
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reliable and Accountable System Design

Citation for published version:
Krause, P, Hesketh, J & Robertson, D 1997, 'Reliable and Accountable System Design' Knowledge
Engineering Review, vol 12, no. 3, pp. 289-305.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Knowledge Engineering Review

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

http://www.research.ed.ac.uk/portal/en/publications/reliable-and-accountable-system-design(a108257a-c11a-4e22-8607-a7d57d2966bd).html


The Knowledge Engineering Review, Vol. 12:3, 1997, 289±305

Reliable and accountable system design

PAUL KRAUS E 1 , 3 , J ANE HE SKETH 2 a n d DAVE ROBERT SON 2

1Philips Research Laboratories, Crossoak Lane, Redhill, Surrey, UK
2Department of Arti®cial Intelligence, Edinburgh University, 80 South Bridge, Edinburgh, Scotland

Abstract

Few would disagree with the assertion that safe engineering starts from the early stages of system

design and should be maintained throughout the lifecycle. Di�erent engineering domains have

developed, mostly informal, frameworks with which they hope to promote this attitude. An

interesting question for the KBS community is whether some of our methods for knowledge

representation and reasoning can be used to assist in understanding, representing and interpreting

such frameworks. This paper concentrates on what is (arguably) the area of greatest concern:

relating system requirements to high level design. We highlight what appear to be the major

di�culties which face us in this area, using examples from systems which have been built to tackle

them.

1 Introduction

It has been suggested that the majority of software failures stem from misunderstandings of the

operational requirements of applications. Combined with this, we may ®nd that arguments for the

safety of software, in the context of system requirements, are poorly articulated. In this paper we

discuss a number of approaches that may be taken to provide formal representations of key aspects

of system requirements and to linking these to safety arguments. In particular, we are interested in

studying how knowledge-based approaches may assist in:

. representing and reasoning about system requirements;

. articulating arguments for the safety of a system;

. harnessing domain knowledge to control the generation of system requirements.

We should be explicit over precisely what aspects of the software lifecycle we are aiming to support.

Figure 1 outlines a fairly standard ``V-model'' for software development. As a high level view, this

outlines the progression from requirements elicitation, through speci®cation, detailed design and

coding. Once coded, modules are tested individually, then tested further as they are integrated into

the complete system. Finally, once the system is complete, system tests and then acceptance tests are

performed. The horizontal lines indicate the relevant aspect of the development process that the

system is being tested against in a particular test phase. For example, during the acceptance tests one

is verifying that the ®nal implemented system meets the requirements agreed in the requirements

document. In the system tests, on the other hand, one is validating the implemented system against

the speci®cation.

As it stands, this provides a rather weak (in terms of poorly controlled) software development

process. Of particular concern is the implication that testing is an activity that is carried out during

the late stages of the process. This is indeed the case in many projects. However, this has a serious

3Paul Krause started work on this paper whilst a member of the Advanced Computation Laboratory, Imperial
Cancer Research Fund, London UK, and gratefully acknowledges Professor John Fox for use of the
department's facilities during this time.



problem. Faults that are introduced in the early phases of the development process are often detected

in the latest phases, at a point when they are deeply entrenched in the system design, and hence most

expensive to correct. Figure 2 gives a graphical representation of this. Maisey and Dick (1996) used

the idea of a defect grid to analyse the e�ectiveness of software development processes. They are

read in an analogous way to the grids of distances between towns found in road atlases. The number

in a square formed by the intersection of a ``row'' and a ``column'' is the number of faults detected at

the phase labelling the row that were introduced during the phase labelling the column. For

example, in the hypothetical case illustrated, seven defects detected during the acceptance tests were

introduced during the requirements phase. Although this is a hypothetical case, it is based on data

derived from a real project.

As mentioned, defects introduced early and detected late can be very expensive to correct. The

ideal to strive for is a software development process whereby all defects are detected at the earliest

stage possible. The use of structured or more formal development methods can help with this in two

ways. Firstly, the product of a given phase can be veri®ed against the product of the preceding phase

(a detailed design veri®ed against a speci®cation, for example), so reducing the chance of

introducing defects. Secondly, the generation of the product of a given phase can help validate the

product of the preceding phase (the design activity may highlight inconsistencies in the speci®cation,

for example), so introducing an early test activity.

Now, although there are structured, semi-formal and formal approaches which can be followed

from speci®cation through to the later phases of the software process, the requirements elicitation

phase is much less well supported. The provision of appropriate formal support is a hard problem,

Figure 1 Standard ``V-model'' for the software development process

Figure 2 A hypothetical defect grid, redrawn after Maisey and Dick (1996). Note, ``rows'' travel from bottom
left to top right, whilst ``columns'' travel from top left to bottom right

p. k r au s e e t a l. 290



for reasons which will be enlarged upon in the next section. Nevertheless, if we are to achieve the

goal of enabling validation and veri®cation activities to be carried out from the early phases of a

project, it is vital that this problem be addressed.

The use of the word ``vital'' in the previous sentence makes for a strong claim. However, recent

work clearly demonstrates that additional e�ort invested in the requirements elicitation phase of a

project has a signi®cant payo� in the later phases of the project (Blackburn et al., 1996). The savings

in rework due to missing or misunderstood requirements are substantial, with additional bene®ts

accruing through the earlier realisation of a stable functional speci®cation and shared under-

standing of the project goals. In the case of object-oriented speci®cation and design, Jacobsen's use-

cases provide a tool for eliciting an initial model in terms which are readily understandable by all

project stakeholders (e.g. Gough et al. 1995). However, as yet formal methods such as Z provide no

such technique. Guides to the use of formal languages, of which Woodcock and Davis (1996) is a

good example but still typical in this respect, start with a speci®cation and then proceed through

re®nement and proof to an implementation. They are agnostic as to how the engineers identify what

is to be speci®ed in the ®rst place. What is needed is support for the elicitation and analysis of

requirements in a language which is communicable to all project stakeholders, yet is su�ciently

precise that the resulting model can provide a basis for the development of a formal speci®cation.

The goal of this paper is to stimulate further work in this area by using three examples of

approaches that have been taken. Although they provide partial solutions to the problem, they are

also used as a framework for discussing and illustrating some of the di�culties that remain to be

addressed.

2 Components of a safety argument

In the introduction, we discussed the aim of studying how knowledge-based approaches may help in

the representation of, reasoning about and generation of system requirements. We also mentioned

the wish to link key aspects of system requirements to safety arguments. However, there is a need to

be clear about precisely which form of safety arguments are of chief concern. The MOD Defence

Standard 00±55 (UK Ministry of Defence, 1995a,b) requires two forms of argument:

(a) deterministic arguments, which are essentially arguments that the Software Requirements

Speci®cation (SRS) is logically correct;

(b) arguments based on observing the behaviour of the SRS.

The second form of arguments are essentially derived from testing the implemented system, and are

not covered in this paper. The ®rst form of argument are of an analytic nature and are the concern of

this paper.

Safety arguments are sophisticated and may combine many di�erent forms of evidence. Certainly,

they must include at least some description of the requirements (describing what we would like) and

the system itself (describing what the designers intend us to get). This minimal classi®cation is

enough to distinguish some key problems in representing safety arguments:

1. How can we be precise in our description of requirements or systems without alienating our

clients, who may not be familiar with the formal languages needed for this task?

2. How can we relate requirements to system descriptions, given that the concepts used to describe

each may be di�erent?

3. Since safety arguments are seldom watertight, how can we be more explicit about our residual

uncertainty and the debate leading up to commitments in our current design?

These are basically a re-expression of the basic problems of requirements engineering (see, e.g.,

Flynn et al., 1997). The user-developer culture gap is leading to an increasing trend towards

providing techniques to enable users to build requirements models (Greenspan, 1995). Yet,

especially in safety critical systems, we still need precise descriptions of requirements that can be

Reliable and accountable system design 291



related to the more formal systems descriptions that the developers need. This leads to problems (1)

and (2). Furthermore, there is increasing awareness that requirements are not objective, but

emergent (Dobson and Strens, 1994); they are socially constructed by the interactions that take

place within the requirements process. Thus we can never be sure that a requirements document is

complete and correct in any absolute sense. This is as true of the safety properties of the speci®ed

system, as it is of any other aspect. Nevertheless, as experience develops in a certain domain, we may

be able to identify certain codes of practice, norms and obligations, which a requirements

speci®cation can be checked against. This is essentially the reasoning behind problem (3), and

motivates the inclusion of the work that is described in section 5 of this paper. As far as we are

aware, these are the key current ``meta-concerns'' in the requirements engineering domain and so

are used as the focus of this paper.

Problems (1) and (3) apply equally to requirements and system descriptions. In this paper, we

adopt the simplest approach of using the same formal language to describe both components. This

supports a move towards a seamless approach to these two stages in system development. However,

it does not entirely solve problem (2) because, although the formal system in which we operate may

be uniform, the vocabulary we use for each component may be di�erent.

In the remainder of this paper we examine the extent to which formal languages (of the sort

familiar to computational logicians and many knowledge engineers) can help to cope with each of

these problems. To make our discussion concrete we give examples of systems which have been

targeted at each issue and assess how closely they meet their goals. Although they are valuable

contributions, none of these systems give de®nitive answers to any of the questions we raise.

However, they are representative of what can currently be done and give an indication of the limits

to what can be achieved with current methods. Section 3 is a response to the ®rst of our problems; it

looks at methods for relating natural language to formal language in the context of requirements

speci®cations. Section 4 considers the second problem by demonstrating methods for linking

constraints imposed by a code of practice to the elements of construction of a speci®cation for a

safety shutdown system. Section 5 addresses our third problem by looking at ways in which we may

use formal languages to represent and reason about safety arguments for speci®cations.

All of the systems we describe are domain speci®c in the ®nal analysis. In section 3 we are able to

provide translations from ``natural'' to formal language by making two restrictions. Firstly the

lexicon is limited to that of a particular domain. Secondly, a ®xed association is used between the

grammatical structure of English sentences and the syntactic structure of the formal language. If the

domain were changed, then it would almost certainly be necessary to alter the lexicon and possibly

all the grammatical mappings. In section 4 we connect requirements and systems speci®cations

through structural ``schemata'' which associate patterns in the system speci®cation with properties

which are known to be sought in the requirements speci®cation. Again, if the domain were to be

changed, then those properties, and therefore the links, might also change. Even in section 5 the

symbols used to describe preferences and obligations would have meanings grounded in particular

domains. These would change as we moved between domains.

In consequence, none of the systems presented in this paper provides a de®nitive, general-purpose

answer to the problems we have raised. This is not surprising as in most of the systems the role of

domain speci®c components is to help ®t the system to the work practices of a given domain.

Although this limits the ease with which the systems can be used without speci®c domain expertise, it

does make themmore immediately relevant to application problems. A more extensive discussion of

the value of domain-speci®c formal speci®cation can be found in Robertson (1996).

3 Controlled natural language for requirements speci®cations

3.1 Features of requirements speci®cations

Requirements documents for software systems are generally written as natural language documents,

perhaps augmented by Data Flow Diagrams (DFD) or some other graphical representation.

p. k r au s e e t a l. 292



Guidelines can be usefully followed to structure the requirements document and ensure that key

areas are addressed. In addition, there are some widely used categorisations of the statements that

are included in a requirements document. It will be useful to revisit these here for reference during

the remainder of the paper.

The key feature of a requirements speci®cation is that it should be primarily concerned with

``what'' rather than ``how''. It could be argued that such a document should only concern itself with

the function of the intended system. Inclusion of statements of how that function be achieved may

unreasonably constrain the design process and lead to the development of software which is di�cult

to port to a di�erent or upgraded environment. Nevertheless, for pragmatic reasons it may be

necessary to include such non-functional requirements as part of the requirements document; it may

be essential to use a speci®c processor type, or there may be restrictions on memory usage imposed

by cost or space constraints, for example. Indeed, when one is considering safety critical systems

high level properties concerning, for example, space, speed, number of active users, robustness and

interruptability can become essential requirements and design decisions must necessarily take them

into account. We make the following distinction:

. Functional requirements are only concerned with what the system is to do.

. Non-functional requirements are constraints that must be imposed on the design decisions.

Both functional and non-functional requirements must be satis®ed by the software design. There

may also be additional conditions which are merely used to guide the design process where free

choice exists. For example, a preference might be expressed to maximise access time at the expense

of increased memory usage, rather than producing a memory e�cient piece of code with slower

access time. Such requirements are usually referred to as goals:

. Goals are conditions which guide the design process where free choice exists.

Just ensuring that the functional requirements, non-functional requirements and goals are clearly

identi®ed can add signi®cantly to the e�ectiveness of a requirements document. However, if these

requirements statements are expressed in natural language, they may still be open to problems of

ambiguity, incompleteness, imprecision and lack of clarity. There have been suggestions that formal

speci®cation languages might be used to eliminate some of these problems. The problem here is that

such speci®cations are not easily communicable to non-mathematicians. Consequently, few domain

specialists would be prepared to accept such a document as a contract for the software system

(Sommerville, 1992). Fuchs and Schwitter (Fuchs and Schwitter, 1995; Schwitter and Fuchs, 1996)

propose the use of controlled natural language to improve the quality of requirements speci®ca-

tions, whilst still maintaining their readability. This has led to the development of the Attempto

system.

3.2 The Attempto system

In Attempto, natural language is restricted to a controlled subset with a well-de®ned syntax and

semantics. The intent was to ®nd a subset that was su�ciently expressive for the domain specialists,

whilst being accurately and e�ciently interpretable by computer. This interpretation follows a two-

step process. Firstly a natural language statement is transformed into a Discourse Representation

Structure (DRS). This enables ambiguities and inter-text references (e.g., anaphora and abbrevia-

tions) to be resolved. Secondly, the DRS may be (optionally) translated into a Prolog representation

which is executable. By ``executable'' it is meant that questions may be asked (in controlled natural

language) of the speci®cation; the Prolog representation is at too high a level to be considered as a

prototype implementation. Although Fuchs and Schwitter do not discuss this explicitly, it would

seem that the Prolog representation might also be used as the basis of a detailed formal speci®cation,

written initially in Horn clause logic.

The speci®c natural language used in Attempto is English, so for brevity we will refer to

Reliable and accountable system design 293



Controlled English in the remainder of this section. As a minimal model, the following constructs

are supported:

. simple declarative sentences of the form subject-verb-object;

. if-then sentences;

. yes/no-queries and wh(at)-queries.

In addition, the controlled English text can contain:

. anaphoric references, e.g., pronouns;

. relative clauses, both subject and object modifying;

. comparative clauses;

. compound phrases (and-lists and or-lists);

. negation;

. abbreviations;

. ellipsis as reduction of coordinates.

Attempto has been demonstrated by specifying a simple automated teller machine ``SimpleMat''

(SM). The resolution of possible ambiguities can be demonstrated with the following fragment of

the speci®cation.

The customer enters a card and a numeric personal code. If it
is not valid then SM rejects the card.

Here the anaphoric reference via the pronoun ``it'' is most likely intended to be to the personal code,

but it could be the validity of the card that is being questioned. Attempto contains a Parser and a

Discourse Handler which together check sentences for syntactical correctness and analyse and

resolve inter-text references. A paraphrase explaining how Attempto has interpreted the input is

also generated and presented back to the user for checking. In this case, the paraphrase is:

the customer enters a card and the customer [same object]
enters [same predicator] a numeric personal_code.

if it [personal_code] is not valid then sm [simplemat] rejects
the card [same object].

If this statement does not conform to the user's intent then they must modify the original

speci®cation to generate a revised interpretation.

Whilst parsing a sentence, the parser must check for correctness against a prede®ned De®nite

Clause Grammar together with a prede®ned lexicon. The lexicon can be modi®ed via an appropriate

editor, which may be called during the parsing process if an undeclared term is encountered. The

resolution of references between sentences is e�ected by using Discourse Representation Theory to

provide a semantic structure for a given sentence in the context of the preceding sentences (Kamp

and Reyle, 1993; Covington et al., 1988). Our running example yields the following Discourse

Representation Structure (DRS):

[A, B, C, D]
customer(A)
card(B)
enter(A, B)
numeric(C)
personal_code(C)
enter(A, C)
named(D, simplemat)
IF:
[]
NOT:

p. k r au s e e t a l. 294



[]
valid(C)

THEN:
[]
reject(D, B)

The DRS has the important function of forcing the resolution of any ambiguities present in the

Controlled English representation. Attempto has ®xed strategies for doing this, and if the user

wishes to alter the interpretation they must alter the structure of the input sentence, as indicated

above. This is a valuable contribution, but there is another bene®t of using this representation. The

DRS can be straightforwardly translated into Prolog clauses. In Attempto these are wrapped up in a

term fact/1 and asserted into the knowledge base. In the case of SimpleMat we have:

fact(customer(0)).
fact(card(1)).
fact(enter(0, 1)).
fact(numeric(2)).
fact(personal_code(2)).
fact(enter(0,2)).
fact(named(3, simplemat)).
fact((reject(3,1):- neg(valid(2)))).

Note that the discourse referents are replaced by Skolem constants (0, 1, 2, etc.).

Once translated into Prolog, the speci®cation can be ``executed''. That is, the Prolog database can

be queried with events being asserted to build up a trace of behaviour. Figure 3 provides a schematic

of the overall system.

Figure 3 Overview of the Attempto system

Reliable and accountable system design 295



3.3 Critique

Attempto seems best ®tted to deal with the purely functional component of a requirements

speci®cation. Non-functional requirements and goals may, of course, be expressed in Controlled

English. However, it seems that Attempto will merely be able to record these statements as

assertions without supporting any further analysis of their potential impact on design decisions

and possible behaviours of completed systems. As yet there are no published accounts of using

Attempto on a signi®cantly sized application. Perhaps the most signi®cant contribution of

Attempto is that it enables a requirements speci®cation to be compiled into a logical theory. This

may then be queried and reasoned over using the automatic theorem prover Prolog.

This ability to reason over the requirements speci®cation means that some aspects of the

validation of the speci®cation can be automated. One could, for example, identify certain general

properties that a certain class of applications should satisfy, and check to see if an instance of this

class speci®ed using Attempto conformed to these norms. However, as it stands, Attempto o�ers no

speci®c mechanism to support such a function. In the next section, we shall review one approach to

handling this problem.

4 Automated reasoning support for design

4.1 Description of the requirements assistant

The work described in the previous section provides support for eliciting an unambiguous

requirements speci®cation, with there being some capability for reasoning about the resulting

speci®cation. An obvious next step is to see if some automated support can be given to the

generation of a more detailed system design which satis®es the requirements speci®cation. If one is

looking to develop safety critical, or other high integrity, systems, then there may also be scope for

using some formalisation of regulations or guidelines to constrain further the design choices that

may be made. In this section we will look at a Requirements Assistant (RA) which is an interactive

system for formalising and managing requirements, including guideline and regulatory require-

ments (Hesketh et al. 1997).

RA is a toolset which assists designers in managing the process of working with large complex

collections of requirements, with particular emphasis on safety critical systems. The system has been

demonstrated in the context of the development of a speci®c safety critical application: the design of

emergency shutdown systems for drilling rigs. However, the techniques are generally applicable and

could be usefully explored in the context of software rather than hardware development.

Given an outline functional speci®cation, relevant requirements from guidelines, or some other

corpus of knowledge, are found automatically and checked before being noti®ed to the designer

with a note of whether or not they are currently satis®ed. As design proceeds, progress in satisfying

requirements is monitored automatically and contributing choices are recorded. Such evidence of

adherence to guidelines is an endorsement of the validity of the design. In the absence of (or perhaps

in addition to) formal guidelines or regulations, one might look to developing a corpus of

knowledge based on past experience to provide similar validation checks. During any subsequent

system modi®cation, reference to this information can subsequently aid designers by drawing

attention to the implications changes will have on maintaining guideline satisfaction.

RA has been demonstrated using guidelines from Shell's code of practice for emergency shutdown

systems. We will look at an example where the device being controlled is a turbo-generator, and the

sensor that might initiate shutdown of the device is a drilling warning sensor. Some general

requirements from Shell's code of practice that might be applicable include:

G1. All trip demands cause shutdown of the appropriate outputs.

G2. On shutdown, outputs shall latch in the de-energised state until the initiating condition has

cleared and a manual reset of the logic has been performed.

p. k r au s e e t a l. 296



G3. Field devices may be reset. Reset shall be achieved by the provision of local push-buttons

incorporated into each output control device.

From G2 a human designer would conclude that the drilling warning sensor should be in logic level

1 during normal operation, but latch to 0 when an error occurs. This is normal fail-safe practice.

Furthermore all the signals which could trip the turbo-generator (including that from the drilling

warning sensor) should be logically ANDed. This will ensure that any single error will initiate a trip

and cause shutdown of the device, thus satisfying G1. To complete satisfaction of G2, the output of

the AND gate should be fed back as one of its inputs, thus ensuring that the error condition persists.

G3 now remains to be satis®ed. In order to override the error condition, the reset signal needs to

be at logic level 1 and must cancel the logical 0 persisting from the error state. This can be achieved

by ORing the reset and the latch and feeding this into the AND gate instead of the raw latch signal.

Figure 4 illustrates the resulting logic diagram.

The top-level goal of the Requirements Assistant is to provide support for some formalisation of a

set of requirements, and then assist in ensuring that any speci®c design meets those requirements

that are relevant to the design context currently under consideration. RA requires that the

formalisation of requirements be in a sequent-based logic which is decidable, but other than that

imposes no constraints on the formal language chosen. It provides a tool which allows a designer to

read an English text on-line, mark phrases or sentences, and then record their translation in

whatever formal language has been chosen. Note that this translation is carried out by hand and not

mechanically, as in Attempto.

Although RA does not provide a mechanical translation of the requirements, once translated the

formalisation is supported by:

. an interface which allows the designer to browse through the satis®ed and outstanding

requirements;

. links back from requirements expressed formally to the (viewable) natural language from which

they originated, thus allowing designers to see the formalised parts in context;

. a theorem prover which can display complete and incomplete proofs, attempt automatic proofs

and accept designer instructions;

. display of the formal language either as sequents or in a simple translation to a pseudo-english

translation.

The intent is that it be left open to whoever maintains the design support system to use a more

detailed formalisation for critical parts of the system and less detailed ones elsewhere. However,

experience to date has been focused on the use of a restricted form of ®rst order logic. We will make

some suggestions as to alternative logics that might fruitfully be used later on in this paper.

Let us now revisit the running example. It was mentioned above that the formal language used

must be sequent-based. In fact, the sequents used are a slight adaptation of the standard

interpretation of a sequent calculus in that the hypothesis list is used to specify the context in

which a requirement is applicable. In addition, the language used in the demonstrator is augmented

with an in®x operator ``->>'' which is used to denote causation. In this language, the requirements
G1, G2 and G3 above are formalised as the following four statements:

Figure 4 Logic diagram of latched reset

Reliable and accountable system design 297



machine(X), initiator(I), expected_consequence(I,X)
` tripped(I) ->> shut_down(X) R1.

machine(X),
Bs = {B | initiator(B)^expected_consequence(B,X)}
` reset(X) ^ (V s (on(s, Bs) ^ ok_signal(s))) ->>
ok_signal(X) R2.

machine(X) ` A r local_reset(r) ^ resets(r, X) R3.

machine(X)
shut_down(X) ^ not_reset(X) ->> latched(X) R4.

Note that all free variables that occur in the hypothesis list of a sequent are universally quanti®ed

across the whole of the sequent. These sequents have a general reading of Context ` Requirement.
That is, if the conjunction of formulae on the l.h.s. of the entailment relation symbol ` is valid, then
the requirement on the right hand side applies.

It should be emphasised again that R1±R4 provides a formalisation of the requirements G1±G3,

but not necessarily the only one. The selection of the context for any requirement is a matter of

judgement. If the contexts are too general, the designer will be deluged with irrelevant requirements.

On the other hand, if they are too speci®c they might not ever apply until the requirement was close

to being satis®ed anyway. In addition, the precise statements that are elicited from a set of

requirements is also a matter of judgement. The statement R2, which says that if a machine has

been reset and all sensors that control the machine signal an OK signal then the machine will return

to operation, could be omitted with the remaining set of statements super®cially providing a

satisfactory account of G1±G3. In fact, making explicit such implicit requirements can be an

important function of the formalisation process. However, precisely what needs explicating, and

how, are matters of judgement and these elements of judgement have an important implication.

Satisfaction of all relevant sequents should not be regarded as proof that a design satis®es the

corresponding English language code of practice. Rather, they are arguments supporting the

validity of a design. With the relatively lightweight formalisations used in RA the usability of the

system is increased, but the full precision of detailed formalisation is sacri®ced.

At this stage, we have the machinery to check a design to see if all relevant requirements are

satis®ed, and to prompt the designer with those that are not. However, before this checking can be

carried out, we must be able to specify the components in a design. The RA contains ®les of

schemata that specify the objects that can be selected and added to a design. In fact, as we shall see

later, RA itself can select objects to propose as solutions to unsatis®ed requirements.

Each schema has a name, a (possibly empty) context list, a list of components which constitute the

object, and the factual contributions it makes to the design. A schema's context is used to instantiate

variables which exist elsewhere in the schema, thus grounding the instance that is created and its

contributions. These contributions are phrased in the same language as the requirements, and the

objects are speci®cally designed to provide contributions which explicitly meet one or more of the

formal requirement statements. An example of a schema which is relevant to our running example is

that of a latched reset circuit which introduces a latch and links it to the reset control. The context in

which it can be applied consists of a machine, its set of initiators and its local reset control. This

particular schema demonstrates the possibility of parameterisation with the variable Is correspond-

ing to a list which could be instantiated to any number of initiators. It corresponds to the circuit

shown in ®gure 4 where the initiators Is are ANDed with the signal that results from the ORing of

the local reset and the AND gate output.

name: latchedreset

context: machine(O)

Is = {X | initiator(X) ^ expected_consequence(X,O)}
reset(R)

p. k r au s e e t a l. 298



local_reset(R)

components: and([Or| Is], O)

or([R, O], Or)

contributions: [on(I,Is)] ` tripped(I) ->> shut_down(O)

[] ` (shut_down(O) ^ not_reset(O) ->> latched(O))

[] ` reset(O) ^ V j : (on(j, Is) ^ ok_signal(j)) ->> ok_signal(O)

[] resets(R, O)

Note that [R, O] denotes the list containing only the two elements R and O, whilst [Or| Is] denotes

the list constructed from adjoining the element Or to the beginning of the list Is.

The latchedreset schema has four explicit contributions. However, these can provide more than

four contributed facts when instantiated if there are multiple ways of satisfying the hypotheses

derived from the Code of Practice (R1, . . . , R4 in this case).

Note also that of there is more than one intitiator in the Is list, RA will make an instantiated copy

of the ®rst contribution for each one. It is now straightforward to see that incorporation of an

appropriate instance of this schema into a design for a turbo-generator control circuit will ensure

that the formal statements R1±R4 are satis®ed.

Using the above basic machinery, RA can provide support for the following management tasks.

Noticing when requirements apply

As objects are added and design steps taken, RA checks for relevant requirements incrementally.

Keeping track of all the di�erent requirements

The RAmaintains lists of all the satis®ed and the unsatis®ed requirements being invoked. When RA

has established that a requirement is satis®ed, it is added to the list of satis®ed requirements together

with the argument for its satisfaction. If RA concludes that a requirement is not satis®ed, the

instance and any partial argument relating to its satisfaction are put on a list of outstanding

requirement obligations. When a new design step is taken, not only must any new requirements be

recorded and checked, but the implications for existing satis®ed and unsatis®ed requirements and

their associated arguments must also be evaluated. This automated book keeping is an important

contribution of RA.

Assessing the extent to which requirements are currently satis®ed

A designer may examine complete as well as partial arguments for a requirement's satisfaction. The

designer may examine and work on these proofs interactively.

Proposing remedial design for unsatis®ed requirements

Since at any stage, the designer has the obligation of satisfying outstanding requirements but is only

allowed to achieve this by inserting prescribed components from RA's database, RA can o�er

advice by second guessing. The advice is calculated by looking at the applicable schemas'

contributions and seeing which schema satis®es the greatest number of outstanding requirements

in relation to the current context. If there is a tie, it is resolved by preferring solutions which do not

add unexpected contributions, since they are likely to add unnecessary complexity.

Evidence of requirements' satisfaction

The evidence is the proof, or argument, for each hypothesis derived from the Code of Practice which

RA has automatically constructed using the facts supplied by the designer's addition of objects and

their contributions and relationships. Since positive evidence is needed to back up averrals of

requirements' satisfaction, only constructive proofs are admitted. That is, proofs which only infer

from things which exist or which can be constructed from things which exist.

Reliable and accountable system design 299



Accounting for the roles played by di�erent components

Designers need to know the roles played by components in satisfying requirements in order to know

what the implications are of changing or removing them. The constructive proof for each

requirement records the contributions made by all the components involved. The contributions of

any component can be inferred by looking at all the requirement arguments in which it occurs.

Remembering requirements' in¯uence on the design decisions

As well as knowing the components' contributions to meeting requirements, designers need to know

which requirements have been incorporated and how they have been satis®ed by component

choices. The in¯uence of each requirement is apparent from all the instances of it which appear as

requirement justi®cation arguments. All the arguments are dependent on the components which

appear in them.

4.2 Critique

The formalisations of requirements in RA have no guarantees that they are strict translations of

their corresponding english language statements. Links are present in RA relating formalisations to

their associated text statement in the Code of Practice so that a designer can check their decisions

against this. It may be worth exploring the possibility of integrating RA with a controlled natural

language front end to support requirements elicitation and expression in a more readily formalisable

form, although such a system will make great demands on the language support.

The RA has been demonstrated in the context of the development of control circuitry for safety

shutdown systems. The systems of concern are hardware, but the potential for applying RA to

software development is a speci®c interest in the context of this paper. This has not been

demonstrated conclusively but one can envisage producing a corpus of general, formalisable,

software requirements that are applicable in speci®c contexts. The relevant schemata could then be

formalisable program fragments, skeletons that may be re®ned into speci®c instances which provide

speci®ed contributions to a software design. In addition, the basic representational framework of

RA is a development of the technology used in the EcoLogic (EL) Project (Robertson et al., 1991).

EL used schematic de®nitions of software modules to enable programs for running ecological

models to be interactively generated. System development is controlled di�erently in RA and EL.

Nevertheless, EL provides a strong witness to the validity of the assertion that RA could be used for

software development.

Referring back to the discussion of validation in the critique of Attempto in section 3.1, one of the

key features of RA is that it does provide some support for the validation of a design. Because RA

does not have a rigorously de®ned mapping between the english language code of practice and the

formal representation, it cannot guarantee validity. However, it can assist in identifying some of the

main points at which an auditor might wish to validate a designer's understanding of some part of

the code of practice, or to verify that a particular component possesses a behaviour consistent with

key parts of the code of practice. This is possible because RA maintains links between schemata of

the design and appropriate formal interpretations of the code of practice. It is useful because one of

the di�culties in the validation of such systems is simply remembering that the designers have paid

attention, at the right points, to the critical guidelines.

5 Modal languages for automating safety reasoning

5.1 Modalities for Requirements Analysis

We will explore some ideas on using modal logics to extend the language for reasoning about safety

in this section. There are a number of reasons for wishing to use modal logics. Firstly, for example,

we might wish to allow a requirements engineer to distinguish at the language level between

statements of di�erent types; in particular, functional requirements, non functional requirements

p. k r au s e e t a l. 300



(obligations) and goals (recommendations or preferences). Secondly, it is quite often necessary to

incorporate some temporal reasoning in requirement statements. We will illustrate this latter with a

simple example. This example is motivated by a real case which had tragic consequences. In the real

case the complexity of the conditions leading to failure were much more subtle than the following

(Leveson, 1995). The simpli®cation is for ease of exposition, but the original example is real.

A medical radiotherapy system used a high energy radiation source. This could be run in two

modes. In what we will call mode1, the source was run at low power, with the beam targeted directly

at the patient. In mode 2, a lead shield was placed between patient and source with the latter being

run at high power to stimulate secondary emission from the screen. Both source and shield were

controlled by software. Unfortunately, it turned out that with a rarely occurring sequence of

commands, it was possible for the source to be run at high power instantaneously before the shield

was in place. Although the steady state conditions were repeatedly checked, it was this transitory

condition which resulted in several patients receiving severe, and in some cases fatal, radiation

burns.

We can provide an initial simple formalisation of the situation as follows:

mode1 / shield_open ^ low_power
mode2 / shield_closed ^ high_power
shield_open _ shield_closed
low_power _ high_power

As it stands, shield_open ^ high_power is consistent with this theory. We can further re®ne

the theory by adding the constraint:

:(mode1 ^ mode2)

This will rule out the problematic state as a steady state condition. However, we are not placing any

ordering on the events which may lead to valid steady states, and a valid4 implementation may still

produce transitory states that are potentially lethal. What is needed is a further statement checking

that the shield is always in place before the source is switched to high power.

5.2 Lsafe

A number of approaches have been taken to the development of implementable temporal logics (see

Fisher (1996) for a review). That described in Das and Fox (1993) and Hammond et al. (1994) is of

particular interest in the present context as it contains a number of modalities speci®cally targeted at

reasoning about safety. We will brie¯y review it here.

Safety reasoning will in general involve a set of temporally quali®ed assertions outlining both

what is known about a universe of discourse in di�erent periods of time, and the consequences of

actions in di�erent conditions. Lsafe was developed to enable such assertions to be expressed as a

logical theory. In order to describe both static and dynamic aspects of the universe of discourse, the

propositional symbols in Lsafe are sorted into properties and actions. In addition, the language of

propositional logic is extended with a number of modalities, including a temporal operator of the

form [t1, t2], where t1 � t2 and t1, t2 are non-negative integers. The full set of modalities, with

informal readings, is as follows:

[RECO]a Action a can be recommended
[SAFE]a Action a is safe
[AUTH]a Action a is authorised
[PREF](a,b) Action a is preferred to action b
[OBLG]j Action j or property j is obligatory

4``Valid'' in the sense that the implementation is a model of the theory.

Reliable and accountable system design 301



[t1, t2]j Action j is taken, or property j is true in the interval t1 to t2.

Some additional notation is provided for brevity of expression. If a is an action and [t1, t2] is the

smallest interval over which that action is taken, then [t1, t2]amay be written as [t1, t2]!a. In addition,
an interval of the form [t, t] represents a time point, and may be written as (t).

We may now write a more satisfactory constraint for our requirements theory concerning the

hypothetical medical scanner.

V t1,t2([t1, t2]high_power ?
A t3,t4(t4<t1 ^ [t3,t4]close_shield ^ [t4,t2]shield_closed))

This says that the close_shield action must have been carried out before a high_power state
is assumed, and that the shutter must remain closed at least for the period during which the

high_power state holds.

The modality [OBLG] is taken from Deontic logic (Chellas, 1980). This is typically used to

describe norms of behaviour; what one ought to do. It can be thought of as a ``strong'' modality

whose behaviour is to a certain extent analogous to the necessity modality &, or universal

quanti®cation, V. However, as used in Lsafe, there is an important distinction which is of interest

in the present context. In classical modal logic, by saying a sentence j ``necessarily holds'' it is

meant that j holds in every situation including the present one. This is characterised by the

axiom &j ? j. However, [OBLG]j ? j is not an axiom in Lsafe. This has a rather important

rami®cation; a theory will still remain consistent even if both [OBLG]j and :j are derivable.

Rather than this being regarded as implying a contradiction, this is regarded as a ``hazardous state''

of the knowledge base, represented by the special symbol
. That is, if [OBLG]j is derivable from a

knowledge base, then non performance of j, if j is an action, or non-satis®ability of j, if j is a

property, leads to a hazardous state. This is expressed formally by the equivalence:

[OBLG]j � : j? 

The usage of the [OBLG] modality in constraints can be further clari®ed by considering a notion of

``technological'' possible worlds (Das, personal communication). A conventional propositional

statement can be used as a hard constraint in the possible worlds that satisfy a certain logical theory;

we could fairly insist that a person's height have only positive values, for example. In contrast,

although we might normally require that a person be within a certain age range before being

admitted into a cancer therapy trial, this is a technological constraint, and not an inherent property

of the world. As such, a particular patient might violate the constraint, having been admitted onto

the trial for certain pragmatic or judgemental reasons. Although this world is technologically

unsafe, it is not impossible. This latter form of constraint may be distinguished by the use of the

[OBLG] modality in Lsafe.

This has potential value in the formalisation of requirements. We may use the [OBLG] modality

to distinguish non-functional from functional requirements. A valid design must necessarily satisfy

the functional requirements in a speci®cation. However, if the non-functional requirements are

expressed as obligations, this leaves scope for a valid but unsafe design in which one or more of the

non-functional requirements is not satis®ed. In particular, we may have a rapid prototype which

demonstrably satis®es the functional requirements, whilst satisfaction of time and space constraints

is temporarily suspended.

The modalities [RECO] and [PREF] lend themselves to the expression of goals. In Lsafe, a

recommended action is not obligatory. [RECO]amerely expresses a recommendation that a should
be made to come about, if it is a property, or occur, if it is an action. The user is free to choose

whether or not to act upon this recommendation. In a similar way, [PREF](a, b) merely expresses a
preference of a over b, without any enforcement of this preference. Thus we might use

[PREF](low_memory_requirement, high_memory_requirement)

to express the goal to prefer design solutions which minimise memory requirements, given that there

p. k r au s e e t a l. 302



are no overriding constraints. Similarly, we might use [RECO]high_reliability to express

the goal that a system should be as reliable as possible.

5.3 Critique

Lsafe is one of a number of temporal modal logics that have been proposed for use in describing high

level timing requirements. One can view a set of timing constraints expressed in a language such as

Lsafe as expressing a logical theory of the application being developed. A detailed speci®cation in,

say, Timed CCS (TCCS) (Wang Yi, 1991) is then a (possible) model of the logical theory. One then

has a formal framework for verifying that the speci®cation is indeed a model of the theory. In the

case of timed process algebras such as TCCS, a standard approach to this is to run a simulation of

the speci®cation, and see if all possible execution traces satisfy the formulae of the logical theory. If

it is established as a valid model, one may then also exercise the model further to see if it has any

additional, but undesirable, properties; hence using it as a validation check on the requirements

speci®cation.

There is a considerable literature on these approaches to the speci®cation and design of real time

systems (although less in the way of large scale practical experience). See Ostro� (1992) for a fairly

recent review. The di�culty is that the rather brute force approach of model checking limits the size

of speci®cation that can be handled in this way (e.g. Larsen et al., 1995), although recent experience

indicates that many problems can be decomposed into manageable modules (Roscoe, 1994).

We have chosen to focus on Lsafe because the temporal logic is embedded in a much more

expressive language than most (Modal Action Logic, developed as part of the FOREST project

(Atkinson et al., 1991) also includes the use of deontic modalities). These additional modalities seem

to have a natural application to requirements speci®cation, although experience with their use does

not at present extend outside the domain of clinical protocol speci®cation. We would like to see this

changed.

6 Conclusions

This paper has two purposes. The ®rst is to illustrate a number of styles of approach that may be

taken to pushing a higher degree of formality back towards the earlier stages in the software

development process. The second is to use these examples to illustrate three key problems in

representing safety arguments:

. how can we resolve the tension of developing a language that is speci®c enough for the domain

experts to be comfortable with, yet which is formal enough to admit detailed analysis;

. how can we relate requirements to system descriptions, when the concepts used to express each

may di�er;

. how can we make explicit the uncertainty that necessarily remains, given that safety arguments

are seldom watertight?

We have focused on using formality in analysing and criticising requirements with regard to safety

properties and safety arguments. But the discussion can be equally applicable to any mission critical

aspects of a complex system.

As mentioned at the outset, none of the solutions we o�er is a complete one. Although they each

address one of the above questions, none of them attempts a general solution. In addition, they all

ultimately have a meaning grounded in the intended domain of application. One should not be too

pessimistic about this last, however. It may well be that a de®nitive solution is not necessary. Rather,

it is a matter of striking an appropriate balance, based on the expertise of the domain experts and the

development team. It is perhaps more important to focus on producing a uni®cation of the positive

aspects of the individual results discussed in this paper.

A further re®nement would be to extend the expressiveness of the uncertainty handling. The

proposal of this paper (section 5) is to allow uncertainty to be expressed by weakening categorical

Reliable and accountable system design 303



logical arguments by allowing certain obligations, recommendations and preferences to be

expressed. The mere fact of making the arguments explicit and open for inspection, of course, also

means one allows the possibility that someone may doubt the validity of a claim warranted by a

certain line of reasoning. Actually giving some measure of residual uncertainty is, however, a much

more contentious issue, given that one is often predicting on the basis of analogy or sparse data.

However this is an aspect which needs to be explored further.

All of the systems in this paper demonstrate that it is possible to ®nd niches for formal methods in

the early stages of software lifecycles and that this need not involve revolutionary change to existing

practices. Whether this possibility becomes an actuality depends on our ingenuity in embedding

them within an appropriate safety culture. Other papers in this edition touch on this wider issue.

Acknowledgement

We would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

Atkinson, WD, Booth, JP and Quirk, WJ, 1991, ``Modal action logic for the speci®cation and validation of

safety'' in de Neuman, B, Simpson, D and Slater, G (eds)Mathematical Structures for Software Engineering
Oxford: Clarendon Press.

Blackburn, JD, Scudder, GD and Van Wassenhove, LN, 1996, ``Improving speed and productivity of software

developers'' Proc. IEEE Trans. Software Engineering 22 875±885.
Chellas, B, 1980,Modal Logic Cambridge University Press.
Covington, MA, Nute, D, Schmitz, N and Goodman, D, 1988, ``From English to Prolog via Discourse

Representation Theory'' Research Report AI-1994±06, Arti®cial Intelligence Centre, University of Georgia.
Das, SK and Fox, J, 1993, ``A logic for reasoning about safety in decision support systems'' Proc. European

Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU `93).

Dobson, J and Strens, R, 1994, ``Organisational requirements de®nition for information technology systems''
Proc. First IEEE International Symposium on Requirements Engineering (ICRE `94) Colorado Springs, CO,
158±165.

Fisher, M, 1996, ``An introduction to executable temporal logics'' The Knowledge Engineering Review 11 43±56.

Flynn, DJ, Jazi, MD and Quek, P, 1997, ``User evaluation of a user-centred modelling method by case study''
Proc. EASE-97: Empirical Assessment in Software Engineering University of Keele, England.

Fox, J, 1993, ``Engineering safety into expert systems'' in F. Redmill and T. Anderson, (eds.) Safety Critical

Systems Chapman and Hall.
Fuchs, NE and Schwitter, R, 1995, ``Attempto: controlled natural language for requirements speci®cations''

Proc. Seventh ILPS Workshop on Logic Programming Environments Portland, Oregon.

Gough, PA, Fodemski, SA, Higgins, SA and Ray, SJ, 1995, ``ScenarioÐan industrial case study and
hypermedia enhancements'' Proc. Second IEEE International Symposium on Requirements Engineering
(RE `95) York, England, 10±17.

Greenspan, S, 1995, ``The next 25 years: new customers, new environments, new requirements'' Proc. Second

IEEE International Symposium on Requirements Engineering (RE `95) York, England, 36±37.
Hammond, P, Harris, AL, Das, SK andWyatt, JC, 1994, ``Safety and decision support in oncology''Meth. Inf.

Med. 33(4) 371±387.

Hesketh, J, Robertson, D, Fuchs, N and Bundy, A, 1997, ``Automating reasoning support for design''
Automated Software Engineering (to appear).

Kamp, H and Reyle, U, 1993, From Discourse to Logic: Introduction to Model Theoretic Semantics of Natural

Language, Formal Logic and Discourse Representation Theory Dordrecht: Kluwer Academic.
Larsen, KG, Petterson, P and Yi, W, 1995, ``Compositional model checking and real-time systems'' Proc. 16th

Real Time Systems Symposium Pisa, Italy 5±7 December.

Leveson, N, 1995, Safeware: System Safety and Computers 515±553. Addison-Wesley.
Maisey, D and Dick, J, 1996, ``Measuring the quality of the development life cycle process'' Software Quality

Journal 5 199±210.
Ostro�, JS, 1992, ``Formal methods for the speci®cation and design of real-time safety critical systems'' Journal

of Systems and Software 18(1) 33±60.
Robertson, D, Bundy, A, Muetzelfeldt, R, Haggith, M and Uschold, M, 1991, Eco-Logic: Logic-Based

Approaches to Ecological ModellingMIT Press.

p. k r au s e e t a l. 304



Robertson, D, 1996, ``Domain speci®c problem description'' Proc. 8th International Conference on Software

Engineering and Knowledge Engineering Nevada, USA.
Roscoe, AW, 1994, ``Model-checking CSP'' in Roscoe, AW (ed.) A classical mind: essays in honour of C.A.R.

Hoare Prentice Hall, 353±378.
Schwitter, R and Fuchs, NE, 1996, ``Attempto: from speci®cations in controlled natural language towards

executable speci®cations'' EMISA Workshop, NatuÈrlichsprachlicher Entwurf von Informationssystemen 28±
30 May, Ev. Akademie Tutzing.

Sommerville, I, 1992, Software Engineering. Fourth EditionWokingham: Addison-Wesley.

UKMinistry of Defence, 1995a, ``The procurement of safety related software in defence equipment'' Technical
Report DEF STAN 00±55 (Part 1: Requirements).

UKMinistry of Defence, 1995b, ``The procurement of safety related software in defence equipment'' Technical

Report DEF STAN 00±55 (Part 2: Guidance).
Wang, Yi, 1991, ``CCS + time = an interleaving model for real time systems'' Proc. International Colloquium

on Automata, Languages and Programming (ICALP `91)Madrid, Spain.

Woodcock, J and Davis, J, 1996 Using ZÐSpeci®cation, Re®nement and Proof Hemel Hempstead, UK:
Prentice Hall.

Reliable and accountable system design 305


