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Nonextensive Bose–Einstein condensation model
T. Michoela) and A. Verbeureb)

Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven,
Celestijnenlaan 200D, B-3001 Leuven, Belgium

~Received 26 November 1997; accepted for publication 3 November 1998!

The imperfect Boson gas supplemented with a gentle repulsive interaction is
completely solved. In particular, it is proved that it has nonextensive Bose–Einstein
condensation, i.e., there is condensation without macroscopic occupation of
the ground (k50) state level. ©1999 American Institute of Physics.
@S0022-2488~99!03902-X#

I. INTRODUCTION

The search for microscopic models of interacting bosons showing Bose–Einstein condensa-
tion is an ever challenging problem. It is known that the phenomenon only appears for space
dimensionsd>3.1 A general two-body interacting Bose system in a finite centered cubic box
L,Rd, with volumeV5Ld, is given by a Hamiltonian,

HL5TL1UL , ~1!

where

TL5 (
kPL*

ekak* ak , ek5
uku2

2m
,

UL5
1

2V (
q,k,k8PL*

v~q!ak1q* ak82q
* ak8ak , a~x!5

1

AV
(

kPL*
ake

ik•x.

The a](x) are the Boson operators satisfying the commutation rules

@a~x!,a* ~y!#5d~x2y!, @a~x!,a~y!#50,

and

L* 5H k:k5
2p

L
n,nPZdJ .

We limit ourself to periodic boundary conditions.
Rigorous results on the existence of Bose–Einstein condensation are known for very special

potentialsv in ~1!, in particular, of course, forv50, the free Bose gas, and forv in thed-function
limit 2 or in the van der Waals limit.3 Another class of models that are treatable is this for which the
Hamiltonian is a function of the number operatorsNk5ak* ak only. These models are called the
diagonal models.4 The Hamiltonian is a function of a set of mutually commuting operators with a
spectrum consisting of the integers. The operators can be considered as random variables taking
values in the integers. The equilibrium states are looked for among the measures minimizing the
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free energy. This method, developed in a series of papers~Ref. 4, and references therein!, opened
the possibility to derive rigorous results for so far unsolved interacting Bose gas models. The
method is a powerful application of the large deviation principle for quantum systems.

In this paper we derive some rigorous results for another diagonal model, inspired by Ref. 5,
where the pressure is computed. We are not using the large deviation technique of Ref. 4, but the
full quantum mechanical technology, in particular, correlation inequalities, in order to prove the
existence of Bose–Einstein condensation. In Sec. II, we first rederive the result of Ref. 5, and give
a concise, rigorous, and direct proof of the pressure formula. Some arguments of Ref. 6 are
translated into our situation. Our main contribution is in Sec. III, where we prove the occurrence
of Bose–Einstein condensation, and where we study in detail the type of condensation.

There exist different types of condensation. The best known is macroscopic occupation of the
ground state, but there is also so-called generalized condensation, when the number of particles
distributed over a set of arbitrary small energies above the lowest energy level becomes macro-
scopic, proportional to the volume. This notion has been put into a rigorous and workable form in
Ref. 7.

As far as our results are concerned, this notion of generalized condensation is crucial. We
prove that in our model generalized condensation occurs without macroscopic occupation of the
ground state. As far as we know, this is the first model of an interacting Bose gas for which this
type of condensation is found. The only existing result is for the free Bose gas, considering a
special thermodynamic limit, not of the type of increasing, absorbing cubes.8,9

The result of Sec. III also allows us, using the technique of Ref. 10, to give an explicit form
of the equilibrium states in the thermodynamic limit. One verifies that they are of the same type as
the equilibrium state of the imperfect Bose gas.

II. THE MODEL

In Ref. 5 Schro¨der considers a Bose gas contained in ad-dimensional (d>3) cubic box with
Dirichlet boundary conditions on two opposite faces and periodic boundary conditions on the
remaining surface. This can be interpreted as the model of a Bose gas enclosed between two hard
walls at a macroscopic distance. An interaction term is introduced that behaves locally like the
mean field interaction. This gives rise to the following Hamiltonian:

HL5 (
kPL*

ekNk,L1
l

V S NL
2 1

1

2 (
j PN

Ñj ,L
2 D , ~2!

where

L5H xPRd:2
L

2
<xi<

L

2
,i 51,...,d21;0<xd<LJ ;V5Ld,

L* 5
2p

L
Zd213

p

L
N, Nk,L5a* ~ f k,L!a~ f k,L!,

f k,L5S 2

VD 1/2

exp@ i ~k1x11¯1kd21xd21!#sin~kdxd!,

lPR1, Ñj ,L5 (
$kPL* :kd5~p/L ! j %

Nk,L ,

NL5 (
kPL*

Nk,L .
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Schröder shows that the grand-canonical pressure of this so-called local mean field model
coincides with the grand-canonical pressure of the usual mean field model, or imperfect Bose gas,
with Hamiltonian

HL
MF5 (

kPL*
ekNk,L1

l

V
NL

2 , ~3!

which is a soluble model.
From this result, Schro¨der concludes that his model exhibits a phase transition with the same

critical behavior as the imperfect Bose gas, although macroscopic occupation of the ground state
may not occur, and opens the question of whether generalized condensation, as defined in Ref. 7,
does take place.

We study a model of an interacting Bose gas that is inspired by Schro¨der’s model, but that
contains a nontrivial part of the self-interaction terms appearing in the general two-body repulsive
interaction~1!. More precisely, we consider a system of identical bosons in a centered cubic box
LPRd, d>3, with volumeV5Ld, with periodic boundary conditions for the wave functions, and
described by the Hamiltonian

HL5 (
kPL*

ekNk,L1
l

V S NL
2 1

1

2 (
kPL*

Nk,L
2 D , ~4!

where now

L* 5
2p

L
Zd, Nk,L5ak,L* ak,L ,

ak,L* 5
1

AV
E

L
dx eik•xa* ~x!,

lPR1, NL5 (
kPL*

Nk,L .

Our model can also be compared to the Huang–Yang–Luttinger model, rigorously studied in Ref.
11. Compared to our model, here the interaction termsNk,L

2 appear with a minus sign and are
therefore attractive perturbations of the imperfect Bose gas. The attractive character enhances~see
Ref. 11! the condensation in the zero mode. The repulsive character of these terms in our model
should make condensation in the zero mode more difficult. Heuristically one might expect that our
model is a candidate for nonextensive Bose–Einstein condensation.

First we give a new proof, inspired by a proof in Ref. 6, of the main result of Schro¨der, i.e.,
the equality of the grand-canonical pressure of this model and the grand-canonical pressure of the
imperfect Bose gas. From this we can immediately prove that there is no macroscopic occupation
of any single-particle state.

For everym in R, denote

HL~m!5 (
kPL*

ekNk,L1
l

V S NL
2 1

1

2 (
kPL*

Nk,L
2 D 2mNL , ~5!

and

HL
MF~m!5 (

kPL*
ekNk,L1

l

V
NL

2 2mNL . ~6!
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For a<0, let

C a5$tPC b~Rd!: inf
kPRd

~ek2tk2a!.0%,

with C b(Rd) the space of continuous bounded functions onRd. For tPC a, let

HL
t1a5 (

kPL*
~ek2tk2a!Nk,L .

First, we prove the following.
Lemma 1:

1

bV
ln tr e2bHL~m!>

1

bV
ln tr e2bHL

t1a
2

1

V
vL

t1a
„HL~m!2HL

t1a
…, ~7!

with

vL
t1a~A!5

tr e2bHL
t1a

A

tr e2bHL
t1a .

Proof: The functionxP@0,1#° ln tr eC1xD, for C andD self-adjoint is convex. Hence, define
the convex functionf on @0,1# by

f ~x!5 ln tr e2b„xHL~m!1~12x!HL
t1a

….

For all a,b in @0,1#, f (a)2 f (b)2(a2b) f 8(b)>0, in particular,

f ~1!> f ~0!1 f 8~0!,

which immediately yields the stated inequality. h

We can now prove a first result.
Theorem 1: The grand-canonical pressure at chemical potentialm,

p̃~m!5 lim
V→`

p̃L~m!5 lim
V→`

1

bV
ln tr e2bHL~m!,

exists for everym in R and is given by

p̃~m!5pMF~m!5 inf
a<0

S p~a!1
~m2a!2

4l D ,

with pMF(m) the grand-canonical pressure of the imperfect Bose gas at chemical potentialm and
p(a) the free-gas grand-canonical pressure at chemical potentiala.

@The expression forpMF(m) is computed in Ref. 3.#
Proof: Since for everymPR, HL(m)>HL

MF(m), we have

p̃L~m!<pL
MF~m!,

and hence

lim sup
V→`

p̃L~m!< lim
V→`

pL
MF~m!5pMF~m!.

To prove the lower bound, we make use of Lemma 1. Fora<0 andtPC a, let
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r~k;t,a!5
1

eb~ek2tk2a!21
.

Then

vL
t1a~Nk,L!5r~k;t,a!,

vL
t1a~Nk,LNk8,L!5r~k;t,a!r~k8;t,a!, if kÞk8,

vL
t1a~Nk,L

2 !5r~k;t,a!„2r~k;t,a!11….

We calculate the rhs of~7!. The first term gives

1

bV
ln tr e2bHL

t1a
52

1

bV (
kPL*

ln~12e2b~ek2tk2a!!.

To calculate (1/V)vL
t1a

„HL(m)…, we write

HL~m!5 (
kPL*

~ek2m!Nk,L1
l

V (
kPL*

(
k8ÞkPL*

Nk,LNk8,L1
3l

2V (
kPL*

Nk,L
2 ,

hence

1

V
vL

t1a
„HL~m!…5

1

V (
kPL*

~ek2m!r~k;t,a!1
l

V2 (
kPL*

(
k8ÞkPL*

r~k;t,a!r~k8;t,a!1
cV

V
,

where

cV5
3l

2V (
kPL*

r~k;t,a!„2r~k;t,a!11….

Also,

1

V
vL

t1a~HL
t1a!5

1

V (
kPL*

~ek2tk2a!r~k;t,a!.

Substituting all this in~7!, we get

p̃L~m!>2
1

bV (
kPL*

ln~12e2b~ek2tk2a!!1
1

V (
kPL*

~m2tk2a!r~k;t,a!

2
l

V2 (
kPL*

(
k8ÞkPL*

r~k;t,a!r~k8;t,a!2
cV

V
.

Sincer(k;t,a) andcV , for V large enough, are bounded

lim inf
V→`

p̃L~m!>2b21E
Rd

dk

~2p!d ln~12e2b~ek2tk2a!!

1E
Rd

dk

~2p!d ~m2tk2a!r~k;t,a!2lS E
Rd

dk

~2p!d r~k;t,a! D 2

. ~8!

For a<0 the free-gas pressure is given by
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p~a!52b21E
Rd

dk

~2p!d ln~12e2b~ek2a!!

and

p8~a!5E
Rd

dk

~2p!d

1

eb~ek2a!21
.

Also, let rc5p8(0) as usual.
First, consider the casem,2lrc . Takinga,0 andt50 in ~8! we get

lim inf
V→`

p̃L~m!>p~a!1~m2a!p8~a!2l„p8~a!…2. ~9!

For m,2lrc , sincep8(a) is increasing andp8(0)5rc , the equation

p8~a!5
m2a

2l

has a unique solutiona* ,0. Takinga5a* in ~9!, we get

lim inf
V→`

p̃L~m!>p~a* !1
~m2a* !2

4l
5 inf

a<0
H p~a!1

~m2a!2

4l J 5pMF~m!,

which proves the theorem form,2lrc .
Consider now the casem>2lrc . Takea50 and an appropriatet in ~8!:

lim inf
V→`

p̃L~m!>2b21E
Rd

dk

~2p!d ln~12e2b~ek2tk!!

1E
Rd

dk

~2p!d ~m2tk!r~k;t !2lS E
Rd

dk

~2p!d r~k;t ! D 2

, ~10!

with

r~k;t !5
1

eb~ek2tk!21
.

For all d.0, taketdPC 0 such that

td~k!50, uku.d.

Then

E
Rd

dk

~2p!d r~k;td!5E
uku<d

dk

~2p!d r~k;td!1E
uku.d

dk

~2p!d

1

ebek21
.

Letting d→0, the second term on the rhs converges torc . Taketd such that the first term on the
rhs converges tom/2l2rc as d→0. Such a sequence oftd’s can be constructed rigorously by
using the Approximation theorem proved in Ref. 12. It certainly means thattd→0 asd→0. Hence
we get

E
Rd

dk

~2p!d r~k;td!→
m

2l
,
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asd→0, and thus

lim inf
V→`

p̃L~m!>p~0!1
m2

4l
> inf

a<0
H p~a!1

~m2a!2

4l J 5pMF~m!,

so that the theorem is proved form>2lrc as well. h

From Theorem 1 we can immediately derive that there is no macroscopic occupation of any
single-particle state, in particular, the following.

Theorem 2: For everye.0 and for V large enough, we have, for every kPL* :

1

V
vL~Nk,L!,e,

wherevL is the finite-volume Gibbs state of HL(m).
Proof: We have

ebVpL
MF

~m!5tr e2bHL
MF

~m!5tr~e2bHL~m!e~bl/2V!SkPL* Nk,L
2

!5vL~e~bl/2V!SkPL* Nk,L
2

!ebVp̃L~m!.

Hence,

pL
MF5 p̃L~m!1

1

bV
ln vL~e~bl/2V!SkPL* Nk,L

2
!.

By Theorem 1 we get

lim
V→`

1

bV
ln vL~e~bl/2V!SkPL* Nk,L

2
!50.

From the Jensen inequality, i.e., forF a convex function andv a normal state,

v„F~X!…>F~v~X!!,

we get

vL~e~bl/2V!SkPL* Nk,L
2

!>e~bl/2V!SkPL* vL~Nk,L
2

!,

or

0<
l

2V2 (
kPL*

vL~Nk,L
2 !<

1

bV
ln vL~e~bl/2V!SkPL* Nk,L

2
!.

Hence

lim
V→`

1

V2 (
kPL*

vL~Nk,L
2 !50.

Since for eachkPL* ,

0<S 1

V
vL~Nk,L! D 2

<
1

V2 vL~Nk,L
2 !<

1

V2 (
k8PL*

vL~Nk8,L
2

!,

we get the Theorem. h
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III. BOSE–EINSTEIN CONDENSATION

In Ref. 7 it is stressed that Bose condensation does not necessarily manifest itself through a
macroscopic occupation of a single-particle state~the ground state usually!, but that there are, in
fact, two good candidates for the concept of macroscopic occupation of the zero-kinetic energy
state. Macroscopic occupation of the ground state is said to occur when the number of particles in
the ground state becomes proportional to the volume; generalized condensation is said to occur
when the number of particles whose energy levels lie in an arbitrary small band above zero
becomes proportional to the volume. Obviously, the first implies the second. However, the second
can occur without the first; this is called nonextensive condensation. The concept of generalized
condensation was first introduced in Ref. 13. More precisely, we have the following.

~i! Macroscopic occupation of the ground state if the limit

lim
V→`

1

V
vL~N0,L!

exists and is strictly positive;~ii ! generalized condensation if the limit

lim
d→0

lim
V→`

1

V (
$kPL* :ek,d%

vL~Nk,L!

exists and is strictly positive;~iii ! nonextensive condensation if the limit

lim
V→`

1

V
vL~N0,L!50,

but nevertheless the limit

lim
d→0

lim
V→`

1

V (
$kPL* :ek,d%

vL~Nk,L!

exists and is strictly positive.
Examples of these different occurrences of Bose condensation in the free Bose gas, depending

on how the bulk limit is taken, can be found in Refs. 7–9.
As is proved in Theorem 2, there is no macroscopic occupation of the ground state in our

system. However, as we will show, there is generalized condensation. In other words, we have a
model for an interacting Bose gas displaying nonextensive condensation.

Our approach is based on Ref. 10, where the imperfect Bose gas is treated. The system is
given by the local HamiltonianHL , with periodic boundary conditions

HL5 (
kPL*

ekNk,L1
l

V S NL
2 1

1

2 (
kPL*

Nk,L
2 D 2mLNL , ~11!

as specified before, andmL is determined by the constant densityr.0 equation:

1

V
vL~NL!5r.

We study the equilibrium state of this system in the grand-canonical ensemble. The key
technique is the equivalence of the equilibrium condition or Gibbs statevL with the correlation
inequalities14,15
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bvL~X* @HL ,X# !>vL~X* X!ln
vL~X* X!

vL~XX* !
, ~12!

for all local observablesX belonging to the domain of@HL ,•#. In particular, we take forX
polynomials in the creation and annihilation operators. We prove the occurrence of nonextensive
condensation in this model, and follow closely the method used in Ref. 10.

Lemma 2:;k, j PL* :
(i)

bvLS 2ekNk,L1S mL2
2l

V
NLDNk,L2

l

V
Nk,L

2 1
3l

2V
Nk,LD>vL~Nk,L!ln

vL~Nk,L!

vL~Nk,L!11
;

~13!

(ii)

vLS S mL2
2l

V
NLDNk,LD<vLS e jNk,L1

4l

V
Nj ,LNk,L1

3l

2V
Nk,LD . ~14!

Proof: For (i), the result follows by takingX5ak in the correlation inequality~12!. One gets
(ii) by taking

X5ajNk,L
1/2 ,

in the inequality

vL~@X* ,@HL ,X## !>0,

which follows immediately from~12! by adding the correlation inequality forX and the complex
conjugate of the correlation inequality forX* . h

Lemma 3: For everyd.0, for every V and for every kPL* , uku>d,

vL~Nk,L!<
1

eck~L!21
1

4l

V
vL~Nj ,LNk,L!

1

12e2cd~L! ,

with

ck~L!5bS ek2
d2

8m
2

3l

V
,D ,

cd(L)5ck(L)u uku5d and jPL* , u j u<d/2.
Proof: Substitution of~14! in ~13!, changing the sign, and using the trivial boundvL(Nk,L

2 )
>0 we get

bS ek2e j2
3l

V DvL~Nk,L!2
4l

V
vL~Nj ,LNk,L!<vL~Nk,L!ln

vL~Nk,L!11

vL~Nk,L!
. ~15!

Taked.0 arbitrary,uku>d, andu j u<d/2.
Using e j<d2/8m, ~15! becomes

ck~L!vL~Nk,L!2
4l

V
vL~Nj ,LNk,L!<vL~Nk,L!ln

vL~Nk,L!11

vL~Nk,L!
.

The lemma now follows from convexity arguments on the rhs: we want to solve fort the inequal-
ity
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ct2b<t ln
t11

t
,

with c andb positive constants andtPR1. It follows that t<t2 , with t2 , satisfying

ct22b5t2 ln
t211

t2
.

One can write this ast<t11(t22t1), with

t15
1

ec21
.

Let f (t)5t ln(t11)/t, f is concave, hence

f ~ t2!2 f ~ t1!2~ t22t1! f 8~ t1!<0,

and

t22t1<b
1

t2e2c .

Substitute this into the inequalityt<t11(t22t1), one gets

t<
1

ec21
1b

1

12e2c .

Finally, useuku>d in the second term on the rhs to prove the lemma. h

Lemma 4: For everye.0, V large enough and jPL* :

1

V2 vL~NLNj ,L!,e.

Proof: ~13! gives

bvLS 2e jNj ,L1S mL2
2l

V
NLDNj ,L1

3l

2V
Nj ,LD>vL~Nj ,L!ln

vL~Nj ,L!

vL~Nj ,L!11
>21.

This can be rewritten in the form

2l

V2 vL~NLNj ,L!<
1

bV
1S mL1

3l

2V
2e j D 1

V
vL~Nj ,L!. ~16!

Taking X5aj in the inequality

vL~†X* ,@HL ,X#‡!>0,

gives

mL<2lr1e j1
4l

V
vL~Nj ,L!1

3l

2V
.

Putting this into~16! gives
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2l

V2 vL~NLNj ,L!<
1

bV
1S 2lr1

3l

V D 1

V
vL~Nj ,L!1

4l
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Using Theorem 2 proves the lemma. h

We now prove the existence of generalized condensation in the thermodynamic limitV
→`, taken with constant particle densityr.

Theorem 3: One has (i)
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(ii) for every r.0, there is abc such that for allb.bc :
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Proof: We have clearly
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Applying Lemma 3 gives
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Takee.0 arbitrary, andV large enough such that Lemma 4 is satisfied. This implies that
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Hence takingV large enough, the second term on the rhs of~17! can be made arbitrarily close to

E
uku>d

dk
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,

whereas the third term is made arbitrarily small.
Hence in the limitV→`, one gets

lim
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Now take the limitd→0 to get(i).
The function

b° f ~b!5E
Rd

dk

~2p!d

1

ebek21

is clearly decreasing inb.0 and, furthermore,f (b)→` for b→0, and f (b)→0 for b→`.
Hence, for everyr.0 there existsbc.0, defined by
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Together with(i) this proves(ii) . h

Theorem 1 proves that the model~11! has the same pressure as the imperfect Bose gas.
Theorems 2 and 3 prove that the model~11! shows a Bose–Einstein condensation exactly as the
imperfect Bose gas, be it that the nature of the condensation is different. One aspect of this is that
the ground state (k50) condensation of the imperfect Bose gas is unstable against any arbitrary
small repulsive perturbation of the type (g/V)(kPL* Nk,L

2 , for any g.0. The condensation be-
comes nonextensive. However, on the level of the thermodynamics the models are similar.

The natural question to ask is, whether the equilibrium states of the two models coincide. For
the imperfect Bose gas, this problem is solved, e.g., in Ref. 10. We are not going into the details,
but the technique of Ref. 10 can also be used in order to solve rigorously the equilibrium—or
KMS—equations of our model. The result is that all equilibrium states are of the same type as the
ones of the imperfect Bose gas. In particular, the equilibrium states are also integrals over a set of
quasifree or generalized free states.

On the other hand, it is interesting to remark the following. Given this result, one might ask
whether the variational principle of statistical mechanics, formulated in the thermodynamic limit,
but restricted to the set of quasifree states, does also give the results of this paper, namely, the
existence of condensation and the equilibrium states. Performing this program, one remarks that
the particular type of condensation is not recovered by this method. Hence, for the time being, the
only way to keep track of it is to follow closely the details of the thermodynamic limit, as is done
above. In this work we illustrate clearly that care must be taken of this limit and that statistical
mechanics remains the theory of really handling the thermodynamic limit.
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