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LETTER TO THE EDITOR

PIN domain of Nob1p is required for D-site cleavage in
20S pre-rRNA
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ABSTRACT

Nob1p (Yor056c) is essential for processing of the 20S pre-rRNA to the mature 18S rRNA. It is part of a pre-40S ribosomal
particle that is transported to the cytoplasm and subsequently cleaved at the 3� end of mature 18S rRNA (D-site). Nob1p is also
reported to participate in proteasome biogenesis, and it was therefore unclear whether its primary activity is in ribosome
synthesis. In this work, we describe a homology model of the PIN domain of Nob1p, which structurally mimics Mg2+-dependent
exonucleases despite negligible similarity in primary sequence. Insights gained from this model were used to design a point
mutation that was predicted to abolish the postulated enzymatic activity. Cells expressing Nob1p with this mutation failed to
cleave the 20S pre-rRNA. This supports both the significance of the structural model and the idea that Nob1p is the long-sought
D-site endonuclease.
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INTRODUCTION

The synthesis of ribosomes is a major metabolic pathway in
all cells. To assist in the processing of rRNA and its pack-
aging with ribosomal proteins, more than 150 trans-acting
proteins are recruited. Many or all of the major intermedi-
ates in the processing of the rRNA precursors have been
identified (for review, see Kressler et al. 1999; Venema and
Tollervey 1999), and an increasingly detailed picture of the
order of events in ribosome assembly is emerging (Dragon
et al. 2002; Fatica et al. 2002, 2003b; Grandi et al. 2002; Peng
et al. 2003; Saveanu et al. 2003; Schafer et al. 2003; Jakov-
ljevic et al. 2004; Krogan et al. 2004). In addition, recent
studies have shed light on the mechanisms governing the
export of ribosomal subunits to the cytoplasm (Ho et al.
2000; Bassler et al. 2001; Gadal et al. 2001; Milkereit et al.
2001; Moy and Silver 2002; Fatica et al. 2003b; Kallstrom et
al. 2003; Dlakic and Tollervey 2004; Oeffinger et al. 2004).
However, a notable gap in our understanding of pre-rRNA

processing is the identity of nucleases responsible for several
of the cleavage steps (for review, see Fatica and Tollervey
2002).

Nob1p copurifies with late, cytoplasmic 40S pre-ribo-
somal particles (Schafer et al. 2003) and is essential for
cleavage of site D in the 20S pre-rRNA (Fatica et al. 2003a).
The C-terminal tail of ribosomal protein rpS14 is also re-
quired for this final step in 18S rRNA maturation (Jakov-
ljevic et al. 2004). In addition, Nob1p was implicated in
proteasome biogenesis (Tone and Toh-e 2002), raising the
possibility that its role in 20S pre-rRNA processing might be
indirect or secondary. Nob1p contains a predicted PIN do-
main, and the structure of an archaeal PIN domain was
recently solved and shown to have structural homology to
T4 phage RNase H and flap endonucleases (Arcus et al.
2004). This confirmed an insightful suggestion that PIN
domains function as nucleases in nonsense-mediated
mRNA decay and RNAi, which was based on scant sequence
homology to Mg2+-dependent exonucleases (Clissold and
Ponting 2000). Together, these results suggested that Nob1p
might be the endonuclease that cleaves site D. We used the
archaeal PIN structure to build a three-dimensional model
of the PIN domain of Nob1p and designed point mutations
in conserved acidic residues (shown in Fig. 2 of Fatica et al.
2003a). These experiments support the model that Nob1p is
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the nuclease responsible for cleavage of the 20S pre-rRNA at
site D.

RESULTS AND DISCUSSION

PIN domains are ∼100 residues long and are found in all
three kingdoms of life (Makarova et al. 1999; Clissold and
Ponting 2000). The structure of a representative PIN do-
main from an archaeal genome revealed a fold similar to
exonucleases (Arcus et al. 2004). In particular, the PIN do-
main displayed sequence conservation and spatial clustering
of metal-chelating acidic residues that is similar to T4 phage
RNase H and flap endonucleases, and it is presently classi-
fied in the same fold family as a group of 5� to 3� exonucle-
ases (Murzin et al. 1995). This domain is organized as a
tetramer that forms a ring structure with a central hole that
could accommodate ssDNA or RNA, but not dsDNA. In
vitro experiments confirmed that the enzyme cleaves long
5� to 3� single-stranded DNA overhangs in Mg2+-dependent
manner (Arcus et al. 2004). We used this structure as a
template for a homology model of the Nob1p PIN domain.
Four acidic residues were previously identified as potentially
important based on primary sequence conservation among
Nob1p orthologs (see Fig. 2 in Fatica et al. 2003a), and the
model shows that these cluster together within the putative
active site (residues are shown in ball-and-stick representa-
tion in Fig. 1A). We also assembled an in silico tetramer
(Fig. 1B) with subunit arrangements identical to that of
archaeal PIN domains (Arcus et al. 2004) to assess whether

the remainder of Nob1p, positioned at the C terminus of
the PIN domain, would prevent tetramer formation. Be-
cause C-termini of PIN domains point outside of the ring
structure (indicated with arrows in Fig. 1B), the rest of the
protein could viably fold on the outside of the ring. It
should be noted, however, that there are currently no data
on the oligomeric state of Nob1p, and this ring-shaped
structure should be regarded only as one possible spatial
arrangement.

The model in Figure 1A is colored according to evolu-
tionary conservation among Nob1p homologs (Pei and
Grishin 2001), with the most conserved residues in red and
the least conserved in blue, giving an indication of their
relative functional importance. Residues D15, E43, and D92
in Nob1p show greater conservation than residue D110.
Based on this result, we constructed mutants carrying sub-
stitutions in two aspartate residues, D92N and D110N. Sub-
stitutions of acidic residues with their amides are predicted
to cause minimal changes in physicochemical properties of
the protein other than its charge, yet they are sufficient to
abolish coordination of metal ions within the active sites
of nucleases (Baker and Luo 1994). We anticipated that
the D92N mutation was more likely to inhibit pre-rRNA
cleavage, since D92 is absolutely conserved in all PIN-do-
main proteins. To assess the ability of the mutant forms of
Nob1p to support growth, they were expressed constitu-
tively from a plasmid in a strain in which the endogenous
NOB1 gene was under the control of a repressible GAL
promoter (strain GAL�HA-nob1 described in Fatica et al.

2003a). Serial dilutions of transformed
strains were plated on medium contain-
ing either galactose or glucose, and their
growth was analyzed. As shown in Fig-
ure 2A, the conditional GAL�HA-nob1
strain transformed either with an empty
vector or the Nob1pD92N mutant failed
to grow on glucose, while strains
complemented by plasmids expressing
wild-type Nob1p or the Nob1pD110N

mutant grew. These results confirm that
the residue D92 is required for Nob1p
function. In contrast, the less-conserved
residue D110, although also positioned
within the active site, is not essential for
function.

Considering the proposed role of
Nob1p in proteasome maturation (Tone
and Toh-e 2002), it remained formally
possible that the D92N mutation af-
fected some cellular process other than
rRNA processing. To test whether the
growth defects correlate with the inhibi-
tion of pre-rRNA cleavage, we per-
formed Northern analyses of high mo-
lecular-weight RNA species from strains

FIGURE 1. Three-dimensional model of the PIN domain of Nob1p. (A) The model was built
using MODELLER (Sali and Blundell 1993). It has good stereochemistry and passes the quality
criteria for homology models (Sanchez and Sali 1998). The model is colored by positional
sequence conservation among eukaryotic and archaeal homologs of Nob1p (Pei and Grishin
2001). Red color indicates the most conserved residues and blue stands for the least conserved
ones. The colors in between correspond to intermediate levels of conservation. Four acidic
residues clustered in the putative active site are shown in ball-and-stick representation. (B)
Tetrameric assembly of Nob1p PIN domains based on the similar arrangement of archaeal PIN
domains (Arcus et al. 2004). The transparent molecular surface shows the real dimensions of
the central hole that could accommodate RNA or ssDNA but not dsDNA. Arrows indicate
positions of the C-termini.

PIN domain of Nob1p has an endonuclease activity

www.rnajournal.org 1699



described above. Following transfer to glucose medium, the
GAL�HA-nob1 strain showed a greatly reduced level of 18S
rRNA and accumulation of 20S pre-rRNA (Fig. 2B). The
relatively low steady-state levels of 20S pre-rRNA seen in
the Nob1p-depleted strain in Figure 2B reflect the instability
of this species, which was clearly accumulated when assayed
by pulse-chase labeling in vivo (see Fig. 5A in Fatica et al.
2003a). Complementation with a plasmid expressing wild-
type Nob1p or the Nob1pD110N mutant restored 20S pro-
cessing. In contrast, the plasmid expressing the Nob1pD92N

mutant did not support 20S cleavage, linking this point
mutation directly to rRNA processing.

A recent study presented data for the involvement of
Nob1p and Pno1p (Yor145c) in proteasome function (Tone
and Toh-e 2002). These two proteins, however, have no
domains known to be associated with proteasome function,
but do have domains associated with RNA metabolism, for
example, the PIN domain in Nob1p and the KH-domain in
Pno1p (Peng et al. 2003; Senapin et al. 2003; Vanrobays et
al. 2004). In light of our earlier work (Fatica et al. 2003a)
and the data presented here, it seems clear that both Nob1p
and Pno1p (also called Rrp20p or Dim2p) have primary
functions in ribosome synthesis. This conclusion does not
exclude indirect roles for Nob1p and Pno1p in proteasome
formation. It has been proposed that RNA processing and
degradation are linked with proteasome functions (Koonin
et al. 2001), and several trans-acting ribosomal factors are

involved in multiple cellular processes (Du and Stillman
2002; Oeffinger et al. 2002; Oeffinger and Tollervey 2003).

The work presented here shows that a PIN domain is
required for pre-rRNA cleavage in addition to previously
proposed roles in RNAi and nonsense-mediated mRNA de-
cay (Clissold and Ponting 2000). This recruitment of PIN
domains for pre-rRNA processing has, to date, been found
only in Archaea and Eukaryotes. Studies are underway to
assess the roles of other PIN-domain proteins of Saccharo-
myces cerevisiae in RNA processing.
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