigating medical errors and
organisational failures, but we also believe that the scale of the prob-
lem, and the key issue of safety management, mean that an empirical
approach to CDS design and application deployment by itself is not
to be trusted. In our view it demands a systematic approach which
is grounded in clear engineering principles. These principles can
draw from theories of clinical judgement and the causes of medical
error; rational theories of decision-making; formal and verifiable
representations of medical knowledge, and appropriate combina-
tions of these and other traditions.

What is also critical, though, is that design principles are suffi-
ciently well articulated that they shed useful light on the reasons
why particular technologies or applications succeed or fail in clin-
ical practice and, if they do not succeed we can see how the theo-
ries are being used inappropriately or if they are just plain wrong.

8 These results have been extensively cited and discussed, see http://
www.bmj.com/cgi/content/abstract/322/7285/517.

842 J. Fox et al. / Journal of Biomedical Informatics 43 (2010) 831–843

http://www.bmj.com/cgi/content/abstract/322/7285/517
http://www.bmj.com/cgi/content/abstract/322/7285/517


Acknowledgment

This work was supported by Grant EP/F057326 from the EPSRC
to J. Fox, D. Glasspool, and C. Vincent.

References

[1] Austin, M. Information integration and decision support for multidisciplinary
team meetings on colorectal cancer. Doctoral dissertation, University of
Oxford; 2008.

[2] Baral C, Gelfond M. Logic programming and knowledge representation. J Logic
Program 1994;19:73–148.

[3] Barker A, Besana P, Robertson D, Weissman J. The benefits of service
choreography for data-intensive computing. CLADE’09; 2009.

[4] Bates DW, Gawande AA. Improving safety with information technology. N Engl
J Med 2003;348:2526–34.

[5] Beveridge M, Fox J. Automatic generation of spoken dialogue from medical
plans and ontologies. J Biomed Inform 2006;39(5).

[6] Bradbrook K, Winstanley G, Glasspool D, Fox J, Griffiths R. AI planning
technology as a component of computerised clinical practice guidelines. In:
Miksch S, Hunter J, Keravnou E, editors. Proceedings of the 10th conference on
artificial intelligence in medicine (AIME 05). Berlin: Springer-Verlag. ‘‘Lecture
Notes in AI” series. p. 171–80.

[7] Brahnam S, editor. Intelligent decision support systems in healthcare using
agents and virtual reality. Berlin: Springer-Verlag; Forthcoming.

[8] Busemeyer J, Hastie R, Medin DL. Decision making from a cognitive
perspective. Academic Press; 1995.

[9] Chesñevar C, McGinnis J, Modgil S, Reed C, Simari C, Simari G, et al. Towards an
argument interchange format. Knowledge Eng Rev 2007;21(4):293–316.

[10] Chidgey J, Leng G, Lacey T. Implementing NICE guidance. J R Soc Med
2007;100:448–52.

[11] Coiera E. When conversation is better than computation. JAMIA 2000;7:
277–86.

[12] Collins BE, Guetzkow H. A social psychology of group processes for decision-
making. New York: Wiley; 1964.

[13] Dowie J, Elstein A. Professional judgment: a reader in clinical decision
making. New York: Cambridge University Press; 1988.

[14] Elstein AS, Shulman LS, Sprafka SA. Medical problem solving: an analysis of
clinical reasoning. Cambridge, MA: Harvard Univ. Press; 1978.

[15] Emery J, Walton R, Murphy M, Austoker J, Yudkin P, Chapman C, et al.
Computer support for recording and interpreting family histories of breast and
ovarian cancer in primary care: comparative study with simulated cases. Br
Med J 2000;321:28–32.

[16] Forsyth DR. Group dynamics. Belmont, CA: Thomson Wadsworth; 2006.
[17] Fox J, Das S. Safe and sound: artificial intelligence in hazardous

applications. MIT and AAAI Press; 2000.
[18] Fox J, Johns N, Rahmanzadeh A. Disseminating medical knowledge-the

PROforma approach. Artif Intell Med 1998;14:157–81.
[19] Fox J, Patkar V, Thomson R. Decision support for healthcare: the PROforma

evidence base. Inform Prim Care 2006;14(1):49–54.
[20] Fox J, Patkar V, Chronakis I, Begent R. From practice guidelines to clinical

decision support: closing the loop. J R Soc Med 2009;102:464–73.
[21] Fox J, Glasspool DW. Knowledge, arguments, and intentions in clinical

decision-making. In: Paton R, McNamara L, editors. Multidisciplinary
approaches to theory in medicine. Amsterdam: Elsevier; 2006. p. 103–29.

[22] Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J,
et al. Effects of computerized clinical decision support systems on practitioner
performance and patient outcomes: a systematic review. JAMA
2005;293(10):1223–38.

[23] Glasspool DW, Oettinger A, Smith-Spark JH, Castillo FC, Monaghan VEL, Fox J.
Supporting medical planning by mitigating cognitive load. Methods Inf Med
2007;46(6):636–40.

[24] Glasspool DW, Fox J. Knowledge, argument and meta-cognition in routine
decision-making. In: Betsch T, Haberstroh S, editors. The routines of decision
making. New Jersey: Lawrence Erlbaum; 2005. p. 343–58.

[25] Goldstein W, Hogarth R, editors. Research on judgment and decision making:
currents, connections, and controversies. Cambridge University Press; 1997.

[26] Grando MA, Glasspool DW, Fox J. Petri Nets as a formalism for comparing
expressiveness of workflow-based Clinical Guideline Languages. In: Proc.
PROHealth08. Lecture notes in computer science. Springer-Verlag; 2008.

[27] Greenes RA, editor. Clinical decision support: the road ahead. New
York: Academic Press; 2006.

[28] Han B, Song S, Lee K, Jang K, Shin D. Multi-agent system based efficient
healthcare service. Adv Commun Technol (ICACT) 2006.

[29] Johnson PD, Tu S, et al. Using scenarios in chronic disease management
guidelines for primary care. Proc AMIA Annu Symp 2000:389–93.

[30] Jon Emery, Robert Walton, Andrew Coulson, David Glasspool, Sue Ziebland,
John Fox. Computer support for recording and interpreting family histories of

breast and ovarian cancer in primary care (RAGs): qualitative evaluation with
simulated patients. Br Med J 1999;319:32–6.

[31] Jon Emery, Robert Walton, Michael Murphy, Joan Austoker, Pat Yudkin, Cyril
Chapman, et al. Computer support for interpreting family histories of breast
and ovarian cancer in primary care: comparative study with simulated cases.
Br Med J 2000;321:28–32.

[32] Jon Williamson, Dov Gabbay, editors. Journal of applied logic special issue on
combining probability and logic. J Appl Logic 2003; 1: 3–4.

[33] Kantor G, Svirbely JR, Johnson K, Sriram MG, Rodriguez JR, Smith J. MEDAL: the
medical algorithm project. Proc MedInfo. Stud Health Technol Inform
2001;84(1):298.

[34] Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice
using clinical decision support systems: a systematic review of trials to
identify features critical to success. Br Med J 2005;330:765–8.

[35] Klein G. Sources of power. Cambridge, MA: The MIT Press; 1998.
[36] Labrou Y, Finin T, Peng Y. Agent communication languages: the current

landscape. IEEE Intell Syst 1999;14:45–52.
[37] Laleci GB, Dogac A, Olduz M, Tasyurt I, Yuksel M, Okcan M. SAPHIRE: a multi-

agent system for remote healthcare monitoring through computerized clinical
guidelines. In: Annicchiarico R, Cortez U, Urdiales C, editors. Agent technology
and e-Health. Basel: Birkhäuser; 2008. p. 25–44.

[38] McGlynn EA, Asch SM, Adams J, et al. The quality of health care delivered to
adults in the United States. N Engl J Med 2003;348:2635–45. J Am Med Inform
Assoc; 2007.

[39] Mulyar N, van der Aalst WMP, Peleg M. A pattern-based analysis of clinical
computer-interpretable guideline modeling languages. J Am Med Inform Assoc
2007;14:781–7.

[40] Nealon JL, Moreno A, editors. Applications of software agent technology in
the health care domain, whitestein series in software agent techno-
logies. Basel: Birkhäuser Verlag; 2003.

[41] Ohno-Machado L, Gennari JH, et al. The guideline interchange format: a model
for representing guidelines. J Am Med Inform Assoc 1998;5(4):357–72.

[42] Pagliari C, Sloan D, Gregor P, Sullivan F, Detmer D, Kahan JP, et al. What is
eHealth (4): a scoping exercise to map the field. J Med Internet Res 2005;7(1).

[43] Peleg M, Tu S, et al. Comparing computer-interpretable guideline models: a
case-study approach. J Am Med Inform Assoc 2002;10(1):52–68.

[44] Petri CA. Kommunikation mit Automaten. Ph.D. thesis, Institut fur
instrumentelle Mathematik; 1962.

[45] Quaglini S, Stefanelli M, Lanzola G, Caporusso V, Panzarasa S. Flexible
guideline-based patient careflow systems. Artif Intell Med 2001;22(1):65–80.

[46] Robertson D. Multi-agent coordination as distributed logic programming. In:
Proc international conference on logic programming; 2004.

[47] Schwartz S, Griffin T. Medical thinking: the psychology of medical judgment
and decision-making. New York: Springer-Verlag; 1986 [Italian Edition: Bollati
Boringhieri Editore, 1991].

[48] Shahar Y, Young O, Shalom E, Mayaffit A, Moskovitch R, Hessing A, et al.
DeGeL: a hybrid multiple-ontology framework for specification and retrieval
of clinical guidelines. In: Proceedings of the 9th conference on artificial
intelligence in medicine – Europe (AIME)’03. Heidelberg: Springer-Verlag;
2003. p. 122–31.

[49] Shahar Y, Miksch S, Johnson P. The Asgaard project: a task-specific framework
for the application and critiquing of time-oriented clinical guidelines. Artif
Intell Med 1998(14):29–51.

[50] Siebes R, Dupplaw D, Kotoulas S, Perreau de Pinninck A, van Harmelen F,
Robertson D. The openknowledge system: an interaction-centered approach to
knowledge sharing. In: On the move to meaningful internet systems: proc
CoopIS 2007. Berlin: Springer-Verlag; 2007. p. 381–90.

[51] Sittig D, Wright A, Osheroff JA, Middletone B, Jteich J, Ash J, et al. Grand
challenges in clinical decision support. J Biomed Inform 2008;41(2):387–92.

[52] Sox H, Blatt M. Medical decision making. American College of Physicians;
2007.

[53] Sutton DR, Fox J. The syntax and semantics of the PROforma guideline
modelling language. J Am Med Inform Assoc 2003;10(5):433–43.

[54] Tu Samson W, Campbell James R, Glasgow Julie, Nyman Mark A, McClure
Robert, McClay James, et al. The SAGE guideline model: achievements and
overview. J Am Med Inform Assoc 2007;14(5):589–98.

[55] Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases.
Science 1974;185(4):1124–31.

[56] Patkar V, Hurt C, Steele R, Love S, Purushotham A, Williams M, et al. Evidence-
based guidelines and decision support services: a discussion and evaluation in
triple assessment of suspected breast cancer. Br J Cancer 2006;95:1490–6.

[57] Vincent C, Neale G, Woloshynowych A. Adverse events in British hospitals:
preliminary retrospective record review. Br Med J 2001;322:517–9 (3 March).
Available from http://www.bmj.com/cgi/content/abstract/322/7285/517.

[58] White S, Miers D. BPMN modeling and reference guide lighthouse
Pt. FL: Future Strategies Inc.; 2008.

[59] Zhang, P. Multi-agent systems supported collaboration in diabetic healthcare.
Blekinge Institute of Technology, Doctoral dissertation series; 2008. Available
from: http://www.bth.se/fou/forskinfo.nsf/alfs/412a22709997af61c125745e
003680a2.

J. Fox et al. / Journal of Biomedical Informatics 43 (2010) 831–843 843

http://www.bmj.com/cgi/content/abstract/322/7285/517
http://www.bth.se/fou/forskinfo.nsf/alfs/412a22709997af61c125745e003680a2
http://www.bth.se/fou/forskinfo.nsf/alfs/412a22709997af61c125745e003680a2

