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Two distinct regions of Mto1 are required for normal microtubule
nucleation and efficient association with the γ-tubulin complex
in vivo

Itaru Samejima, Victoria J. Miller, Lynda M. Groocock, and Kenneth E. Sawin*

Wellcome Trust Centre for Cell Biology University of Edinburgh Swann Building, Mayfield Road
Edinburgh EH9 3JR United Kingdom

SUMMARY
Cytoplasmic microtubule nucleation in the fission yeast Schizosaccharomyces pombe involves the
interacting proteins Mto1 and Mto2, which are thought to recruit the γ-tubulin complex (γ-TuC)
to prospective microtubule organizing centers. Mto1 contains a short amino-terminal region
(CM1) that is conserved in higher eukaryotic proteins implicated in microtubule organization,
centrosome function and/or brain development. Here we show that mutations in the Mto1 CM1
region generate mutant proteins that are functionally null for cytoplasmic microtubule nucleation
and interaction with the γ-TuC (phenocopying mto1Δ), even though the Mto1-mutant proteins
localize normally in cells and can bind Mto2. Interestingly, the CM1 region is not sufficient for
efficient interaction with the γ-TuC. Mutation within a different region of Mto1, outside CM1,
abrogates Mto2 binding and also impairs cytoplasmic microtubule nucleation and Mto1
association with the γ-TuC. However, this mutation allows limited microtubule nucleation in
vivo, phenocopying mto2Δ rather than mto1Δ. Further experiments suggest that Mto1 and Mto2
form a complex (Mto1/2 complex) independent of the γ-TuC and that Mto1 and Mto2 can each
associate with the γ-TuC in the absence of the other, albeit extremely weakly compared to when
both Mto1 and Mto2 are present. We propose that Mto2 acts cooperatively with Mto1 to promote
association of Mto1/2 complex with the γ-TuC.

Keywords
fission yeast; γ-tubulin complex; centrosomin-related proteins

INTRODUCTION
Microtubule (MT) nucleation in eukaryotic cells involves the γ-tubulin complex (γ-TuC), a
multi-protein complex containing gamma-tubulin and several additional proteins (for
reviews, see Luders and Stearns, 2007; Raynaud-Messina and Merdes, 2007; Wiese and
Zheng, 2006)). In higher eukaryotes, the γ-TuC exists primarily as a large (~2 MDa)
complex, the γ-tubulin ring complex (γ-TuRC). The γ-TuRC consists of several copies of a
smaller complex (γ-tubulin small complex; γ-TuSC) containing γ-tubulin and the proteins
GCP2 and GCP3, plus other proteins that are γ-TuRC-specific. Obvious homologs of γ-
TuSC proteins are found in all eukaryotes, while homologs of γ-TuRC specific proteins may
not be ubiquituous--for example, they have not been found in budding yeast, which has a
relatively simple mode of microtubule organization. However, they have been identified and
characterized in the fission yeast Schizosaccharomyces pombe, although they are
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signficantly diverged from their higher eukaryotic counterparts (Anders et al., 2006; Fujita
et al., 2002; Venkatram et al., 2004).

Fission yeast serves as a useful model organism for understanding microtubule nucleation
by the γ-TuC not only because of its conservation of γ-TuC components but also because of
its diversity of cytoplasmic microtubule organizing centers (MTOCs; for review, see Sawin
and Tran, 2006)). Only a small number of cytoplasmic MTs are present at any given time in
fission yeast (Hoog et al., 2007), and these can be imaged by expressing GFP-tubulin at
physiological concentrations. During interphase, MTs are nucleated not only from the
spindle pole body (SPB; the yeast centrosome equivalent) but also from several interphase
microtubule organizing center “satellite” particles (iMTOCs) present on the nuclear
envelope, in the cytoplasm, and on MTs themselves. During late mitosis, cytoplasmic astral
MTs analogous to those seen in budding yeast are nucleated from the duplicated SPBs. At
the end of cell division, a post-anaphase array (PAA) of MTs is nucleated from the
equatorial MTOC (eMTOC) at the site of septation. Because fission yeast MTOCs change
throughout the cell cycle, they may provide a useful model for understanding the changes in
MT organization that accompany differentiation of many higher eukaryotic cell types, for
which relatively little is known, especially in relation to non-centrosomal MT nucleation
(reviewed in Luders and Stearns, 2007; Raynaud-Messina and Merdes, 2007; Wiese and
Zheng, 2006).

Two key regulators of cytoplasmic MT nucleation in fission yeast are the non-essential
proteins Mto1 (initially called Mbo1/Mod20) and Mto2 (Janson et al., 2005; Samejima et al.,
2005; Sawin et al., 2004; Venkatram et al., 2004; Zimmerman and Chang, 2005). In a
variety of assays mto1Δ mutants are completely defective in nucleation of MTs from all
types of cytoplasmic MTOCs (Sawin et al., 2004; Venkatram et al., 2004). However, mto1Δ
mutants are viable, because intranuclear mitotic spindle assembly and function is
independent of Mto1; intranuclear MT nucleation is most likely driven by an Mto1 paralog,
Pcp1, which is present on the nucleoplasmic face of the SPB (Flory et al., 2002). Mto1
localizes to cytoplasmic MTOCs and co-immunoprecipitates the γ-TuC, and collectively
these results have led to a model in which Mto1 functions by recruiting the γ-TuC to
prospective cytoplasmic MTOCs (Sawin et al., 2004; Venkatram et al., 2004; Zimmerman
and Chang, 2005).

Mto2 colocalizes with and physically interacts with Mto1, almost certainly directly
(Samejima et al., 2005; Venkatram et al., 2005). In addition, Mto2 can co-
immunoprecipitate the γ-TuC (Janson et al., 2005), and in mto2Δ mutants, Mto1 fails to co-
immunoprecipitate the γ-TuC (Samejima et al., 2005). This could suggest a simple model in
which Mto2 provides a “bridge” between Mto1 and the γ-TuC. However, unlike mto1Δ
mutants, mto2Δ mutants are defective in nucleation from only a subset of cytoplasmic
MTOCs; they can nucleate MTs from the SPB in both interphase and mitosis, and they can
also nucleate a small number of MTs from the eMTOC at the end of mitosis. Thus, an
alternative interpretation, based primarily on mutant phenotypes, might be that Mto1 retains
some ability to recruit and/or activate the γ-TuC in the absence of Mto2 (e.g. at the SPB),
even if to date this has not been detected biochemically.

Mto1 is a large coiled-coil protein with a ~60-amino acid amino-terminal region
(centrosomin motif 1; CM1) that is conserved in fungal and animal cells (Sawin et al., 2004;
Zhang and Megraw, 2007). Proteins containing CM1 are generally similar in structure: they
are all large proteins (100-300 kDa); they contain several predicted coiled-coil regions; and
CM1 is typically found towards the amino-terminus of the coding region. Most of these
proteins have not been extensively studied, but those that have been characterized, including
the Drosophila protein centrosomin (Cnn) and the human proteins myomegalin and
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CDK5RAP2, have been implicated in microtubule organization, centrosome function and/or
brain development (Sawin et al., 2004; Bond et al., 2005; Ching et al., 2000; Fong et al.,
2008; Megraw et al., 1999; Terada et al., 2003; Veith et al., 2005; Verde et al., 2001; Zhang
and Megraw, 2007). To address the question of how Mto1 and Mto2 may function in MT
nucleation in more detail, we constructed site-directed mutations in Mto1 and examined the
effects of the mutations on protein localization, interaction and function using a range of
cytological and biochemical assays. Our data suggest not only that the conserved CM1
region is critical for Mto1 interaction with the γ-TuC, but also that binding of Mto2 to Mto1
is equally important for interaction with the γ-TuC. Further experiments suggest that Mto1
and Mto2 act cooperatively to promote interaction of an Mto1/2 complex with the γ-TuC,
and thereby efficient MT nucleation.

RESULTS
Mutation of Mto1 within CM1 creates an mto1-null mutant

We targeted the CM1 region of the single chromosomal copy of fission yeast mto1+ to
construct three different site-directed mutants: mto1-9A1, mto1-9A2 and mto1-9A3 (Fig.
1A, B). Each mutation converts nine consecutive amino acids of CM1 to alanine. In a
morphology assay, mto1-9A3 cells were slightly curved relative to wild-type cells, while
mto1-9A1 and mto1-9A2 cells were strongly curved, like mto1Δ cells (Fig. 1C; Sawin et al.,
2004)). This suggests that mto1-9A1 and mto1-9A2 mutations strongly impair Mto1
function, while the mto1-9A3 mutation has only a mild effect.

Upon cold-induced MT depolymerization in wild-type cells, Mto1 and associated γ-TuC
proteins redistribute to sites on the surface of the nuclear envelope, and when cells are re-
warmed, MTs are rapidly nucleated from these sites (Fig. 1D; supplementary material Fig.
S1; Sawin et al., 2004). In contrast, in the same MT-regrowth assay mto1Δ mutants are
completely defective in cytoplasmic MT nucleation and instead slowly nucleate intranuclear
MTs (most likely via Pcp1). These intranuclear MTs eventually escape into the cytoplasm ,
acting as progenitors of essentially all cytoplasmic MTs in the mutant cells and forming
abnormal MT bundles that often curve around the cell tips (Fig. 1D; during steady-state
growth of mto1Δ mutants, intranuclear spindle MTs escaping into the cytoplasm at the end
of mitosis perform an equivalent function; Sawin et al., 2004; Zimmerman and Chang,
2005). In the MT-regrowth assay we found that mto1-9A1 and mto1-9A2 mutants were
indistinguishable from mto1Δ cells, both before cold-induced MT depolymerization and
during recovery (Fig. 1D). mto1-9A3 mutants behaved like wild-type cells, except that both
before depolymerization and after repolymerization, some cells in mto1-9A3 mutants had
curved microtubule bundles. However, this was not as extreme as in mto1Δ, mto1-9A1 or
mto1-9A2 mutants (Fig. 1D).

Analysis of movies of live cells co-expressing GFP-tubulin (GFP-Atb2; Sawin et al., 2004)
and the SPB marker Sad1-dsRed (Chikashige et al., 2004) also showed mto1-9A1 and
mto1-9A2 mutants to be indistinguishable from mto1Δ cells. All three of these mutants
showed essentially no new nucleation of interphase cytoplasmic MTs at steady state, while
mto1-9A3 mutants showed approximately half the nucleation frequency of wild-type cells
(Fig. 1E, supplementary material Movies 1-5, see Materials and Methods). Consistent with
this, mto1-9A1 and mto1-9A2 mutants also showed the unusual interphase MT behaviors
characteristic of mto1Δ mutants, such as bend-breakage when MT bundles curve around cell
tips (Sawin et al., 2004), and a strong reduction in SPB oscillations, which likely reflects
reduced interactions between cytoplasmic MTs and the SPB (Fig. 1E, supplementary
material Movies 2-4). In dividing cells, mto1-9A1 and mto1-9A2 mutants, like mto1Δ cells,
did not nucleate either cytoplasmic astral MTs or PAA MTs (Sawin and Tran, 2006), while
mto1-9A3 mutants behaved like wild-type cells (Fig. 1E, supplementary material Movies
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1-5). Taken together, these results show that mto1-9A1 and mto1-9A2 mutants are null for
Mto1-dependent MT nucleation, while mto1-9A3 mutants are partially functional.

Mutation of Mto1 within CM1 specifically disrupts γ-TuC binding
We investigated the ability of the Mto1-mutant proteins to physically interact with Mto2 and
the γ-TuC (Samejima et al., 2005; Vardy and Toda, 2000; Venkatram et al., 2005). In
immunoprecipitation experiments with Myc-tagged Mto1 proteins expressed from the
endogenous mto1+ promoter, we found that all of the mutant proteins were present at normal
wild-type levels, and all co-immunoprecipitated Mto2 to the same extent as wild-type cells
(Fig. 2A). However, while both wild-type Mto1-Myc and Mto1-9A3-Myc co-
immunoprecipitated γ-tubulin (Gtb1) and HA-tagged Alp4 (GCP2 homolog), a well-
characterized component of the fission yeast γ-TuSC (Vardy and Toda, 2000), Mto1-9A1-
Myc and Mto1-9A2-Myc did not co-immunoprecipitate these γ-TuC components (Fig. 2A).

We next examined the localization of the Mto1-mutant proteins. In the MT regrowth assay
described above, all Mto1-mutant proteins redistributed to the nuclear envelope upon cold-
induced MT depolymerization, as in wild-type cells (supplementary material Fig. S1; Sawin
et al., 2004). To investigate localization more closely in live cells, we tagged the Mto1-
mutant proteins with GFP and also tagged Alp4 with the RFP tandem-dimer Tomato (tdT;
Shaner et al., 2004; Snaith et al., 2005). In wild-type cells we observed colocalization of
Mto1-GFP with Alp4-tdT at SPBs, eMTOCs, and at iMTOC satellites (Fig. 2B, C;
Zimmerman and Chang, 2005). Interestingly, while most Mto1-GFP interphase satellites
contained Alp4-tdT, some satellites did not, suggesting that the γ-TuC is not always stably
associated with Mto1 at prospective MTOCs. This result differs slightly from a previous
study using CFP- and YFP-tagged proteins (Zimmerman and Chang, 2005) and may be
attributable to our improved imaging conditions.

In mto1 mutants, we found that Mto1-9A1-GFP, Mto1-9A2-GFP and Mto1-9A3-GFP
localized to SPBs, to the eMTOC, and to interphase satellites that appeared to track the
cytoplasmic MTs formed in mto1 mutants by the nuclear escape mechanism (Fig. 2D-F).
However, we did not observe any Alp4-tdT associated with either equatorial or interphase-
satellite Mto1-9A1-GFP or Mto1-9A2-GFP. We did observe Alp4-tdT at SPBs, consistent
with previous observations of Alp4-GFP and other γ-TuC proteins at SPBs in mto1Δ
mutants; this most likely represents γ-TuC interacting with Pcp1 on the nucleoplasmic face
of the SPB (Flory et al., 2002; Sawin et al., 2004; Venkatram et al., 2004; Zimmerman and
Chang, 2005).

Collectively, these results indicate that the failure of Mto1-9A1 and Mto1-9A2 to associate
with γ-TuC is not due to a mislocalization of the Mto1-mutant proteins, and thus that CM1
is important for γ-TuC binding per se. In addition, the demonstration that Mto1 can localize
to prospective MTOCs independent of its ability to bind the γ-TuC supports our previous
hypothesis that Mto1 is “upstream” of the γ-TuC in determining sites of cytoplasmic MT
nucleation (Samejima et al., 2005; Sawin et al., 2004).

The Mto1 CM1 region is not sufficient for interaction with the γ-TuC
In order to test whether the CM1 region of Mto1 is sufficient for interaction with the γ-TuC,
we created several different Myc-tagged carboxyl-terminal truncations of Mto1, expressed
from the endogenous mto1 promoter, and performed immunoprecipitation experiments
using strains also expressing HA-tagged Alp4; (Fig. 3, see also Fig. 1A). All of the truncated
Mto1 proteins were efficiently immunoprecipitated, some much better than full-length
Mto1. Interestingly, although all but the shortest truncation contained the entire CM1 region,
we found that truncations up to and including Mto1-(1-500)-Myc did not co-
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immunoprecipitate Alp4-HA, while Mto1-(1-800)-Myc and larger proteins did (Fig. 3).
Thus, in spite of the clear importance of CM1 for the interaction of Mto1 with the γ-TuC,
additional sequences beyond CM1 are also important for this interaction.

Disrupting the Mto1-Mto2 interaction phenocopies mto2Δ
Previously we showed that amino acids 476-549 of Mto1 are important for binding to Mto2
in vitro (Samejima et al., 2005). This suggested the possibility that in addition to the CM1
region, the Mto2-binding region of Mto1 might also be required for the interaction of Mto1
with the γ-TuC. We therefore wanted a means to test directly whether binding of Mto2 to
Mto1 is required for Mto1 association with the γ-TuC, and/or whether Mto2 has additional
roles in cytoplasmic microtubule nucleation independent of its association with Mto1.

We constructed several small deletions within the putative Mto2-binding region of Mto1 and
targeted these to the chromosomal copy of mto1+(Fig. 1A; additional data not shown). An
allele deleting amino acids 523 through 537, mto1-334, produced a protein that failed to
interact with Mto2 in immunoprecipitation experiments (Fig. 4A) as well as in vitro (data
not shown). The mto1-334 mutant also showed cell-shape defects like other mto1 and mto2
mutants (Figs. 4B, 1C). In addition, we found that Myc-tagged Mto1-334 did not co-
immunoprecipitate the γ-TuC (Fig. 4C).

Thus far, these results would be consistent with mto1-334 being a null allele of mto1.
However, in MT regrowth assays we found that mto1-334 mutants, like mto2Δ mutants,
were able to nucleate cytoplasmic MTs from the SPB but not from non-SPB sites (Fig. 4D;
Samejima et al., 2005). By contrast, mto1Δ mutants cannot nucleate MTs from any
cytoplasmic sites (Fig. 1D; Sawin et al., 2004). In addition, live mto1-334 mutant cells
expressing GFP-Atb2 and Sad1-dsRed displayed a profile of cytoplasmic MT-nucleation
behaviors identical to mto2Δ mutants but distinct from mto1Δ mutants. This included:
nucleation of cytoplasmic MTs during interphase, but only from the SPB (often
accompanied by strong SPB oscillations); nucleation of cytoplasmic astral MTs in mitosis;
and very limited MT nucleation from the eMTOC at the end of mitosis (Fig. 4E,
supplementary material Movies 6 and 7).

Upon cold-induced depolymerization of MTs in MT-regrowth assays, Mto1 in mto2Δ
mutants does not redistribute to the surface of the nuclear envelope, although the biological
significance of this is not known (Samejima et al., 2005; see Discussion). In this assay,
Mto1-334 localization in mto2+ (wild-type) cells was identical to Mto1 (wild-type)
localization in mto2Δ cells (supplementary material Fig. S1). In addition, when we tagged
Mto1-334 with GFP, we found that the localization of Mto1-334-GFP in mto2+ (wild-type)
cells was identical to Mto1-GFP (wild-type) in mto2Δ cells, as was the localization of Alp4-
tdT in the two strains (Fig. 4F). Collectively these results suggest that mto1-334 is not a null
allele but rather an interaction-specific allele of mto1 that disrupts binding of Mto1 to Mto2.
Because the mto1-334 phenotypes (i.e., in an mto2+ background) are indistinguishable from
those of mto2Δ, we conclude that the function of Mto2 in MT nucleation is mediated
primarily, if not exclusively, via its binding to Mto1. Moreover, the failure of Mto1-334 to
immunoprecipitate the γ-TuC indicates that the Mto1-Mto2 interaction is required for an
efficient association of Mto1 with the γ-TuC, as detected in cytoplasmic extracts.

Evidence for cooperative binding of Mto1 and Mto2 to γ-TuC
In experiments in which anti-Mto2 immunoprecipitates from cell extracts were washed with
different salt concentrations, we found that Mto1 is much more stably associated with Mto2
than are γ-TuC proteins, suggesting that Mto1 and Mto2 may be part of a distinct protein
complex or subcomplex that can interact with the γ-TuC (Fig. 5A). To investigate this
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further we constructed trans-heterozygous diploid strains, in order to determine whether
both the CM1 region and the Mto2-binding region of Mto1 need to be present on the same
polypeptide for proper Mto1 function. This was the case, as all mto1 mutants were
complemented by wild-type mto1+, while we did not observe any complementation in the
trans-heterozygous mutant strains (Fig. 5B, C). This suggests that CM1 and the Mto2-
binding region work closely together in a common function to promote interaction of Mto1
with the γ-TuC.

We therefore considered the possibility that Mto1 and Mto2 might each bind the γ-TuC
independently, albeit very weakly, achieving stronger, cooperative binding when both
species are present in an Mto1/2 complex. We TAP-tagged Mto1 and Mto2 (Gould et al.,
2004; Venkatram et al., 2005)and partially purified TAP-tagged Mto1 from wild-type and
mto2Δ cells, as well as TAP-tagged Mto2 from wild-type and mto1Δ cells. The TAP-tagged
proteins were expressed at physiological levels (Fig. 6A), and these partial purifications
gave higher yield and purity than conventional immunoprecipitation methods used in this
and previous work (data not shown). We probed Western blots of the purifications with
antibodies to γ-tubulin as well as with newly-raised antibodies to Alp4 and Alp6 (GCP2 and
GCP3 homologs; Fig. 6 B,C; see Materials and Methods for technical details). As expected
from previous studies (Janson et al., 2005; Sawin et al., 2004; Venkatram et al., 2004), the
γ-TuC proteins co-purified both with Mto1-TAP and with Mto2-TAP (Fig. 6B, lanes 1, 2).
Under normal exposure conditions, we did not detect an association between Mto1 and γ-
TuC in mto2Δ strains (Fig. 6B, lane 3), consistent with previous immunoprecipitation
experiments (Samejima et al., 2005). Moreover, we did not observe an association between
Mto2 and the γ-TuC in mto1Δ strains (Fig. 6B, lane 4). Thus not only does Mto1
association with γ-TuC depend on Mto2, but also Mto2 association with γ-TuC depends on
Mto1. Interestingly, however, with more sensitive detection and longer exposures (see
Materials and Methods) we found evidence for a physical interaction between Mto1 and the
γ-TuC in the absence of Mto2, and also a possible weaker interaction between Mto2 and the
γ-TuC in the absence of Mto1 (Fig. 6C, lanes 3,4). We did not detect the γ-TuC in
purifications from several negative-control strains, including both untagged strains and
unrelated Mod5-TAP strains (Snaith and Sawin, 2003) (also H. Snaith, University of
Edinburgh UK, personal communication) used to assess non-specific binding of γ-TuC to
TAP-tagged proteins as well as possible unforeseen aberrant properties (e.g. “stickiness”) of
γ-TuC subunits in mto1Δ and/or mto2Δ backgrounds (Fig. 6 B,C, lanes 5-7). These results
suggest that Mto1 and Mto2 may bind cooperatively to the γ-TuC.

DISCUSSION
The work presented here provides novel insights into how fission yeast proteins Mto1 and
Mto2 act to promote cytoplasmic MT nucleation via interactions with the γ-TuC. Our
cytological and biochemical analysis of mto1-9A1, mto1-9A2, and mto1-334 mutants
demonstrates that two distinct regions of Mto1—the CM1 region and the Mto2-binding
region--are required for an efficient association of Mto1 with the γ-TuC. mto1-9A1 and
mto1-9A2 mutants completely fail to nucleate cytoplasmic MTs (Table 1), and Mto1-9A1
and Mto1-9A2 mutant proteins do not interact with the γ-TuC, although the mutant proteins
still interact with Mto2 and localize to all prospective MTOC sites in vivo. Together with
the conservation of CM1 and work in other organisms (see below) these results implicate the
CM1 region of Mto1 as a likely γ-TuC-binding region. At the same time, however, our
characterization of mto1-334 mutants, which phenocopy mto2Δ mutants (Table 1),
demonstrates that binding of Mto1 to Mto2 is of comparable importance in promoting the
interaction of Mto1 with the γ-TuC.
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The stability of the Mto1-Mto2 interaction, together with our observation that the CM1
region and the Mto2-binding region of Mto1 must be present on the same polypeptide in
order to achieve proper Mto1 function, suggested that Mto1 and Mto2 might form a complex
in which Mto1 and Mto2 bind independently but cooperatively to the γ-TuC. Accordingly,
using TAP-purifications and sensitive detection methods we obtained evidence for an
association of Mto1 with the γ-TuC in mto2Δ mutants, and an association of Mto2 with the
γ-TuC in mto1Δ mutants. In both cases, however, these associations were significantly
weaker than those observed in wild-type cells. A model of cooperative binding of an Mto1/2
complex to the γ-TuC explains these results, as well as several aspects of both mto1Δ and
mto2Δ phenotypes and the differences between them (Janson et al., 2005; Samejima et al.,
2005; Sawin et al., 2004; Venkatram et al., 2004; Venkatram et al., 2005; Zimmerman and
Chang, 2005). In mto2Δ mutants, the limited amount of cytoplasmic MT nucleation
observed, primarily at the SPB, can be attributed to a high local concentration of Mto1
weakly interacting with the γ-TuC, likely via CM1, and possibly supplemented by
additional mechanisms that may be specific to the SPB. By contrast, the absence of
cytoplasmic MT nucleation in mto1Δ mutants can be understood if Mto2 were able to bind
the γ-TuC weakly but not “activate” it for nucleation; in any case, because the localization
of the Mto1/2 complex is governed primarily by Mto1 and not by Mto2 (Samejima et al.,
2005); see also below), the γ-TuC would not be recruited and/or concentrated to specific
subcellular sites in mto1Δ cells. In the future it will be of interest to investigate the nature of
the interactions between Mto1, Mto2 and the γ-TuC at a deeper molecular level. Thus far
we have not been able to detect interaction of either Mto1 or Mto2 with individual
components of the γ-TuC in directed yeast-two hybrid assays or in vitro binding
experiments (our unpublished data). Given the weakness of the interactions detected in the
Mto1- and Mto2-TAP purifications from mto2Δ and mto1Δ strains, addressing this question
may require additional and/or novel methods.

One aspect of our work suggests that Mto2 could have additional roles in promoting Mto1
function beyond that suggested here, although such potential roles remain ill-defined.
Specifically, compared to wild-type cells, Mto1 (or Mto1-334) in mto2Δ and mto1-334
mutants does not accumulate on the nuclear envelope upon cold-induced MT
depolymerization (supplementary material Fig. S1; (Samejima et al., 2005). While this is
admittedly an “artifactual” situation, and nearly all other aspects of Mto1 localization remain
unchanged in mto2Δ or mto1-334 mutants, in these mutants there also appear to be fewer
Mto1-GFP (or Mto1-334-GFP) particles associated with interphase MTs during steady-state
growth ((Fig. 2C, 4F) see also (Samejima et al., 2005)). The molecular basis for these
differences is unknown. We note, however, that comparable differences in Mto1 localization
are not observed with Mto1-9A1 and Mto1-9A2 proteins (Fig. 2D,E; supplementary material
Fig. S1); it is therefore unlikely that the effects of disrupting Mto1-Mto2 interaction on these
more subtle aspects of Mto1 localization are directly linked to aberrant MT distribution and/
or reduced interaction of Mto1 with the γ-TuC. Further work on the biochemistry of the
Mto1/2 complex may help to illuminate whether and how Mto2 may further contribute to
Mto1 function.

While this paper was in preparation, two studies were published investigating the role of the
CM1 region in higher eukaryotic proteins. While there are some general similarities between
these studies and our own, there are also some important differences. A cytological study in
Drosophila showed that a deletion within the CM1 region of the Cnn protein leads to
reduced and/or altered recruitment of γ-tubulin and two other proteins, D-TACC and Msps,
to mitotic spindle poles, with a concomitant impairment of some microtubule-dependent
processes (Zhang and Megraw, 2007). Allowing for the different nature of the fly and yeast
systems, these results are consistent with our own. However, in the Drosophila work, there
was no biochemical investigation of protein-protein interactions. In addition, the single
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deletion mutation within CM1 did not indicate whether all of CM1 or only a particular sub-
region was important for function. By contrast, we have shown that mto1-9A1 and
mto1-9A2 mutants are functionally null, while mto1-9A3 mutants, which are altered in an
immediately adjacent part of CM1, have only slightly impaired function. Moreover, in
immunoprecipitation experiments we have shown a specific defect in the physical
interaction of Mto1-9A1 and Mto1-9A2 with the γ-TuC, with no effects on the interaction
with Mto2. Thus our findings significantly extend the mutational analysis of CM1 in
Drosophila.

Another recent study, in human cells, has provided evidence that the CM1 region of one of
the two human Mto1/Cnn-related proteins, CDK5RAP2, is itself sufficient to interact with
the γ-TuRC (Fong et al., 2008), at least when overexpressed well above probable
physiological levels. These findings are also consistent with our own, although to date we
have not been able to demonstrate convincingly an interaction between the fission yeast γ-
TuC and bacterially-expressed Mto1 fragments containing CM1 (our unpublished data).
Beyond this, however, we have further shown that in fission yeast, an additional region of
Mto1, which binds the interacting partner Mto2, is also required for efficient association of
Mto1 with the γ-TuC, at least when Mto1 is present at physiological levels. It will be
interesting to determine whether the proposed mechanism of cooperative interaction of the
Mto1/2 complex with the γ-TuC in fission yeast also applies in some form to higher
eukaryotic proteins. Presently there are no recognizable homologs of Mto2 in higher
eukaryotes, or even in fungi (our unpublished data). However, it is possible that these
organisms possess functional equivalents of Mto2 that are highly diverged in sequence, as
several fission yeast proteins involved in MT nucleation are only poorly related in primary
sequence to their higher-eukaryotic counterparts. Examples of this include the non-essential
fission yeast proteins Gfh1, Mod21 and Alp16, which have been shown by combined
biochemical, cytological, and genetic analyses to be orthologs of mammalian γ-TuC
proteins GCP4, GCP5, and GCP6, respectively, even though the actual amino-acid sequence
identity between the fission yeast and mammalian proteins is too low to be convincing in its
own right (Anders et al., 2006; Fujita et al., 2002; Venkatram et al., 2004). Another example
is Mto1 itself, in which only the CM1 region is conserved from yeast to higher eukaryotes,
even though all of the CM1-containing proteins are generally similar in their overall
predicted structural features. Indeed, CDK5RAP2 has recently been identified as a
particularly rapidly-evolving protein in primates, which may relate to its role in regulating
brain size (Bond et al., 2005; Evans et al., 2006). Future biochemical analyses of the higher
eukaryotic homologs of Mto1 should shed light on this question.

MATERIALS AND METHODS
Strain construction

Standard yeast genetic and physiological methods were used throughout (Moreno et al.,
1991). Strains and genotypes are listed in supplementary material Table S1. The mto1-9A1,
-9A2, and -9A3 mutants were constructed by a two-step gene-replacement at the mto1 locus.
In the first step, the CM1 region was deleted and replaced with the ura4+ gene, using PCR-
based tagging. The ura4+ gene was then replaced by mutated CM1 sequences (Fig. 1B) that
had been generated by mega-primer PCR. The resulting strains were confirmed by genomic
sequencing. The mto1-334 mutant was constructed in a similar manner. In the first step,
amino acids 494-600 of Mto1 were deleted and replaced with the ura4+ gene. In the second
step, the ura4+ gene was replaced with a linearised plasmid fragment from which the coding
sequence for amino acids 523-537 (LMRMEQQWREDVDQL) had been deleted. The
resulting strains were confirmed by colony PCR and Western blotting. Diploid strains were
made by ade6-210/ade6-216 transcomplementation.

Samejima et al. Page 8

J Cell Sci. Author manuscript; available in PMC 2009 September 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



PCR-based tagging and truncations of genes were performed using methods and template
plasmids as described (Bahler et al., 1998; Brune et al., 2005; Snaith et al., 2005). Apart
from the nmt81:GFP-tubulin (Sawin et al., 2004), all tagged proteins were tagged at their C
termini and expressed from endogenous promoters. Tagging of the endogenous (essential)
Alp4 with the tandem-dimer-Tomato (tdT) RFP tag (Shaner et al., 2004) did not lead to
significant deleterious effects on MT behavior. However, when crossing the Alp4-tdT strain
with various mutants we sometimes noticed subtle effects on mutant cell morphology. This
suggests that Alp4-tdT may have minor effects on MT function, as has been observed with
other tagged versions of Alp4 (Anders et al., 2006).

Cell morphology assays and DIC imaging in return-to-growth experiments were performed
as described (Anders et al., 2006; Snaith and Sawin, 2003); cells were grown to stationary
phase in rich medium for 2-3 days and then refed with fresh medium, and fixed and imaged
3 hours after refeeding.

Biochemical methods
For Myc- and HA-tagged proteins, monoclonal antibodies 9E10 and 12CA5 were used. For
Mto1 and Mto2, serum or affinity-purified polyclonal antibodies were used as described
previously (Samejima et al., 2005; Sawin et al., 2004). For γ-tubulin (Gtb1), monoclonal
antibody GTU-88 (Sigma) was used. Antibodies to Alp4 and Alp6 were raised by
immunization of sheep with SDS-PAGE-purified GST-Alp4 and GST-Alp6 fusion proteins
(from purified inclusion bodies), and either serum (anti-Alp4) or blot-affinity-purified
antibody (anti-Alp6) was used for Western blots.

For immunoprecipitations, extracts were made from liquid-nitrogen frozen cells as described
previously (Anders et al., 2006; Samejima et al., 2005; Sawin et al., 2004). Protein A
Sepharose, Protein G Sepharose, or Protein G Dynabeads were used for
immunoprecipitations, depending on the primary antibody. For salt-washes of
immunoprecipitations, two intermediate wash steps were supplemented with KCl to the final
salt concentration indicated.

A single-step purification of TAP-tagged proteins, up to and including release of proteins
bound to IgG beads by cleavage with TEV protease, was performed following the steps
described by Gould et al. (Gould et al., 2004), with only minor modifications. In the
experiments shown in Fig. 6 we note that different amounts of Mto1 and Mto2 are seen in
the lanes 1-4 under “TEV elution, short exposures”. These differences are likely to have a
simple technical explanation. Comparing lanes 2 and 4, it can be seen that more Mto2(-
TAP) is purified from mto1Δ cells than from wild-type cells, even though equal levels of
Mto2(-TAP) are present in the cell extracts. This suggests that the TAP tag on Mto2 may not
be easily accessible when Mto2-TAP is part of the Mto1/2 complex, consistent with
previously published work that did not successfully detect γ-TuC proteins by mass
spectrometry after Mto2-TAP purification (Venkatram et al., 2005). At the same time,
comparing lanes 1 and 2, it can be seen that comparable amounts of Mto2 are purified from
Mto1-TAP and Mto2-TAP purifications in wild-type cells, while in the same cells,
significantly less Mto1 is purified from Mto2-TAP purification as compared to Mto1-TAP
purification. We interpret this as follows: In the Mto1-TAP purification from wild-type
cells, all of the Mto2 purified is derived from the Mto1/2 complex. In the Mto2-TAP
purification from wild-type cells, most of the Mto2(-TAP) purified may be derived from
“free”, uncomplexed Mto2, because much of the Mto2(-TAP) that is present as Mto1/2
complex in these cell extracts is poorly accessible and is therefore not purified. Therefore,
only a small proportion of Mto2(-TAP) that is purified here is derived from the Mto1/2
complex, and that is why there is less Mto1 in lane 2 than in lane 1. The increased Mto2 in
lane 4 compared to lane 2 is, accordingly, the result of a higher proportion of total Mto2 in
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cell extracts being accessible to purification. According to this view, the different amounts
of γ-TuC purified in lanes 1 and 2 would be correlated with the different amounts of total
Mto1/2 complex that were purified. We also note that exposures were chosen to illustrate
these intensity differences, and therefore intensities can be compared within panels but not
between panels.

Immunofluorescence
Microtubule cold-shock and regrowth experiments were performed exactly as described
previously, using methanol fixation (Samejima et al., 2005; Sawin et al., 2004). For anti-
tubulin immunofluorescence, monoclonal antibody TAT-1 was used (Woods et al., 1989).
For anti-Mto1 immunofluorescence, affinity-purified polyclonal antibody to Mto1 was used
(Sawin et al., 2004). TAT1 anti-tubulin-stained cells were further stained with Alexa-
Fluor-488-labelled secondary antibody (Invitrogen) and observed by spinning-disk confocal
microscopy, using a Nikon 100×/1.45 NA PlanApo objective on a Nikon TE2000 inverted
microscope, connected to a Yokogawa CSU-10 spinning disk confocal head (Visitech) and a
Coolsnap HQ CCD camera (Photometrics). Images were acquired using Metamorph
software (Molecular Devices). Anti-Mto1-stained cells were further stained with Alexa-
Fluor-568-labelled secondary antibody, counterstained with DAPI and observed by wide-
field microscopy, using a Nikon 100×/1.40 NA Plan Apo objective on a Nikon TE300
inverted microscope, connected to a Coolsnap HQ CCD camera. Images were acquired
using Metamorph software. Note that methanol fixation leads to “shrunken” cells relative to
live-cell imaging; this can be seen comparing cell lengths to scale bars.

Live-cell imaging and videomicroscopy
Live-cell imaging used a system and methods described previously (Anders et al., 2006).
Cells were grown in minimal medium at room temperature (23-25°C). For videomicroscopy
of cells expressing GFP-labelled tubulin (nmt81:GFP-Atb2, with the promoter induced) and
RFP-labelled spindle pole bodies (Sad1-dsRed), 8 Z-sections, 0.6 μm apart, were acquired
every 20 seconds, using Metamorph software (Molecular Devices). Video sequences were
deconvolved using Softworx (Applied Precision), and maximum projections were used for
movies at 10 frames per second (i.e. 200X time compression relative to real-time), using
Quicktime 7.4.1 (Apple) and H.264 video compression. Maximum projections are also
shown in the image stills of Figs. 1E and 4E. Still images of cells expressing Mto1-GFP or
mutant Mto1-GFP with Alp4-tdT were acquired as above but not deconvolved. Maximum
projections are shown, except for Fig. 2B. Apart from deconvolution for movies, all
microscope images were adjusted only by linear contrast enhancement using Photoshop
(Adobe), and all relevant panels within a given figure were adjusted identically, allowing
direct comparison of intensities.

Quantification of new cytoplasmic microtubule nucleation frequency
For measurements of new MT nucleation frequency in wild-type cells and mto1 mutants
expressing GFP-Atb2 and Sad1-dsRed, 20 cells of each genotype were analyzed from
movies (Fig. 1E, supplementary Movies 1-5). The appearance of new MT bundles was
measured in each cell for 26 minutes (80 time-points); values shown are the mean nucleation
frequency per minute per cell, ± SD. Obvious intranuclear MT nucleation, which is
sometimes apparent in mto1Δ, mto1-9A1 and mto1-9A2 mutants, was ignored. The low
levels of apparent cytoplasmic nucleation measured in mto1Δ, mto1-9A1 and mto1-9A2
mutants may reflect occasional mis-scored intranuclear MT nucleation (note that SD is
greater than the mean in these mutants).
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Two of three mutations in the Centrosomin motif 1 (CM1) region of Mto1 abolish
cytoplasmic MT nucleation. (A) Schematic of Mto1 protein, showing CM1 and Mto2-
binding region in grey. Predicted coiled-coils (PAIRCOIL score > 0.5) are indicated in red
(Berger et al., 1995). Amino acid residue numbers are indicated below. (B) Alignment of
Mto1 CM1 region with selected related proteins in fission yeast, Neurospora, Drosophila,
zebrafish and human, with the amino acids mutated to alanine in the mto1-9A1, mto1-9A2,
and mto1-9A3 mutants indicated above. The mto1-9A3 mutation lies at the beginning of the
first predicted coiled-coil of Mto1. (C) Wild-type and mto1 mutant cell morphology (strains
KS515, KS1017, KS2007, KS2010, KS2013) after growth to stationary phase and refeeding
with fresh medium. (D) Anti-tubulin immunofluorescence time-course of MT regrowth after
cold-induced depolymerization in wild-type and mutant strains (strains KS515, KS1017,
KS2007, KS2010, KS2013). (E) Stills from movies of strains expressing GFP-tubulin and
the SPB component Sad1-dsRed (strains KS2863, KS3609, KS3604, KS3605, KS3607; see
supplementary material Movies 1-5). Interphase cells are shown on the left of each pair (40
sec intervals) and mitotic cells on the right (100 sec intervals). White arrowheads indicate
examples of interphase MT nucleation. Yellow arrowheads indicate examples of mitotic
astral MTs. Blue arrowheads indicate example of PAA MTs. Asterisks indicate bend-
breakage events in which a single MT or MT bundle breaks into two. Values underneath
images indicate average number of interphase nucleation events per cell per minute (see
Materials and Methods). Bars, 10 μm.
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Fig. 2.
Mto1-9A1 and Mto1-9A2 mutant proteins do not interact with the γ-tubulin complex (γ-
TuC). (A) Anti-Myc immunoprecipitates of Myc-tagged wild-type and mutant Mto1
proteins (strains KS1517, KS1370, KS2290, KS2292, KS2294), probed with antibodies to
the indicated proteins. The band migrating near Mto1-Myc on the anti-Myc blot of cell
extract, “no tag” lane is an unrelated protein that is not precipitated by the anti-Myc
antibody. IgG on the anti-γ-tubulin blot is marked by asterisk. (B) Individual sections (S1,
S2, S3) of a single interphase cell expressing Mto1-GFP and Alp4-tdTomato from
endogenous promoters (strain KS3957). The SPB is apparent in S1. Note in S2 that some
Mto1-GFP satellites do not contain visible Alp4-tdT (middle section, arrowheads). (C-F)
Maximum projections of cells expressing Mto1-GFP, Mto1-9A1-GFP, Mto1-9A2-GFP, or
Mto1-9A3-GFP, together with Alp4-tdT (strains KS3957, KS3961, KS3962, KS3965) in
interphase and mitosis. Bar, 10 μm.
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Fig. 3.
The CM1 region of Mto1 is not sufficient for interaction with the γ-TuC. Anti-Myc
immunoprecipitates of Myc-tagged carboxy-terminal truncations of Mto1 (strains KS1366,
KS1517, KS1910, KS1822, KS1824, KS1825, KS1914, KS1916, KS1933), probed with
antibodies to Mto1-Myc and γ-TuC protein Alp4-HA. “FL” indicates full-length Mto1
(1-1115). Abnormally fast migration of Mto1-(1-418)-Myc (marked with asterisk) is due to
a reduced number of Myc tags.

Samejima et al. Page 15

J Cell Sci. Author manuscript; available in PMC 2009 September 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 4.
Mto2 binding to Mto1 is required for efficient interaction of Mto1 with the γ-TuC. (A) anti-
Mto1 and anti-Mto2 immunoprecipitates from wild-type, mto1-334 and mto1Δ cells (strains
KS516, KS2272, KS1017), probed with anti-Mto1 and anti-Mto2 antibodies. (B) mto2Δ and
mto1-334 mutant cell morphology (strains KS977, KS3734) after growth to stationary phase
and refeeding with fresh medium. (C) Anti-Myc immunoprecipitates of Mto1, Mto1-Myc or
Mto1-334-Myc, in the mto2 backgrounds shown (strains KS1370, KS1517, KS2169,
KS3742), probed with antibodies to the indicated proteins. (D) Anti-tubulin
immunofluorescence time-course of MT regrowth after cold-induced depolymerization in
wild-type, mto2Δ and mto1-334 cells (strains KS516, KS976, KS2272). (E) Stills from
movies of mto2Δ and mto1-334 cells expressing GFP-tubulin and Sad1-dsRed (strains
KS2785, KS3765; see supplementary material Movies 6 and 7). Interphase cells are shown
on the left of each pair (40 sec intervals) and mitotic cells on the right (100 sec intervals).
White arrowheads indicate interphase MT nucleation, restricted to the SPB. Yellow
arrowheads indicate mitotic astral MTs. Blue arrowheads indicate examples of weak
nucleation of MTs from eMTOC. Asterisks indicate bend-breakage events in which a single
MT or MT bundle breaks into two. (F) Maximum projections of cells expressing Mto1-GFP
in mto2Δ background or Mto1-334-GFP in wild-type mto2+ background, together with
Alp4-tdT (KS4074, KS4039). In some but not all mto2Δ and mto1-334 mutants, very faint
Alp4-tdT could be observed at the equator, which may represent sub-detection amounts of
γ-TuC that are likely responsible for the very small amount of equatorial MT nucleation
observed in these mutants (see Fig. 4E). Bars, 10 μm.
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Fig. 5.
Mto1 and Mto2 form a stable complex in which Mto1 must contain both an intact CM1
region and an Mto2-binding region for normal function. (A) Anti-Mto2 immunoprecipitates
from alp4-HA cells (strain KS1370), washed with the indicated concentrations of KCl and
probed with antibodies to the proteins shown. (B) DIC images of representative diploid
strains of the indicated genotypes described in (C) after growth to stationary phase and
refeeding with fresh medium. Bar, 10 μm. (C) Cell morphology of diploids combining the
different mto1 alleles shown in the rows and columns in trans (strains KS3786 × KS3780,
KS3785 × KS3775, KS3786 × KS3789, KS3786 × KS3777, KS3795 × KS3784, KS3781 ×
KS3776, KS3780 × KS3784, KS3774 × KS3777, KS3775 × KS3784, KS3788 × KS3776,
KS3789 × KS3784, KS3776 × KS3778, KS3777 × KS3784, reading from left to right).
mto1-9A3 did not trans-complement any of the other mto1 mutant alleles, probably because
mto1-9A3 is itself a partial loss-of-function allele, as shown in the morphology of
mto1-9A3/mto1-9A3 homozygous diploids (see also Figs. 1 and 2; supplementary material
Movie 4). Other homozygous diploids were not constructed; ND, not determined.
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Fig. 6.
Cooperative binding of the Mto1/2 complex to γ-TuC. Purification of TAP-tagged Mto1
and Mto2 in wild-type and mutant backgrounds (strains KS3524, KS3956, KS4323,
KS4326, KS516, KS4267, KS4270), probed with antibodies to the indicated proteins.
Differently-migrating forms of Mto1 and Mto2 represent TAP-tagged, cleaved TAP-tagged,
and untagged forms of the proteins. Vertical lines indicate blank lanes.
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Table 1

Summary of mto1 and mto2 mutant phenotypes

strain interphase
nucleation
from:

cytoplasmic
astral MTs in
mitosis?

PAA
nucleation
from
eMTOC?

wild-type SPB and
iMTOCs

yes yes

mto1Δ none no no

mto1-9A1 none no no

mto1-9A2 none no no

mto1-9A3 SPB and
iMTOCs
(reduced)

yes yes

mto2Δ SPB only yes limited

mto1-334 SPB only yes limited
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