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ABSTRACT

Codon usage bias is the nonrandom use of synonymous codons for the same amino acid. Most population
genetic models of codon usage evolution assume that the population is at mutation–selection–drift
equilibrium. Natural populations, however, frequently deviate from equilibrium, often because of recent
demographic changes. Here, we construct a matrix model that includes the effects of a recent change in
population size on estimates of selection on preferred vs. unpreferred codons. Our results suggest that
patterns of synonymous polymorphisms affecting codon usage can be quite erratic after such a change;
statistical methods that fail to take demographic effects into account can then give incorrect estimates of
important parameters. We propose a new method that can accurately estimate both demographic and
codon usage parameters. The method also provides a simple way of testing for the effects of covariates such
as gene length and level of gene expression on the intensity of selection, which we apply to a large Drosophila
melanogaster polymorphism data set. Our analyses of twofold degenerate codons reveal that (i) selection acts
in favor of preferred codons, (ii) there is mutational bias in favor of unpreferred codons, (iii) shorter genes
and genes with higher expression levels are under stronger selection, and (iv) there is little evidence for a
recent change in population size in the Zimbabwe population of D. melanogaster.

CODONS specifying the same amino acid are called
synonymous codons. These are often used non-

randomly, with some codons appearing more frequently
thanothers.Thisbiased usageof synonymous codonshas
been found in many organisms such as Drosophila, yeast,
and bacteria (Ikemura 1985; Duret and Mouchiroud

1999; Hershberg and Petrov 2008). Conventionally,
synonymous codons for a given amino acid are divided
into two classes: preferred and unpreferred codons
(Ikemura 1985; Akashi 1994; Duret and Mouchiroud

1999). Several observations indicate that codon usage is
affected by natural selection. First, in species with codon
usage bias, preferred codons generally correspond to the
most abundant tRNA species (Ikemura 1981). Second,
highly expressed genes usually have higher codon usage
bias than genes with low expression (Sharp and Li 1986;
Duret and Mouchiroud 1999; Hey and Kliman 2002).
Third, the synonymous substitution rate of a gene has
been shown to be negatively correlated with its degree
of codon usage bias (Sharp and Li 1986; Bierne and
Eyre-Walker 2006). The most commonly cited explan-

ations of the apparent fitness differences between
preferred and unpreferred codons are selection for
translation efficiency, translational accuracy, and mRNA
stability (Ikemura 1985; Eyre-Walker and Bulmer

1993; Akashi 1994; Drummond et al. 2005). Recently, it
has been proposed that exon splicing also affects codon
usage bias (Warnecke and Hurst 2007).

From a population genetics perspective, the extent of
codon usage bias is ultimately a product of the joint
effects of mutation, selection, genetic drift, recombina-
tion, and demographic history. The Li–Bulmer model
of drift, selection, and reversible mutation between
preferred and unpreferred codons at a site is the most
widely used model (Li 1987; Bulmer 1991; McVean

and Charlesworth 1999). Applications of this model
generally assume that the population is at mutation–
selection–drift equilibrium. However, empirical studies
have suggested that changes in the strengths of various
driving forces may not be unusual. For example, in
Drosophila melanogaster, there is evidence that the pop-
ulation size (Li and Stephan 2006; Thornton and
Andolfatto 2006; Keightley and Eyre-Walker 2007;
Stephan and Li 2007), recombinational landscape
(Takano-Shimizu 1999), and mutational process
(Takano-Shimizu 2001; Kern and Begun 2005) may
have changed significantly over the species’ evolution-
ary history.
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Such changes cause departures from equilibrium.
Theoretical models show that it takes a very long time,
proportional to the reciprocal of the mutation rate, for
the population to approach a new equilibrium state
(Tachida 2000; Comeron and Kreitman 2002). Before
reaching equilibrium, the population often shows coun-
terintuitive patterns of evolution (Eyre-Walker 1997;
Takano-Shimizu 1999, 2001; Comeron and Kreitman

2002; Comeron and Guthrie 2005; Charlesworth

and Eyre-Walker 2007). Despite these theoretical
results, details of the patterns of polymorphism and
substitution rates following a recent change in popula-
tion size, and their effects on estimates of strength of
selection, have not been determined.

The above findings point to the importance of
incorporating nonequilibrium factors into the study of
codon usage bias. To this end, we extend the Li–Bulmer
model to allow population size to vary over time, by
representing the evolutionary process by a transition
matrix. By analyzing this matrix model, we show that a
recent change in population size can result in erratic
patterns of codon usage and that methods failing to take
into account these demographic effects can give false
estimates of the intensity of selection.

To solve these problems, we propose a new method,
which does not require polarizing ancestral vs. de-
rived states using outgroup data (cf. Cutter and
Charlesworth 2006), but requires only knowledge
of preferred vs. unpreferred states defined by patterns
of codon usage. We use information on both poly-
morphic and fixed sites, which enables both mutational
bias and the strength of selection to be estimated, in
contrast to previous methods that use information on
polymorphisms alone. Simulations indicate that this
method can accurately estimate both demographic and
codon usage parameters and can distinguish between
selection and demography. We use the new method to
analyze a large D. melanogaster polymorphism data set
(Shapiro et al. 2007) and find evidence for natural
selection on synonymous codons. We use our approach
to show that genes with shorter coding sequences
and higher levels of expression are under signifi-
cantly stronger selection than longer genes with lower
expression.

MATERIALS AND METHODS

Description of the model: We consider a diploid Wright–
Fisher population (Ewens 2004, p. 21), whose size in gener-
ation t is Nt. At an autosomal nucleotide site, two variants, A
and a, can occur. Mutation is reversible: the per generation
mutation rate from a to A is u, and the rate in the opposite
direction is ku. The fitnesses of the three possible genotypes,
AA, Aa, and aa are 1, 1 � 1

2 s, and 1 � s, respectively (the genic
selection model). Denote the number of occurrences of allele
A in generation t by X(t). If X(t) ¼ i, and assuming that
mutation precedes selection, the frequency of A after muta-
tion is

x*ðtÞ ¼ i

2Nt
ð1� kuÞ1

�
1� i

2Nt

�
u: ð1Þ

After selection, this becomes

xðtÞ ¼ x*ðtÞ 1� ð1=2Þsð1� x*ðtÞÞ
� �

1� sð1� x*ðtÞÞ : ð2Þ

The transition probability for X(t) is thus

pijðtÞ ¼ PrfX ðt 1 1Þ ¼ j jX ðtÞ ¼ ig

¼ 2Nt11

j

� �
ðxðtÞÞjð1� xðtÞÞ2Nt11�j : ð3Þ

In Equations 1–3, we have 0 # i # 2Nt and 0 # j # 2Nt11.
Let fj(t) ¼ Pr(X(t) ¼ j) be the probability that A is

represented j times in the population at time t. This satisfies
the relation

X2Nt

j¼0

fjðtÞ ¼ 1: ð4Þ

Standard Markov chain theory (Karlin and Taylor 1975)
implies the recursion relationship

fjðt 1 1Þ ¼
X2Nt

i¼0

fiðtÞpijðtÞ; 0 # j # 2Nt11: ð5Þ

In an equilibrium population with constant size N, Equation 5
can be written as

fj ¼
X2N

i¼0

fipij ; 0 # j # 2N : ð6Þ

Equation 6 is a system of linear equations subject to the
requirement given in Equation 4.

Following the method used to calculate the frequency
spectrum of polymorphic sites under the infinite-sites model
(e.g., Equation 16 in McVean and Charlesworth 1999), we
can decompose fj(t) into two subprocesses:

fjðtÞ ¼ fA;jðtÞ1 fa;2Nt�jðtÞ; 1 # j # 2Nt � 1: ð7Þ

Here, fA,j(t) is the probability that the mutant allele A is
currently represented j times in the population, having
originated at a site fixed for a. We call these mutations
‘‘a / A polymorphic mutations.’’ The second subprocess
involves mutations originating at sites fixed for A, such that the
mutant allele a is currently represented 2Nt � j times in the
population (i.e., A is represented j times); these are A / a
polymorphic mutations. For the first subprocess, we have the
following recursion formula

fA;jðt 1 1Þ

¼
X2Nt�1

i¼1

fA;iðtÞpijðtÞ1 f0ðtÞp0jðtÞ; 1 # j # 2Nt11 � 1: ð8Þ

The first term on the right describes the dynamics of sites that
are polymorphic in the tth generation, and the second term
describes new a / A polymorphic mutations. This formula is
analogous to Equation 3 of Evans et al. (2007), which was
derived under the infinite-sites model. A similar formula holds
for the second subprocess. Equations 7 and 8 provide an
alternative way of calculating the frequency spectrum of
polymorphic sites, on the infinite-sites assumption that all
new mutations arise at sites that are fixed for either A or a; but
in fact they apply more generally. Some examples are given in
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supporting information, Figure S1. While the application of
our model to data analysis does not depend critically on the
infinite-sites assumption, this is likely to be a good approxi-
mation in practice and is valid for the simulations described in
the first part of the results section.

From the two subprocesses, the proportion of polymorphic
sites originating from sites previously fixed for a, Pa, is given by

PaðtÞ ¼
P2Nt�1

j¼1 fA;jðtÞP2Nt�1
j¼1 ð fA;jðtÞ1 fa;jðtÞÞ

: ð9Þ

The proportion of polymorphic sites that originated from sites
previously fixed for A, PA, can be calculated similarly. Further-
more, we can calculate the rate at which a site currently fixed
for a is replaced by a site fixed for A, denoted by raA(t):

raAðtÞ ¼
X2Nt�1�1

j¼1

fA;jðt � 1Þpj ;2Nt ðt � 1Þ1 f0ðt � 1Þp0;2Nt ðt � 1Þ:

ð10Þ
Similarly, we can calculate the rate, rAa(t), at which a site
currently fixed for A is replaced by a site fixed for a. Thus, the
total substitution rate is

rðtÞ ¼ raAðtÞ1 rAaðtÞ: ð11Þ
In an equilibrium population, Equations 7–11 are indepen-
dent of t.

Statistical methods: In this section, we use the theory
developed above to construct two new methods that are based
on the frequencies of preferred vs. unpreferred variants at
nucleotide sites and do not require the use of an outgroup
to infer ancestral vs. derived states, extending the similar
approach of Cutter and Charlesworth (2006). Let di be
the number of sites at which allele A is represented i times in
a sample of n alleles from a population. The frequency dis-
tribution for the sample, d, is a vector of all the di’s (0 # i # n);
this includes cases where the sample is fixed for either A or a.

We start with the simple case where the population is at
equilibrium, denoted as L0. The population dynamics are
determined by the parameters N, u, k, and s. However, if all
evolutionary forces are weak so that the diffusion approxima-
tion holds, the state of a sample from the population is
described by the compound parameters u ¼ 4Nu and g ¼ 2Ns
(Ewens 2004, Chap. 5). The distribution of the numbers of
copies of A per site in the population can be calculated by
solving Equation 6 numerically (see below). We write this
distribution as f, which is a vector with 2N 1 1 elements. The
log-likelihood for the sample, d, is the

L0ðd jg; u; kÞ ¼
Xn

i¼0

di 3 log
X2N

j¼0

fj
n
i

� �
j

2N

� �i

1� j

2N

� �n�i
" #

:

ð12Þ
In Equation 12, we have adopted the ‘‘conventional’’ as-
sumption that sites behave independently of each other
(Akashi and Schaeffer 1997; Eyre-Walker 1997; McVean

and Vieira 1999; McVean and Charlesworth 2000; Maside

et al. 2004; Cutter and Charlesworth 2006; Galtier et al.
2006). Although this assumption is unrealistic, it is mathemat-
ically tractable and seems to work fairly well in practice with
relatively free recombination (e.g., with a local recombination
rate .2 cM/Mb, K. Zeng, unpublished results; see also
Williamson et al. 2005 and Boyko et al. 2008).

To model the effects of a change in population size, we
assume that the population is originally at equilibrium with
population size Nb. Its population size then changes instantly

to Na and stays constant for t generations, at which point a
sample is taken from the population. Hence, the model,
denoted as L1, has five parameters: gb (¼ 2Nbs), ub (¼ 4Nbu), k,
g (¼ Na/Nb), and t (¼ t/Na). The demographic model
underlying L1, although somewhat unrealistic, is mathemati-
cally tractable and has been widely used (Williamson et al.
2005; Li and Stephan 2006; Keightley and Eyre-Walker

2007; Boyko et al. 2008).
Let the distribution of the numbers of A per site in the

generation just before the change in population size be fb.
Then the distribution in the tth generation after the change,
fa(t) (a vector with 2Na 1 1 elements), can be obtained by
iterating Equation 5 with fb as the initial condition. The log-
likelihood of the data is now

L1ðd jgb ; ub ; k; g ; tÞ

¼
Xn

i¼0

di 3 log
X2Na

j¼0

f a
j ðtÞ

n

i

� �
j

2Na

� �i

1� j

2Na

� �n�i
" #

: ð13Þ

Note that, when g ¼ 1 and/or t ¼ ‘, the more complex
model, L1(d j gb, ub, k, g, t), reduces to the simpler model,
L0(d j g, u, k). Here, following Williamson et al. (2005), we use
a chi-square test with 2 d.f. to distinguish these two models
under the assumption that it will yield a conservative test.

Numerical computations: We used standard numerical
methods to solve the linear system given in Equation 6: an
LU-decomposition procedure followed by one round of
numerical improvement (Press et al. 1992). The adequacy
of this numerical method was checked by comparing the
results with those obtained by iterating Equation 5 (results
not shown). To find the maximum-likelihood estimates
(MLEs) of the parameters, we used the simplex algorithm
(Press et al. 1992). Multiple start points were used to make sure
that the global maximum was found. To save computer time,
we used a relatively loose search criterion in the simulations,
with a sparse grid of values and a relaxed convergence
criterion.

When implementing the model, the size of the transition
matrix has to be specified. As mentioned above, population
dynamics in the diffusion limit are determined by the
compound parameters u and g. Hence it is legitimate to ‘‘scale
down’’ the population size to give a tractable size of matrix,
preserving the u- and g-values for the true population size.
This rescaling has been widely used in population genetics
(McVean and Charlesworth 2000; Tachida 2000; Comeron

and Kreitman 2002; Keightley and Eyre-Walker 2007;
Kaiser and Charlesworth 2009). In our own experience,
rescaling produced reasonable results even when N was set to
10 (see Table S1).

When computing the more complex model given in
Equation 13, it was not feasible to use the simplex algorithm
to examine the full domain of g [i.e., g 2 (0, ‘)], so we
restricted the search to g 2 (0.05, 20).

Simulation methods: To generate a random sample of size n
under the constant population size model (L0), we first solved
Equation 6 numerically to obtain f. We then determined the
population frequency of A, denoted as x, by sampling from f.
Finally we obtained the number of copies of A in a sample of
size n by drawing from a binomial distribution with parameters
n and x. A similar procedure was used to generate random
samples under the more complex model (L1).

Source of data: We applied these methods to a large D.
melanogaster polymorphism data set (Shapiro et al. 2007). The
data, which were kindly provided by D. Turissini, contained
alignments of 468 autosomal loci. A number of Zimbabwe and
cosmopolitan lines were sampled. We used only the Zimbabwe
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lines in our analysis because of severe bottleneck effects in the
other population that was sampled (Glinka et al. 2003;
Haddrill et al. 2005; Li and Stephan 2006; Thornton and
Andolfatto 2006). Among the Zimbabwe lines, we used only
those showing the strongest evidence for reproductive iso-
lation, the ‘‘strong Z lines.’’ This avoids the possibility that the
Z lines with reduced reproductive isolation with the cosmo-
politan lines might have been formed by secondary contact
with the cosmopolitan lines; these gave an excess of interme-
diate-frequency variants in the frequency spectrum when these
‘‘weak’’ Z lines were included in the analysis (J. Shapiro and
C-.I. Wu, personal communication).

To annotate the data, we downloaded version 5.11 of the D.
melanogaster genome data from FlyBase (http://flybase.org/).
We then used BLAT (version 34, with default parameters;
http://genome-test.cse.ucsc.edu/�kent/exe/linux/) to align
the data to the reference genome. We excluded eight loci
falling into putatively repetitive regions and one locus falling
into a heterochromatic region. For the other loci, we used
their genomic locations to obtain estimates of local recombi-
nation rate using a well-established method (Singh et al. 2005)
(the data were available online from the Petrov laboratory
at http://petrov.stanford.edu/cgi-bin/recombination-rates_
updateR5.pl). To reduce the effect of linkage, we analyzed
only loci locating in highly recombining regions, defined as
regions with a local recombination rate strictly .2.3 cM/Mb
(Singh et al. 2005). To avoid the complication of alternatively
spliced genes (Iida and Akashi 2000), we retained only loci
overlapping one annotated well-defined coding region (i.e.,
starting with a start codon, ending with a stop codon, and
possessing no premature stop codon). We further excluded
codons where mutations in the first position could change the
status of the third codon position (e.g., from fourfold de-
generate to twofold degenerate). Insertions and deletions
were also removed. For the genes passing all the above filters,
we extracted twofold degenerate codons and defined pre-
ferred/unpreferred codons as in Duret and Mouchiroud

(1999). A summary of the data is given in Table 1.

RESULTS

Effects of a change in population size on patterns of
codon usage evolution: In this section, we assumed that
the population size changed instantly from Nb to Na at
time zero and stayed constant thereafter. Allele A was

the preferred allele, but mutation was biased toward the
unpreferred allele, a (i.e., k . 1). First, we explored the
effects of population expansion by assuming that the
population size instantly increased 10-fold at time zero
(i.e., Na ¼ 10Nb; Figure 1). As reported previously
(Takano-Shimizu 1999; Charlesworth and Eyre-
Walker 2007), for a long period after the expansion
(�38Na generations in Figure 1A), the total substitution
rate is higher than that before the expansion. This is due
to a sharp increase in raA (the top curve in Figure 1A).
Patterns of polymorphism are also complex (Figure
1B). For example, the frequency of polymorphisms
arising from sites fixed for a (Pa) first increases and then
gradually decreases to its new equilibrium level. This
behavior of Pa is caused by the following dynamics. Just
after the expansion, there are many more sites fixed for
a in the population than at equilibrium under the new,
larger population size. With the parameter values used
in Figure 1, 68% of the sites are expected to be fixed for
a before the expansion, whereas this number decreases
to 12% under the new population size. Thus, immedi-
ately after the expansion, the chance of occurrence
of an a / A mutation is higher than at equilibrium
with the new population size. On the other hand, the
population expansion changes the scaled selection
coefficient from gb ¼ 2Nbs ¼ 0.3, the value before the
change, to ga ¼ 2Nas ¼ 3, the value after the change. As
a result, under the new population size, A / a poly-
morphic mutations become more deleterious and are
more efficiently purged, whereas a / A polymorphic
mutations become more advantageous and are more
likely to escape stochastic loss and to segregate at
an appreciable frequency. These nonequilibrium dy-
namics lead to the transient increase in Pa. However, as
time elapses, the number of sites fixed for a gradually
decreases, and Pa also slowly decreases to its new
equilibrium value.

Another feature of Figure 1B is of interest: for �5Na

generations Pa $ PA. This observation is striking because
(i) PA¼ Pa¼ 50%, which occurs twice in Figure 1B when
the two curves intersect, is a pattern expected under an
equilibrium population with neutrality (McVean and
Charlesworth 1999) and (ii) Pa . PA is expected
under an equilibrium model when a is preferred
(McVean and Charlesworth 1999), but here a was
unpreferred. These results strongly suggest that using
predictions made by equilibrium models of codon
usage to interpret patterns of polymorphism observed
in a nonequilibrium population may lead to very
misleading conclusions.

Next, we examined the effects of a reduction in
population size. In Figure 2, a 10-fold decrease was
assumed (i.e., 10Na ¼ Nb). Immediately after the re-
duction, the total substitution rate, r, is much higher
than that before (Figure 2A), consistent with previous
results (Takano-Shimizu 1999; Charlesworth and
Eyre-Walker 2007). The increase in r is due to in-

TABLE 1

Summary of the D. melanogaster polymorphism data

Ga �nb Lc Sd uW
e up

f Tajima’s Dg

182 5.5 14,807 335 0.0107 0.0108 �0.0076

a Total number of loci.
b Mean sample size.
c Total number of twofold degenerate sites.
d Total number of polymorphic twofold degenerate sites.
e Mean value of Watterson’s estimator of (per site) popula-

tion mutation rate (Watterson 1975). In the calculation, on-
ly twofold degenerate sites were used.

f Mean nucleotide diversity. In the calculation, only twofold
degenerate sites were used.

g Mean Tajima’s D statistic (Tajima 1989). In the calcula-
tion, only twofold degenerate sites were used.
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creases in both rAa and raA. Patterns of polymorphism
also show interesting dynamics. Before reaching their
new equilibrium values of 54 and 46%, respectively, the
difference between PA and Pa increases temporarily
(Figure 2B), mimicking an increase in selection pres-
sure on synonymous codons, despite the fact that the
selection pressure is greatly reduced due to the sharp
decrease in population size. This increased difference
between PA and Pa is caused by (i) a transient increase

Figure 1.—Patterns of substitution and polymorphism af-
ter a recent population size expansion. We assumed that a dip-
loid population of size Nb was originally at equilibrium. At
time zero the population size increased instantly 10-fold to
Na and stayed constant thereafter. Allele A was assumed to
be the preferred allele. The parameters used were gb ¼
2Nbs ¼ 0.3, ub ¼ 4Nbu ¼ 0.002, and k ¼ 3. Time was measured
in units of Na generations. (A) Patterns of substitution. We cal-
culated three quantities: raA (the rate at which sites fixed for
allele a were replaced by sites fixed for allele A; see Equation
10), rAa (the rate at which sites fixed for A were replaced by
sites fixed for a), and r ¼ raA 1 rAa, the total substitution rate.
Shown are the ratios of the values of these quantities after the
change in population size to their equilibrium values before
the change. (B) Patterns of polymorphism. PA (or Pa) is the
proportion of polymorphic sites originating from sites previ-
ously fixed for A (or a) (see Equation 9).

Figure 2.—Patterns of substitution and polymorphism af-
ter a recent population size shrinkage. We assumed that a dip-
loid population of size Nb was originally at equilibrium. At
time zero the population size decreased instantly 10-fold to
Na and stayed constant thereafter. Allele A was assumed to
be the preferred allele. The parameters used were gb ¼ 2,
ub ¼ 0.02, and k ¼ 3. Time was measured in units of Na gen-
erations. (A) Pattern of substitution. (B) Pattern of polymor-
phism. Definitions of the quantities raA, rAa, r, PA, and Pa are
the same as those given in Figure 1.
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in the number of sites fixed for A (see Figure S2),
which allows more A / a polymorphic mutations to
occur, and (ii) a decrease in the total number of a / A
mutations arising each generation. Interestingly, the
transient increase in the number of sites fixed for
A also results in a brief increase in rAa at �2Na

generations after the contraction.
In brief, the dynamics of codon usage can be rather

complex following a recent change in population size.
Patterns of polymorphism may imitate those expected
under a weaker (Figure 1B) or a stronger (Figure 2B)
selection pressure on synonymous codons. Further,
these misleading patterns can persist for long periods,
as the time required for the population to reach the new
equilibrium state is typically very long (e.g., Figures 1
and 2).

The effects of a recent population size change on
methods that assume equilibrium: A number of meth-
ods have been proposed to quantify the selection
pressure on synonymous codons using within-species
polymorphism data (Akashi and Schaeffer 1997;
Maside et al. 2004; Comeron and Guthrie 2005;
Cutter and Charlesworth 2006). These methods
assume that the population is at mutation–selection–
drift equilibrium. However, given the results described
above, knowing the performance of these methods in a
nonequilibrium population is important. To this end,
we used the method of Maside et al. (2004) as an
example, due to its simplicity in calculation. This method
relies on some well-established diffusion approximations
(McVean and Charlesworth 1999). Our simulations
suggest that when the population is at equilibrium and
there is mutational bias, the method may give slightly
biased estimates of g, but this is apparent only when
selection is very weak (see Figure S3).

In Figure 3, the same model and parameters used to
obtain Figure 1 were used to generate random samples
of size 15 with 10,000 codons at various time points after
the population expansion. We used the Maside et al.
(2004) method to analyze these samples. As shown by
Figure 3A, the mean value of the maximum-likelihood
estimate (mean MLE) of g starts at a value�0.3, the true
value before the expansion, and then goes down to a
value of ��0.5; thereafter, the mean MLE increases
monotonically toward the new equilibrium value of 3.
Over this time period, the mean MLE of g takes the
value of zero twice, at �Na and �16Na generations after
the expansion, respectively. These two special time points
correspond to the two occasions when PA ¼ Pa ¼ 50% in
Figure 1B. The power of the method to reject neutrality
at a significance level of 5% is shown in Figure 3B. There
are two dips in the power curve. Not surprisingly, these
two significant reductions in power occur when the mean
MLE of g takes the value of zero. One feature of special
note in Figure 3 is that, during the time between the two
occasions when the mean MLE of g is zero, the Maside

et al. (2004) method has great power to reject neutral

evolution for the data sets that we simulated. However,
the g-value that the method returns has, on average, a
different sign from the true value. In other words, the
preferred/unpreferred state estimated by the method is
the reverse of the true situation. Further investigation

Figure 3.—Effects of a recent population size expansion
on the Maside et al. (2004) method. The model and param-
eters used were the same as those used to generate Figure 1
(i.e., a 10-fold increase in population size, gb ¼ 0.3, ub ¼ 0.002,
and k ¼ 3). At each time point after the expansion in popu-
lation size, we randomly generated 500 samples. Each sample
was composed of 15 sequences of 10,000 codons. We then
used the Maside et al. (2004) method to analyze these samples
and obtained a distribution of estimated g. (A) The solid
curve shows the mean value of the estimates of g, and the
shaded sleeve indicates where 95% of the probability mass
of the distribution lies. (B) The power of the Maside et al.
method to reject neutrality at a significance level of 5%. Note
that the timescale is different in the two plots.
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suggests that the negative mean MLE was not caused
by our incorporation of a strong mutational bias in
the simulation (k¼ 3), because the same pattern was
observed when k was set to one (results not shown).

In agreement with the results shown in Figure 2B, there
is a brief increase in the mean MLE of g immediately
after a reduction in population size (Figure 4), and
thereafter the mean MLE decreases steadily toward the
new equilibrium value of 0.2. The power of the Maside
et al. method to reject neutrality in this case is a mono-
tonically decreasing function of time (see Figure S4).

We also carried out simulations to examine effects of
nonequilibrium evolution on the Akashi–Schaeffer
method (Akashi and Schaeffer 1997; see Figure S8
and Figure S9) and the Cutter–Charlesworth method
(Cutter and Charlesworth 2006; see Figure S10 and
Figure S11). Both methods are affected. Interestingly,
the Akashi–Schaeffer method overestimates the inten-
sity of selection after a population size expansion and
falsely infers the sign of g after a population size
reduction; these patterns are the reverse of those for
the Maside et al. method. The Cutter–Charlesworth
method has similar properties to the Maside et al.
method.

Taken together, the results suggest that recent pop-
ulation size changes can cause methods that assume
equilibrium to give misleading results. First, the esti-

mated selection pressure on synonymous codons may
be very different from the true value (Figures 3A
and 4); second, neutrality may be falsely accepted
(Figure 3B).

The performance of the new estimation methods: To
model the effects of a change in population size with the
new methods described in materials and methods, we
constructed two statistical models: L0 and L1. L0 assumes
that the population is at equilibrium and has three
parameters: g, u, and k. L1 assumes that the population
is originally at equilibrium with population size Nb. Then
the population size changes instantly to Na and stays
constant thereafter for t generations, at which point a
sample is taken from the population. Hence, L1 has five
parameters: gb (¼ 2Nbs), ub (¼ 4Nbu), k, g (¼Na/Nb), and
t (¼ t/Na).

In contrast to previous methods, which do not esti-
mate mutational parameters (Akashi and Schaeffer

1997; Maside et al. 2004; Comeron and Guthrie 2005;
Cutter and Charlesworth 2006), L0 simultaneously
estimates mutational (u and k) and selection (g)
parameters. Simulation results show that L0 has high
accuracy in estimating all the parameters (Table 2).
However, similarly to the Maside et al. method, L0

is susceptible to violation of the equilibrium assump-
tion (see Figure S5 and Figure S6). In this case, the
behavior of L0 is rather similar to that of the Maside
et al. method: following a recent population expansion
the mean MLE of g first decreases and then slowly
increases to the new equilibrium value. The difference
is that the mean MLE of g returned by L0 takes a
minimum value of �0.1 and never becomes negative.
Estimates of k and u produced by L0 are also likely to be
biased by recent demographic changes (see Figure S5
and Figure S6).

The L1 method has two more parameters, t and g, and
requires the iteration of Equation 5. Hence, L1 is the
most computationally intense method considered here.
Again we did simulations to examine the properties of
L1 (Table 3). The accuracy of L1 in estimating the
parameters is generally quite high. Importantly, the
method seems to have good power to reject a model
with constant population size and to detect selection
(Table 3). However, when only a relatively small amount
of data is available, the accuracy and power of the L1

method are reduced (see the second set of results in
Table 3). In this case, the model with a recent popula-
tion size reduction seems to be particularly problem-
atic: in the simulations, the simplex algorithm we used
often failed to converge and returned unrealistic
results. Interestingly, reducing the amount of data does
not reduce the power of the method to detect selection
if the population size is declining, whereas a limited
amount of data does reduce the power to detect
selection if the population size is increasing. This
difference is probably caused by the fact that immedi-
ately after a reduction in population size, patterns of

Figure 4.—Effects of a recent population size reduction on
the Maside et al. (2004) method. The model and parameters
used were the same as those used to generate Figure 2 (i.e., a
10-fold decrease in population size, gb ¼ 2, ub ¼ 0.02, and k ¼
3). At each time point after the reduction in population size,
we randomly generated 500 samples. Each sample was com-
posed of 15 sequences of 10,000 codons. We then used the
Maside et al. method to analyze these samples and obtained
a distribution of estimated g. The solid curve shows the mean
of the estimates of g, and the shaded sleeve indicates where
95% of the probability mass of the distribution lies.
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polymorphism can be very selection-like (i.e., PA and
Pa are very different; e.g., Figure 2B), whereas after a
population expansion patterns of polymorphism can
be more neutral-like (i.e., PA and Pa are close to 50%;
e.g., Figure 1B).

Overall, the L1 method seems to have substantial
power to disentangle selection from demography. This
is a useful property because it has long been known that

selection and demography, either acting separately or
jointly, can leave very similar traces on polymorphism
patterns, and distinguishing them has been a subject of
active research (Simonsen et al. 1995; Nielsen et al. 2005;
Williamson et al. 2005; Keightley and Eyre-Walker

2007; Zeng et al. 2007).
Applying the new methods to a D. melanogaster data

set: We used our new methods, L0 and L1, to analyze a

TABLE 3

Performance of the L1 method in a nonequilibrium population

ub k gb g t Power1d (%) Power2e (%)

Sample size ¼ 25, no. of codons per sequence ¼ 25,000
Inputa 0.004 3 0.4 5 1
Mean MLEb 0.0042 3.06 0.41 5.41 0.94 100 100
Percentilesc [0.0023, 0.0077] [2.61, 3.65] [0.26, 0.59] [3.10, 8.35] [0.41, 1.32]
Inputa 0.02 3 2 0.2 2
Mean MLEb 0.022 2.69 1.86 0.23 1.86 100 100
Percentilesc [0.015, 0.043] [1.62, 4.57] [1.30, 2.48] [0.12, 0.32] [0.68, 3.73]

Sample size ¼ 6, no. of codons per sequence ¼ 15,000
Inputa 0.004 3 0.4 5 1
Mean MLEb 0.0045 3.42 0.48 5.9 0.90 98 57
Percentilesc [0.0018, 0.0097] [2.14, 6.23] [0.06, 1.09] [3.0, 9.2] [0.06, 1.87]
Inputa 0.02 3 2 0.2 2
Mean MLEb 0.027 3.05 1.9 0.21 2.37 82.1 100
Percentilesc [0.008, 0.095] [1.41, 9.06] [1.24, 3.31] [0.08, 0.44] [0.73, 5.75]

In the simulations, we assumed that the population was originally at equilibrium with population size Nb. Then the population
size changed instantly to Na and stayed constant thereafter for t generations, at which point random samples were taken. The
parameters were gb (¼ 2Nbs), ub (¼ 4Nbu), k, g (¼ Na/Nb), and t (¼ t/Na). For each combination of parameter values, 100 replicate
simulations were run.

a The parameter values used to generate random samples.
b Mean value of the maximum-likelihood estimates (MLE).
c Percentiles [2.5% and 97.5%] of the distributions of the MLEs.
d The power to reject a model with constant population size at a significance level of 5%.
e The power to reject neutral evolution at a significance level of 5%.

TABLE 2

Performance of the L0 method in an equilibrium population

u k g

Sample size ¼ 15, no. of codons per sequence ¼ 10,000
Inputa 0.01 1 0
Mean MLEb 0.01 1.02 �0.0009
Percentilesc [0.008, 0.012] [0.71, 1.45] [�0.3772, 0.3488]
Inputa 0.01 3 1
Mean MLEb 0.01 3.01 1.02
Percentilesc [0.008, 0.012] [2.32, 4.10] [0.72, 1.34]

Sample size ¼ 25, no. of codons per sequence ¼ 500
Inputa 0.01 3 2
Mean MLEb 0.01 3.53 1.98
Percentilesc [0.003, 0.019] [1.01, 10.62] [0.79, 3.36]

For each combination of parameter values, we used the matrix model to generate 200 samples. These samples were analyzed
using L0 (see Equation 12).

a The parameter values used to generate random samples.
b Mean value of the maximum-likelihood estimates (MLE).
c Percentiles [2.5% and 97.5%] of the distributions of the MLEs.
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large D. melanogaster polymorphism data set (Shapiro

et al. 2007), summarized in Table 1 (see also materials

and methods).
Initial analysis: The results of the analyses are given in

Table 4. Interestingly, the simple model, L0, seems to be
sufficient to explain the data: there is essentially no
increase in the log-likelihood (ln L) when the data were
analyzed using L1. Further support for this conclusion
comes from the fact that, under L1, the estimate of the
time after expansion, t, is very large, by which time the
population has essentially reached a new equilibrium,
and L1 reduces to L0. For this reason, we were unable to
obtain a 95% confidence interval under L1. Further-
more, consistent with many previous reports (Petrov

and Hartl 1999; McVean and Vieira 2001; Nielsen

et al. 2007; Keightley et al. 2009), the mutational
process is not symmetric, but is biased toward pre-
ferred-to-unpreferred changes [L0(k ¼ 1) vs. L0, x2 ¼
4.6, d.f. ¼ 1, P ¼ 0.03]. In contrast, comparing L0 with
the reduced model when the selection coefficient (s)
was fixed at zero [i.e., L0(s ¼ 0) vs. L0], we found strong
evidence for recent selection on synonymous codons
(x2¼ 19.7, d.f.¼ 1, P¼ 9.1 3 10�6). Using the estimated
parameters, the L0 model can accurately predict the
observed data (see Figure S7). In short, the above results
suggest that a model with constant population size and
selection acting on synonymous codons is a sufficient
explanation of the data.

A more detailed analysis: Although the L0 model
seems to provide a rather good fit to the data, it is highly
simplified in that it assumes a single selection coefficient
and a single mutational bias parameter for all sites. It
has been shown by other researchers that different genes
can experience different levels of selection pressure,
depending on factors such as gene expression level and
length of coding region (Comeron and Kreitman

2002; Maside et al. 2004; Comeron and Guthrie 2005;
Cutter and Charlesworth 2006), and that the muta-
tional bias parameter can be different for different
nucleotides (McVean and Vieira 1999; Petrov and
Hartl 1999; Keightley et al. 2009). We therefore
introduced additional parameters into the L0 model.

First, some of the preferred codons being analyzed
differ from their corresponding unpreferred codons by
a G to A change at the third codon position, while the
rest differ by C to T. We thus extended the model so that
each class of codons had its own set of parameters.
A maximum-likelihood analysis suggests that this
model fits the data much better than the original model
(x2 ¼ 287.0, d.f. ¼ 3, P , 10�20). The MLEs are ĝGA ¼
0.85, ĝCT ¼ 1.13, ûGA ¼ 0.011, ûCT ¼ 0.007, k̂GA ¼ 0.95,
and k̂CT ¼ 2.26 (ln L ¼ �11484.3). However, a model
with a common selection coefficient for the two classes
of codons fits the data almost equally well (x2 ¼ 0.34,
d.f. ¼ 1, P ¼ 0.56); the MLEs and the log-likelihood
under this model are ĝ¼ 1.03, ûGA ¼ 0.010, ûCT ¼ 0.008,
k̂GA ¼ 1.13, k̂CT ¼ 2.04, and ln L ¼ �11484.5. Thus, we
assumed that there was no difference in selection
coefficient between G/A or C/T ending codons in the
following more elaborate analysis.

Another major determinant of codon usage is the
level of gene expression (Duret and Mouchiroud

1999; Hey and Kliman 2002). To model this complica-
tion, we used data from the UniGene database (http://
www.ncbi.nlm.nih.gov/unigene), employing the total
number of expressed sequence tags (ESTs) for a gene as
a rough measure of its level of expression (the data were
kindly provided by B. Vicoso). We divided the genes
into two equal-size groups: low-expression and high-
expression genes. We allowed each of group of genes to
have its own scaled selection coefficient, glow and ghigh,
respectively. By fitting the model to the data, we
obtained the following MLEs: ĝlow ¼ 0.82, ĝhigh ¼ 1.25,
ûGA ¼ 0.010, ûCT ¼ 0.008, k̂GA ¼ 1.14, k̂CT ¼ 2.03, and
ln L ¼ �11079.3. This new model further improves the
fit to the data compared to L0(d j g, uGA, uCT, kGA, kCT)
(x2 ¼ 810.3, d.f. ¼ 1, P , 10�20). In accordance with
the previous reports, our results suggest that highly
expressed genes are under stronger selection pressure
than genes with low expression levels.

Finally, we considered the effects of coding region
length. We divided low- and high-expression genes,
respectively, into two equal-size classes: genes with short
and long coding regions. We allowed each group of

TABLE 4

Analyzing the twofold degenerate codons using L0 and L1

Estimates of parameters

Model ub k gb g t Log-likelihood

L1 MLE 0.0040 1.67 0.50 2.1 780.2 �11627.8
L0 MLE 0.0083 1.63 1.03 — — �11627.8

95% C.I.a [0.0061, 0.0109] [1.03, 2.54] [0.57, 1.48] — —
L0(s ¼ 0)b MLE 0.0144 0.60 — — — �11637.7
L0(k¼ 1)c MLE 0.0110 — 0.53 — — �11630.1

a Ninety-five percent confidence interval obtained by 250 bootstrap replicates.
b The L0 model with s, the selection coefficient, fixed at zero.
c The L0 model with k, the mutational bias parameter, fixed at unity.
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genes to have its own selection coefficient. The MLEs
are ĝlow--short ¼ 0.91, ĝlow--long ¼ 0.76, ĝhigh--short ¼ 1.36,
ĝhigh--long ¼ 1.17, ûGA ¼ 0.010, ûCT ¼ 0.008, k̂GA ¼ 1.14,
k̂CT ¼ 2.04, and ln L ¼ �11068.6. The improvement in
the fit to the data, compared to the model given in the
previous paragraph, is also highly significant (x2¼ 21.3,
d.f. ¼ 2, P ¼ 2.3 3 10�5). These results confirm the
finding that genes with shorter coding regions tend to
be under stronger selection pressure than those with
longer coding regions (Comeron et al. 1999; Duret and
Mouchiroud 1999; Comeron and Guthrie 2005).

DISCUSSION

The importance of considering nonequilibrium
factors in the study of codon usage bias: Population–
genetic models of codon usage bias (Li 1987; Bulmer

1991; McVean and Charlesworth 1999) have mostly
assumed that the population is at mutation–selection–
drift equilibrium. As evidence for nonequilibrium
situations in Drosophila species accumulates (Takano-
Shimizu 1999, 2001; Kern and Begun 2005; Li and
Stephan 2006; Thornton and Andolfatto 2006;
Stephan and Li 2007), the study of nonequilibrium
models has attracted more attention, and some un-
expected results have emerged (Eyre-Walker 1997;
Takano-Shimizu 1999, 2001; Comeron and Kreitman

2002; Comeron and Guthrie 2005; Charlesworth

and Eyre-Walker 2007).
Our matrix model allows systematic studies of the

patterns of polymorphism and substitution following a
recent change in population size. We were able to
confirm and extend the findings reported in the pre-
vious studies. Most importantly, we have carried out the
first survey of the performance of statistical methods
that assume equilibrium in a situation where such an
assumption is violated. We can draw two conclusions.
First, patterns of polymorphism can be very misleading
after a recent change in population size. For example,
they can become very neutral-like after a recent pop-
ulation expansion (Figure 1B). In contrast, after a
recent population size reduction, patterns of polymor-
phism are likely to suggest a level of selection pressure
higher than the true value (Figure 2B). Second, using
statistical methods that assume equilibrium in a non-
equilibrium population can result in erroneous infer-
ences of the strength of selection (Figures 3 and 4; see
also Figure S5, Figure S6, Figure S8, Figure S9, Figure
S10, and Figure S11). These findings indicate that it is
important to consider nonequilibrium factors in the
study of codon usage bias.

Effects of weak selection on synonymous variants:
Contrary to a previous analysis of the same D. mela-
nogaster data set (Keightley and Eyre-Walker 2007),
we did not find any evidence for a recent population
expansion in the Zimbabwe sample. The main differ-
ence between the studies is that synonymous sites were

previously assumed to be neutral. However, as shown
here, there is evidence for selection on these sites.
According to standard population genetics theory, such
a selection pressure can result in an excess of low-
frequency variants (Ewens 2004, Chap. 5). It is likely
that this excess of low-frequency variants was treated
by the method of Keightley and Eyre-Walker as the
signature of a recent population size expansion. Indeed,
when these authors fitted the data using a model with
selection on synonymous sites, the support for the
expansion event disappeared (see p. 2260 in Keightley

and Eyre-Walker 2007). Moreover, recent studies have
shown that noncoding regions may be under selection
as well (e.g., Andolfatto 2005). These findings suggest
that treating certain types of markers as neutral stand-
ards can be a dubious procedure, which deserves careful
investigation of its validity, whose violation may result in
unreliable inferences.

Selection on synonymous codons in D. melanogaster:
By analyzing a large polymorphism data set (Shapiro

et al. 2007), we found evidence for natural selection on
synonymous codons in D. melanogaster (Table 4). Fur-
thermore, we show that genes with shorter coding
sequences and/or higher levels of expression are under
stronger selection. These results are consistent with
previous studies, which suggest that patterns of codon
usage bias in D. melanogaster are compatible with the
operation of selection (Kliman 1999; Hey and Kliman

2002; Carlini and Stephan 2003; Qin et al. 2004;
Comeron and Guthrie 2005; Singh et al. 2007).

However, a number of studies have also found that
selection on synonymous sites may have been substan-
tially reduced in the D. melanogaster lineage (Akashi

1995, 1996; McVean and Vieira 1999, 2001; Nielsen

et al. 2007). A common feature of these studies is
that they used between-species divergence data and
drew conclusions on the basis of the observation that
D. melanogaster synonymous sites have fixed significantly
more unpreferred alleles than preferred variants (the
rates of fixation should be equal at equilibrium).
Divergence data can tell us what has happened along
the entire D. melanogaster lineage, but not when these
events happened. To reconcile these findings with ours,
we hypothesize that there may have been a reduction in
population size in the D. melanogaster lineage a long time
ago, which resulted in the rapid fixation of many
unpreferred variants (e.g., Figure 2A). After this ancient
reduction, the population size may have stayed relatively
constant, and extant patterns of polymorphism may
have come relatively close to the new equilibrium.
Because our method does not use divergence data, it
has little power to detect such an ancient event, so that
the equilibrium model provides a good fit.

The difficulty is that, even if this hypothesis is correct,
it is hard to estimate when the reduction in population
size occurred, and our method may thus overestimate
the current intensity of selection, depending on the
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time of the contraction event (see Figure S6). In
addition, the potential influences of biased gene con-
version (Marais et al. 2001, 2003; Kliman and Hey

2003; Marais 2003), changes in the recombinational
landscape (Takano-Shimizu 1999), and recent changes
in the mutational processes (Takano-Shimizu 2001;
Kern and Begun 2005), as well as the effects of more
complex demographic models (e.g., population struc-
ture and population bottlenecks), are not considered by
our method. Therefore, although there is evidence for
selection on synonymous sites, this result should be
treated with caution.

Advantages and caveats: The matrix model and the
methods developed in this study have a number of
advantages. First, the model is highly flexible. Although
we focus on the effects of a sudden change in popula-
tion size here, it is straightforward to modify the model
so that it can be used to study effects of more complex
demographic models (e.g., population bottlenecks,
exponential growth), changes in selection coefficients,
and changes in mutational parameters. Second, our
methods allow the simultaneous estimation of selec-
tion and mutational parameters, in contrast to previous
methods that rely only on polymorphic sites (Maside

et al. 2004; Cutter and Charlesworth 2006). Third,
the statistical methods we have proposed do not require
the use of an outgroup sequence to infer ancestral vs.
derived states, a process that is error prone and can lead
to unreliable inferences.

There are also some caveats. First, as in most previous
studies, we assume that sites are independent. This
assumption is obviously unrealistic. Hill–Robertson
effects among linked sites might make our methods un-
reliable (McVean and Charlesworth 2000; Comeron

et al. 2008). Fortunately, recent simulation studies have
suggested that methods assuming free recombination
work surprisingly well in practice with relatively free
recombination (e.g., with a local recombination rate
.2 cM/Mb; K. Zeng, unpublished results; see also
Williamson et al. 2005 and Boyko et al. 2008). By using
data from highly recombining regions, our results
should be robust to the violation of the free-recombina-
tion assumption. The second disadvantage of the matrix
model is that it is computationally burdensome. In
particular, the L1 model, which requires iterating
Equation 5, can be very slow. This is a common pro-
blem confronting all studies using matrix models (e.g.,
Keightley and Eyre-Walker 2007). Despite these
caveats, matrix models are flexible and easy to formu-
late, and their usefulness should not be underestimated.

A computer program implementing the methods
described in this article is available from the corre-
sponding author.

We thank Andrea Betancourt, Penny Haddrill, and Peter Keightley
for helpful discussions and David Turissini for providing the Drosoph-
ila data set. We also thank Rasmus Nielsen, John Wakeley, and the
anonymous reviewers for their insightful comments. We are very

grateful to the Sun Yat-Sen University Computer Centre for providing
computer time and to Hailiang Liu and Haijun Wen for technical
support. This work has also made use of the resources provided by the
Edinburgh Compute and Data Facility (ECDF) (http://www.ecdf.ed.ac.
uk/). The ECDF is partially supported by the eScience Data Information
and Knowledge Transformation initiative (http://www.edikt.org.uk). K.Z.
was supported by a Royal Society International Incoming Fellowship.
K.Z. also acknowledges support from a National Basic Research Pro-
gram of China grant (2007CB815701) and a National Natural Science
Foundation of China grant (30730008) to Professor Suhua Shi.

LITERATURE CITED

Akashi, H., 1994 Synonymous codon usage in Drosophila mela-
nogaster: natural selection and translational accuracy. Genetics
136: 927–935.

Akashi, H., 1995 Inferring weak selection from patterns of polymor-
phism and divergence at ‘‘silent’’ sites in Drosophila DNA. Genet-
ics 139: 1067–1076.

Akashi, H., 1996 Molecular evolution between Drosophila mela-
nogaster and D. simulans: reduced codon bias, faster rates of
amino acid substitution, and larger proteins in D. melanogaster.
Genetics 144: 1297–1307.

Akashi, H., and S. W. Schaeffer, 1997 Natural selection and the
frequency distributions of ‘‘silent’’ DNA polymorphism in Dro-
sophila. Genetics 146: 295–307.

Andolfatto, P., 2005 Adaptive evolution of non-coding DNA in
Drosophila. Nature 437: 1149–1152.

Bierne, N., and A. Eyre-Walker, 2006 Variation in synonymous co-
don use and DNA polymorphism within the Drosophila genome.
J. Evol. Biol. 19: 1–11.

Boyko, A. R., S. H. Williamson, A. R. Indap, J. D. Degenhardt, R. D.
Hernandez et al., 2008 Assessing the evolutionary impact of
amino acid mutations in the human genome. PLoS Genet. 4:
e1000083.

Bulmer, M., 1991 The selection-mutation-drift theory of synony-
mous codon usage. Genetics 129: 897–907.

Carlini, D. B., and W. Stephan, 2003 In vivo introduction of unpre-
ferred synonymous codons into the Drosophila Adh gene results
in reduced levels of ADH protein. Genetics 163: 239–243.

Charlesworth, J., and A. Eyre-Walker, 2007 The other side of
the nearly neutral theory, evidence of slightly advantageous
back-mutations. Proc. Natl. Acad. Sci. USA 104: 16992–16997.

Comeron, J. M., and T. B. Guthrie, 2005 Intragenic Hill-Robertson
interference influences selection intensity on synonymous muta-
tions in Drosophila. Mol. Biol. Evol. 22: 2519–2530.

Comeron, J. M., and M. Kreitman, 2002 Population, evolutionary
and genomic consequences of interference selection. Genetics
161: 389–410.

Comeron, J. M., M. Kreitman and M. Aguade, 1999 Natural selec-
tion on synonymous sites is correlated with gene length and re-
combination in Drosophila. Genetics 151: 239–249.

Comeron, J. M., A. Williford and R. M. Kliman, 2008 The Hill-
Robertson effect: evolutionary consequences of weak selection
and linkage in finite populations. Heredity 100: 19–31.

Cutter, A. D., and B. Charlesworth, 2006 Selection intensity on
preferred codons correlates with overall codon usage bias in Cae-
norhabditis remanei. Curr. Biol. 16: 2053–2057.

Drummond, D. A., J. D. Bloom, C. Adami, C. O. Wilke and F. H.
Arnold, 2005 Why highly expressed proteins evolve slowly.
Proc. Natl. Acad. Sci. USA 102: 14338–14343.

Duret, L., and D. Mouchiroud, 1999 Expression pattern and, sur-
prisingly, gene length shape codon usage in Caenorhabditis, Dro-
sophila, and Arabidopsis. Proc. Natl. Acad. Sci. USA 96: 4482–4487.

Evans, S. N., Y. Shvets and M. Slatkin, 2007 Non-equilibrium theory
of the allele frequency spectrum. Theor. Popul. Biol. 71: 109–119.

Ewens, W. J., 2004 Mathematical Population Genetics. Springer-Verlag,
Berlin.

Eyre-Walker, A., 1997 Differentiating between selection and muta-
tion bias. Genetics 147: 1983–1987.

Eyre-Walker, A., and M. Bulmer, 1993 Reduced synonymous sub-
stitution rate at the start of enterobacterial genes. Nucleic Acids
Res. 21: 4599–4603.

Selection on Codon Usage 661

http://www.genetics.org/cgi/data/genetics.109.101782/DC1/3
http://www.ecdf.ed.ac.uk/
http://www.ecdf.ed.ac.uk/
http://www.ecdf.ed.ac.uk/
http://www.edikt.org.uk
http://www.edikt.org.uk


Galtier, N., E. Bazin and N. Bierne, 2006 GC-biased segregation
of noncoding polymorphisms in Drosophila. Genetics 172: 221–
228.

Glinka, S., L. Ometto, S. Mousset, W. Stephan and D. De Lorenzo,
2003 Demography and natural selection have shaped genetic
variation in Drosophila melanogaster: a multi-locus approach.
Genetics 165: 1269–1278.

Haddrill, P. R., K. R. Thornton, B. Charlesworth and P.
Andolfatto, 2005 Multilocus patterns of nucleotide variability
and the demographic and selection history of Drosophila mela-
nogaster populations. Genome Res. 15: 790–799.

Hershberg, R., and D. A. Petrov, 2008 Selection on codon bias.
Annu. Rev. Genet. 42: 287–299.

Hey, J., and R. M. Kliman, 2002 Interactions between natural selec-
tion, recombination and gene density in the genes of Drosophila.
Genetics 160: 595–608.

Iida, K., and H. Akashi, 2000 A test of translational selection at ‘si-
lent’ sites in the human genome: base composition comparisons
in alternatively spliced genes. Gene 261: 93–105.

Ikemura, T., 1981 Correlation between the abundance of Escheri-
chia coli transfer RNAs and the occurrence of the respective co-
dons in its protein genes: a proposal for a synonymous codon
choice that is optimal for the E. coli translational system. J.
Mol. Biol. 151: 389–409.

Ikemura, T., 1985 Codon usage and tRNA content in unicellular
and multicellular organisms. Mol. Biol. Evol. 2: 13–34.

Kaiser, V. B., and B. Charlesworth, 2009 The effects of deleteri-
ous mutations on evolution in non-recombining genomes.
Trends Genet. 25: 9–12.

Karlin, S., and H. Taylor, 1975 A First Course in Stochastic Processes.
Academic Press, New York/London/San Diego.

Keightley, P. D., and A. Eyre-Walker, 2007 Joint inference of the
distribution of fitness effects of deleterious mutations and pop-
ulation demography based on nucleotide polymorphism fre-
quencies. Genetics 177: 2251–2261.

Keightley, P. D., U. Trivedi, M. Thomson, F. Oliver, S. Kumar

et al., 2009 Analysis of the genome sequences of three Drosoph-
ila melanogaster spontaneous mutation accumulation lines.
Genome Res. 19: 1195–1201.

Kern, A. D., and D. J. Begun, 2005 Patterns of polymorphism and
divergence from noncoding sequences of Drosophila mela-
nogaster and D. simulans: evidence for nonequilibrium pro-
cesses. Mol. Biol. Evol. 22: 51–62.

Kliman, R. M., 1999 Recent selection on synonymous codon usage
in Drosophila. J. Mol. Evol. 49: 343–351.

Kliman, R. M., and J. Hey, 2003 Hill-Robertson interference in Dro-
sophila melanogaster: reply to Marais, Mouchiroud and Duret.
Genet. Res. 81: 89–90.

Li, H., and W. Stephan, 2006 Inferring the demographic history and
rate of adaptive substitution in Drosophila. PLoS Genet. 2: e166.

Li, W. H., 1987 Models of nearly neutral mutations with particular
implications for nonrandom usage of synonymous codons. J.
Mol. Evol. 24: 337–345.

Marais, G., 2003 Biased gene conversion: implications for genome
and sex evolution. Trends Genet. 19: 330–338.

Marais, G., D. Mouchiroud and L. Duret, 2001 Does recombination
improve selection on codon usage? Lessons from nematode and fly
complete genomes. Proc. Natl. Acad. Sci. USA 98: 5688–5692.

Marais, G., D. Mouchiroud and L. Duret, 2003 Neutral effect of
recombination on base composition in Drosophila. Genet. Res.
81: 79–87.

Maside, X., A. W. Lee and B. Charlesworth, 2004 Selection on
codon usage in Drosophila americana. Curr. Biol. 14: 150–154.

McVean, G. A., and B. Charlesworth, 2000 The effects of Hill-
Robertson interference between weakly selected mutations on
patterns of molecular evolution and variation. Genetics 155:
929–944.

McVean, G. A., and J. Vieira, 1999 The evolution of codon prefer-
ences in Drosophila: a maximum-likelihood approach to param-
eter estimation and hypothesis testing. J. Mol. Evol. 49: 63–75.

McVean, G. A., and J. Vieira, 2001 Inferring parameters of muta-
tion, selection and demography from patterns of synonymous
site evolution in Drosophila. Genetics 157: 245–257.

McVean, G. A. T., and B. Charlesworth, 1999 A population ge-
netic model for the evolution of synonymous codon usage: pat-
terns and predictions. Genet. Res. 74: 145–158.

Nielsen, R., S. Williamson, Y. Kim, M. J. Hubisz, A. G. Clark et al.,
2005 Genomic scans for selective sweeps using SNP data. Ge-
nome Res. 15: 1566–1575.

Nielsen, R., V. L. Bauer DuMont, M. J. Hubisz and C. F. Aquadro,
2007 Maximum likelihood estimation of ancestral codon usage
bias parameters in Drosophila. Mol. Biol. Evol. 24: 228–235.

Petrov, D. A., and D. L. Hartl, 1999 Patterns of nucleotide substi-
tution in Drosophila and mammalian genomes. Proc. Natl. Acad.
Sci. USA 96: 1475–1479.

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
1992 Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, Cambridge, UK.

Qin, H., W. B. Wu, J. M. Comeron, M. Kreitman and W. H. Li,
2004 Intragenic spatial patterns of codon usage bias in prokary-
otic and eukaryotic genomes. Genetics 168: 2245–2260.

Shapiro, J. A., W. Huang, C. Zhang, M. J. Hubisz, J. Lu et al.,
2007 Adaptive genic evolution in the Drosophila genomes.
Proc. Natl. Acad. Sci. USA 104: 2271–2276.

Sharp, P. M., and W. H. Li, 1986 An evolutionary perspective on syn-
onymous codon usage in unicellular organisms. J. Mol. Evol. 24:
28–38.

Simonsen, K. L., G. A. Churchill and C. F. Aquadro,
1995 Properties of statistical tests of neutrality for DNA poly-
morphism data. Genetics 141: 413–429.

Singh, N. D., P. F. Arndt and D. A. Petrov, 2005 Genomic hetero-
geneity of background substitutional patterns in Drosophila mela-
nogaster. Genetics 169: 709–722.

Singh, N. D., V. L. Bauer DuMont, M. J. Hubisz, R. Nielsen and
C. F. Aquadro, 2007 Patterns of mutation and selection at
synonymous sites in Drosophila. Mol. Biol. Evol. 24: 2687–2697.

Stephan, W., and H. Li, 2007 The recent demographic and adap-
tive history of Drosophila melanogaster. Heredity 98: 65–68.

Tachida, H., 2000 Molecular evolution in a multisite nearly neutral
mutation model. J. Mol. Evol. 50: 69–81.

Tajima, F., 1989 Statistical method for testing the neutral mutation
hypothesis by DNA polymorphism. Genetics 123: 585–595.

Takano-Shimizu, T., 1999 Local recombination and mutation ef-
fects on molecular evolution in Drosophila. Genetics 153:
1285–1296.

Takano-Shimizu, T., 2001 Local changes in GC/AT substitution
biases and in crossover frequencies on Drosophila chromosomes.
Mol. Biol. Evol. 18: 606–619.

Thornton, K., and P. Andolfatto, 2006 Approximate Bayesian in-
ference reveals evidence for a recent, severe bottleneck in a
Netherlands population of Drosophila melanogaster. Genetics
172: 1607–1619.

Warnecke, T., and L. D. Hurst, 2007 Evidence for a trade-off be-
tween translational efficiency and splicing regulation in deter-
mining synonymous codon usage in Drosophila melanogaster.
Mol. Biol. Evol. 24: 2755–2762.

Watterson, G. A., 1975 On the number of segregating sites in ge-
netical models without recombination. Theor. Popul. Biol. 7:
256–276.

Williamson, S. H., R. Hernandez, A. Fledel-Alon, L. Zhu, R.
Nielsen et al., 2005 Simultaneous inference of selection
and population growth from patterns of variation in the human
genome. Proc. Natl. Acad. Sci. USA 102: 7882–7887.

Zeng, K., S. Shi and C. I. Wu, 2007 Compound tests for the detec-
tion of hitchhiking under positive selection. Mol. Biol. Evol. 24:
1898–1908.

Communicating editor: J. Wakeley

662 K. Zeng and B. Charlesworth



 
 
 

Supporting Information 
 http://www.genetics.org/cgi/content/full/genetics.109.101782/DC1  

 

Estimating Selection Intensity on Synonymous Codon Usage 
 in a Nonequilibrium Population 

 
 

Kai Zeng and Brian Charlesworth 

 
 

Copyright © 2009 by the Genetics Society of America 
DOI: 10.1534/genetics.109.101782 

 
 
 



K. Zeng and B. Charlesworth 2 SI 

 

TABLE S1 

Dependence of  the results on the size of  the transition matrix 

Estimates 
Matrix size 

Nu κ Ns log-likelihood 

10 0.003077 0.917820 0.207606 -22611.082430 

30 0.002828 0.889085 0.192623 -22589.325861 

50 0.002781 0.883834 0.189801 -22588.097341 

70 0.002761 0.881730 0.188671 -22587.840626 

100 0.002746 0.880115 0.187796 -22587.748956 

250 0.002726 0.878012 0.186649 -22587.760553 

500 0.002719 0.877235 0.186239 -22587.799641 

The analyses were done on a data set of  25 chromosomes and 25,000 codons. This 

dataset was generated randomly using the parameters N = 250, u = 10-5, κ = 1, s = 0.001, i.e., 

Nu = 2.5×10-3 and Ns = 2.5×10-1. We used the L0 method with various sizes of  the transition 

matrix to analyze these data. The estimates of  the parameters are shown. 
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FIGURE S1.—Accuracy of  Equation 7. We obtained the distribution of  the number of  polymorphic sites where the 

unpreferred allele, a, is segregating at various frequencies by either iterating Equation 5, or by using Equation 7. When 

Equation 7 was used, we obtained the values for the two sub-processes from Equation 8. In (A) – (D), we assumed that the 

population was composed of  50 diploid individuals, and was at equilibrium. In (E), we assumed that the population was 

initially at equilibrium with size N1 = 100. Then the population size dropped instantly to N2 = 10. After having a size of  10 

for 2 generations (duration = 2), the population size increased instantly to N3 = 90. The distribution of  the number of  copies 

of  a was investigated at the 4-th generation after the last change in population size. 
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FIGURE S2.—Proportion of  sites fixed for A (the preferred allele) after a recent population shrinkage. We assumed that a 

diploid population of  size Nb was originally at equilibrium. At time zero the population size decreased instantly ten-fold to Na, 

and stayed constant thereafter. The parameters used to generate this figure were: γb = 2Nbs = 2, θb = 2Nbu = 0.02, κ = 3 (The 

model and parameters used to generate this figure were the same as those used to generate Figure 2). 
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FIGURE S3.—Performance of  the MASIDE et al. method in the presence of  mutational bias. We assumed that the 

population was at mutation-selection-drift equilibrium. Various levels of  selection intensity (γ) were used. The population 

mutation rate θ was 0.01. Three different levels of  mutational bias were simulated: κ = 1/3, 1, and 3. For each combination 

of  parameter values, 500 random samples of  size 15 and 40,000 codons were generated, and were analyzed by the MASIDE et 

al. method. The deviation from the true value of  γ was defined as (E(γml) – γ) / γ (the y-axis). 
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FIGURE S4.—Power of  the MASIDE et al. method to reject neutrality after a recent population shrinkage. We assumed that 

a diploid population of  size Nb was originally at equilibrium. At time zero the population size decreased instantly ten-fold to 

Na, and stayed constant thereafter. The parameters used to generate this figure were: γb = 2Nbs = 2, θb = 2Nbu = 0.02, κ = 3 

(The model and parameters used to generate this figure were the same as those used to generate Figure 4). The significance 

level was set to 5%. 
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FIGURE S5.—Performance of  the L0 method in a population that has experienced a recent size expansion. The model and 

parameters used to generate this figure were the same as those used to generate Figure 1 (i.e., γb = 0.3, θb = 0.002, and κ = 3). 

At each time point after the expansion in population size, we randomly generated 50 samples. The sample size was 15, and 

the total number of  codons was 10,000. We then used the L0 method to analyze each of  these samples. (A) The mean values 

of  the estimates of  γ. (B) The power to reject neutrality at a significance level of  5%. (C) The mean values of  the estimates of  

κ. (D) The mean values of  the estimates of  θ. Note that the time scale in (B) is different. 
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FIGURE S6.—Performance of  the L0 method in a population that has experienced a recent size reduction. The parameters 

used to generate this figure were the same as those used to generate Figure 2 (i.e., γb = 2, θb = 0.02, κ = 3). At each time point 

after the expansion in population size, we randomly generated 50 samples. The sample size was 15, and the total number of  

codons was 10,000. We then used the L0 method to analyze each of  these samples. (A) The mean values of  the estimates of  γ. 

(B) The power to reject neutrality at a significance level of  5%. (C) The mean values of  the estimates of  κ. (D) The mean 

values of  the estimates of  θ.  
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FIGURE S7.—Goodness of  fit of  the L0 model to the observed data. The black dots showed the observed values. The lines 

extending from each black dot indicated the 95% confidence interval. In the y-axis, exp means the expected value, and obs 

means the observed value. 
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FIGURE S8.—Performance of  the Akashi-Schaeffer method in a population that has experienced a recent size expansion. 

The model and parameters used to generate this figure were the same as those used to generate Figure 1 (i.e., γb = 0.3, θb = 

0.002, and κ = 3). At each time point after the expansion in population size, we randomly generated 500 samples. The 

sample size was 15, and the total number of  codons was 10,000. We then used the Akashi-Schaeffer (1997) method to 

analyze each of  these samples. Note that we only used the preferred-to-unpreferred mutations in the analysis. (A) The mean 

values of  the estimates of  γ. (B) The power to reject neutrality at a significance level of  5%.  
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FIGURE S9.—Performance of  the Akashi-Schaeffer method in a population that has experienced a recent size reduction. 

The parameters used to generate this figure were the same as those used to generate Figure 2 (i.e., γb = 2, θb = 0.02, κ = 3). 

At each time point after the expansion in population size, we randomly generated 500 samples. The sample size was 15, and 

the total number of  codons was 10,000. We then used the L0 method to analyze each of  these samples. Note that we only 

used the preferred-to-unpreferred mutations in the analysis. (A) The mean values of  the estimates of  γ. (B) The power to 

reject neutrality at a significance level of  5%. 
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FIGURE S10.—Performance of  the Cutter-Charlesworth method in a population that has experienced a recent size 

expansion. The model and parameters used to generate this figure were the same as those used to generate Figure 1 (i.e., γb = 

0.3, θb = 0.002, and κ = 3). At each time point after the expansion in population size, we randomly generated 500 samples. 

The sample size was 15, and the total number of  codons was 10,000. We then used the Cutter-Charlesworth method to 

analyze each of  these samples. (A) The mean values of  the estimates of  γ. (B) The power to reject neutrality at a significance 

level of  5%. 
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FIGURE S11.—Performance of  the Cutter-Charlesworth method in a population that has experienced a recent size 

reduction. The parameters used to generate this figure were the same as those used to generate Figure 2 (i.e., γb = 2, θb = 0.02, 

κ = 3). At each time point after the expansion in population size, we randomly generated 500 samples. The sample size was 

15, and the total number of  codons was 10,000. We then used the Cutter-Charlesworth method to analyze each of  these 

samples. (A) The mean values of  the estimates of  γ. (B) The power to reject neutrality at a significance level of  5%.  

 

 


