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Helicoidal transfer matrix model for inhomogeneous DNA melting
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B-9052 Gent, Belgium
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An inhomogeneous helicoidal nearest-neighbor model with continuous degrees of freedom is shown to
predict the same DNA melting properties as traditional long-range Ising models, for free DNA molecules in
solution, as well as superhelically stressed DNA with a fixed linking number constraint. Without loss of
accuracy, the continuous degrees of freedom can be discretized using a minimal number of discretization
points, yielding an effective transfer matrix model of modest dimension �d=36�. The resulting algorithms to
compute DNA melting profiles are both simple and efficient.

DOI: 10.1103/PhysRevE.73.011908 PACS number�s�: 87.15.Aa, 87.14.Gg, 05.20.�y

I. INTRODUCTION

The computation of the thermal stability and statistical
physics of nucleic acids is a classical problem going back to
the 1960’s. The standard model to describe the untwisting
and separation of both strands of a free DNA double-helix in
solution is the Poland-Scheraga helix-coil model, where each
base pair can be in two possible states, helix �closed� or coil
�open� �1,2�. The addition of entropy weights to a basic Ising
model, counting the number of possible configurations of
open loops, induces an effective long range interaction be-
tween base pairs which is essential for correctly obtaining
the helix specific opening probabilities. The most widely
used algorithm for computing the opening probabilities is the
recursion relation method of Poland �3�. Incorporating the
Fixman-Freire approximation �4� for the loop entropy factor
reduces the computational complexity from O�N2� to O�N�
in the sequence length N. With the availability of fully se-
quenced genomes, the study of DNA melting or denaturation
has become an active field of research again with recent re-
sults relating the physics of denaturation to the biology of
genomes �5,6�, reparametrizing the original loop entropy
weights �7�, speeding up the Poland-Fixman-Freire algorithm
for whole genome sequences �8�, and generalizing the model
to describe hybridization with mismatches of unequal length
sequences �9�. The traditional physics approach to compute
statistical mechanical probabilities by transfer matrix multi-
plication �10,11� has also recently been revisited by Poland
�12�. While this last algorithm offers no improvement in
computational complexity �using matrix sparsity it is O�N2��,
it is very simple and straightforward to implement.

In vivo DNA strand separation involves interactions with
other molecules which impose superhelical stresses on the
DNA molecule. This is modeled by Benham’s statistical me-
chanical model for stress induced duplex destabilization
�SIDD� �13�, which also is a helix-coil model with Ising
degrees of freedom. It has a long range base pair interaction
arising through superhelical constraints �no loop entropy fac-

tors are added�, and opening probabilities are known to cor-
relate very well with regions important for transcriptional
regulation �14,15�. An exact solution of the model is O�N2�
but an accelerated algorithm using an energy cutoff reduces
this to O�N�, such that SIDD properties can be computed for
whole genome sequences as well �16,17�.

In parallel with the helix-coil models, a distinct class of
statistical mechanical models for DNA melting has been de-
veloped starting from a physically more realistic description
of a base pair as an entity which has a continuum of inter-
mediate states in between helix or coil. These models are all
based on the Peyrard-Bishop model �18� which consists of a
nonlinear particle lattice with one real degree of freedom per
base pair describing the stretching of the hydrogen bonds
between the bases. Nonlinearity and cooperativety in such a
model arises already with a nearest-neighbor interaction, no
long-range interaction is needed �19�. Subsequent improve-
ments to the model include replacing the harmonic stacking
energy by an anharmonic stacking energy �20�, and introduc-
ing an additional angular degree of freedom per base pair to
model the helicoidal structure of DNA �21–23�. In the latter
model, separation of the two strands is coupled to the
untwisting of the double helix. The effect of sequence
inhomogeneity on the melting transition in the Peyrard-
Bishop model with harmonic and anharmonic stacking
has been studied for random sequences �24� and for periodic
sequences �25�.

Recent experimental developments �see �26� for a review�
have made it possible to manipulate single polymeric mol-
ecules directly and thus offer access to a whole range of
DNA properties other than the melting phenomenon. These
elasticity experiments too can be accurately modeled by yet
another type of statistical mechanical models consisting of a
double-helix with nonopening base pairs connected by flex-
ible, folding backbones �27,28�. In this paper however, we
will be concerned with the melting transition only and the
connection between the continuous particle-lattice models
and the discrete helix-coil models.

Unlike the helix-coil models, which have seen many ap-
plications to real biological sequences, the particle-lattice
models are mostly used to obtain a more fundamental, se-
quence independent, physical understanding of the DNA
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melting phenomenon, such as the order of the phase transi-
tion, the existence of nonlinear “bubble” excitations, etc.,
�see �19� for a recent review paper�. Moreover, although both
types of models have been validated against �different� ex-
periments, very little is known about how they relate to one
another and whether they are in some sense equivalent. Here,
we attempt to close the gap between both kinds of models.
We study an inhomogeneous particle-lattice model based on
the Barbi-Cocco-Peyrard helicoidal model �21� and compute
its melting properties for some standard example sequences
both under free conditions and with superhelical stresses.

The thermally induced melting of free DNA is obtained as
the formally very simple transfer integral equilibrium solu-
tion of the helicoidal model, yet computation of the melting
properties is a challenge in itself as, e.g., a computation of
the partition function involves O�N� numerical integrations
over an infinite integration domain. However, Zhang et al.
�25� already observed that for the Dauxois-Peyrard-Bishop
model �20�, the numerical integrations can be carried out
using a very limited number of discretization points; a di-
mension as small as d=70 gave very accurate results com-
pared to much higher dimensions �d=800 and more�, and by
allowing an error of order 10−6 with respect to the exact
results, the dimension could be further reduced to d�40. For
the helicoidal model, we have found a value of d=36 to be
the minimal discretization dimension. This effectively re-
duces the particle-lattice model to a nearest-neighbor gener-
alized Ising model, offering the possibility to develop a very
simple and very fast algorithm to compute DNA melting
probabilities. We propose such an algorithm which, more-
over, is numerically stable for arbitrary sequence lengths,
avoiding underflow problems related to the extensivity of the
free energy �i.e., the exponential vanishing of the partition
function for diverging sequence length�. The algorithm is as
simple as Poland’s matrix algorithm �12� and as fast as any
of the fastest helix-coil algorithms discussed above. Exten-
sion of the algorithm to compute correlations between differ-
ent base pairs, loop opening probabilities, higher order
moments for base pair opening, etc., is trivial and straight-
forward.

Stress induced DNA melting is modeled by imposing a
fixed linking number constraint on the DNA strands, which
leads to a coupling of all angular degrees of freedom in the
model. However, the linking number is thermodynamically
conjugated to an external torque variable applied at both
ends of the molecule. The model with external torque can be
solved by the above transfer matrix algorithm, and although
there is no equivalence of ensembles, the fixed linking num-
ber solution can be obtained by a complex integration over
the torque variable. The numerical solution is O�MN�, where
M is a constant independent of N determined by the desired
accuracy of the torque integration, a situation similar to the
analysis of stress induced DNA melting using Benham’s
SIDD model �17�.

II. THE MODEL AND ITS EQUILIBRIUM SOLUTION

We consider the helicoidal model introduced by Barbi,
Cocco, and Peyrard �21�. Unlike the original homogeneous

model, the various energy parameters will be explicitly se-
quence dependent. A DNA sequence is a string of N letters
�A ,C ,G ,T�, which for convenience we translate �alphabeti-
cally� into a numerical sequence �sn�n taking values in
�1,2,3,4�. Each base pair in the model has two degrees of
freedom, a radial variable r, related to the opening of the
hydrogen bonds, and an angular variable �, related to the
twisting of the base pair and responsible for the three-
dimensional structure of the DNA molecule. Successive
angles are restricted to �n+1−�n� �0,�� to enforce helical
geometry. Alternatively, we can associate a radial variable r
to the sites of the lattice, and an angular variable �� �0,�� to
the bonds of the lattice ��n=�n+1−�n�.

The potential energy is given by

V = �
n=1

N

Dsn
�e−asn

�rn−r0� − 1�2

+ �
n=1

N−1

Ksn,sn+1
�rn+1 − rn�2e−��rn+rn+1−2r0�

+ �
n=1

N−1

Esn,sn+1
��n,n+1 − �sn,sn+1

�0� �2 − ��
n=1

N−1

�n. �1�

The first term is the Morse potential modeling the hydrogen
bonds between the two nucleotides in a base pair �18�, the
second term is the anharmonic stacking interaction between
successive base pairs �20�, the third term is a harmonic twist
energy allowing fluctuations of the length �n,n+1 between
successive nucleotides on the same DNA strand �21� �see
also the Appendix�, and the last term, which can be written
as −���N−�1�, is the external torque or superhelical twist.
��0 overtwists the DNA molecule, inhibiting denaturation
of the two strands, ��0 causes undertwisting and enhances
denaturation �23�.

We note here that the present model is only suitable for
negative or small positive torque �. Indeed, unwinding leads
to denaturation and this is well described by the potential
energy �1�, but severe overwinding leads to DNA forms with
exposed bases and the backbone winding at the center �26�.
Such transition can obviously not be part of the present
model.

A variety of boundary conditions �b.c.� can be considered
for the radial variable r, such as free b.c., fixed b.c., or peri-
odic b.c., with minor modifications to the numerical solution
of the model. For the angular variable � we consider two
distinct situations. The first is to set �1=0 and have no con-
straint on �N, corresponding to free b.c. for the variables �,
and describing the situation in some single molecule experi-
ments �26�. The second situation, modeling superhelical
stresses, is to set a fixed linking number constraint �N−�1
=�n�n=�N, �� �0, �N−1�� /N�, which contains periodic
b.c. in � as the special case �=2�n /N, n=1,2 ,3 , . . . . The
torque � and the total twist �n�n are thermodynamically con-
jugated variables, yet as we are explicitly working with a
finite-size system, there is no equivalence of ensembles and
both situations lead to different melting properties. We will
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refer to the first situation as the “torque ensemble” and the
second as the “linking number ensemble.”

The choice of the energetic parameters is a difficult one
and unlike for the helix-coil models, no well established set
of parameters exists, especially with respect to the base pair
dependence of the different energy terms. Morse potential
constants for weakly bonded A−T vs strongly bonded
C−G base pairs have been determined by comparison of the
Dauxois-Peyrard-Bishop model with denaturation experi-
ments �29�. For the other parameters, we follow the classifi-
cation of El Hassan and Calladine �30�. More precisely we
take Ks,t inversely proportional to the slide variance of the
step �s , t�, and Es,t inversely proportional to the twist vari-
ance ��30� Table II�. To obtain explicit values, we first adapt
the relative strength of the energy parameters such that their
order of magnitude agrees with the parameters used in �23�.
In that case we obtain the correct transition temperature in-
terval, but a less perfect differential melting map �a melting
map gives for each base pair the temperature at which it
transforms from closed to open, see �31� and Sec. III A�. By
increasing the relative strength of the twist energy, the tran-
sition interval is widened, but the melting map becomes ex-
act. To compute opening probabilities and melting maps, and
identify stable vs unstable regions, this last set of parameters
is more adequate. A more detailed comparison with an ex-
periment will be needed to find the parameters which best fit
the physical melting transition, but we do not pursue this
further in this paper. All the explicit numerical values we use
are given in the Appendix. To conclude, we mention that in
the torque ensemble, to first order, sequence specificity in the
melting process comes from the base pair specific Morse
potentials, but inhomogeneity in the stacking and twist ener-
gies has second order effects which are nonetheless impor-
tant for a detailed identification of the different melting do-
mains. In the linking number ensemble, the coupling of all
angular degrees of freedom leads to more complicated se-
quence specific melting behavior.

A. Equilibrium solution in the torque ensemble

Since we are not interested in velocity dependent quanti-
ties, the kinetic energy terms can be integrated directly in the
partition function, which becomes, up to a multiplicative
constant and with free b.c.,

Z =	 dr1 ¯	 drN	 d�1 ¯	 d�N−1r1 ¯ rNe−	V. �2�

The �-integrals factorize, and

Z =	 dr1 ¯	 drNT�1��r1,r2� ¯ T�N−1��rN−1,rN� ,

where for n=1, . . . ,N−2,

T�n��r,r�� = re−	Vm
�n��r�e−	Vs

�n��r,r��


 	
−1

1 dx

1 − x2

e−	Vt
�n��r,r�,x�e	�acos�x�,

and

T�N−1��r,r�� = rr�e−	�Vm
�N−1��r�+Vm

�N��r���e−	Vs
�N−1��r,r��


 	
−1

1 dx

1 − x2

e−	Vt
�N−1��r,r�,x�e	�acos�x�.

Vm
�n�, Vs

�n�, and Vt
�n� denote, respectively, the Morse, stacking,

and twist energy terms. As we will not need spectra of trans-
fer integral operators, there is no need for symmetrizing
these kernels.

In order to compute expectation values of the form
�f�rn�g�cos �n�� for the suitable test functions f and g, we
need additional transfer integral operators

Tf ,g
�n��r,r�� = rf�r�e−	Vm

�n��r�e−	Vs
�n��r,r��


 	
−1

1 dx

1 − x2

g�x�e−	Vt
�n��r,r�,x�e	�acos�x�,

with appropriate modifications for the right-most sites N−1
and N.

Since strand separation and untwisting are directly corre-
lated by the twist energy term, it is often sufficient to con-
sider the case g1, such that we get the simpler kernels

Tf
�n��r,r�� = f�r�T�n��r,r�� , �3�

Tf
�N��r,r�� = T�N−1��r,r��f�r�� . �4�

To solve the model numerically, we replace the transfer
integral operators by finite size transfer matrices. The most
efficient way for doing this is approximating the integrals in
the partition function by finite sums using Gaussian quadra-
tures �32�. For the angular x-integrals, this is straightforward
as they already contain the right weight function for Gauss-
Chebyshev integration. For the radial r-integrals, we first re-
strict the infinite integration domain to a finite interval �a ,b�,
then apply the Gauss-Legendre integration. Let zj,
j=1, . . . ,MC, be the zeros of the MCth Chebyshev polyno-
mial, all having equal weight � /MC. Let zj�, j=1, . . . ,ML,
be the zeros of the MLth Legendre polynomial, � j
= 1 � 2 �b−a�zj�+ 1 � 2 �b+a� the zeros transformed to the in-
terval �a ,b�, and wj the associated weights �32�.

We obtain the transfer matrix approximation to the parti-
tion function,

Z = �
i,j

�T̂�1�
¯ T̂�N−1��ij = �v�T̂�1�

¯ T̂�N−1��v� ,

where v= �11¯1�, �·� and �·� are the familiar Dirac column,

respectively, row vector notation, and T̂�n� are the ML
ML
transfer matrices defined by

T̂ij
�n� = wi�ie

−	Vm
�n���i�e−	Vs

�n���i,�j� 

�

MC
�
k=1

MC

e−	Vt
�n���i,�j,zk�e	�acos�zk�
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T̂ij
�N−1� = wiwj�i� je

−	�Vm
�N−1���i�+Vm

�N���j��e−	Vs
�n���i,�j�



�

MC
�
k=1

MC

e−	Vt
�n���i,�j,zk�e	�acos�zk�.

Likewise matrices T̂f ,g
�n� are defined as finite approximations to

the corresponding kernels.
Different boundary conditions in the radial variable can

be easily accommodated by changing the vector v: for
fixed b.c. r1=rN=� j, vi=ij, for closed, resp. open b.c.,
vi= I��i�12�, resp. vi= I��i�12�, and for periodic b.c. the
inner product �v� · �v� is replaced by the trace Tr�·�. Here we
follow the convention that a base pair is “open” if
r−r0�2Å, and I denotes the indicator function, I�A�=1 if
the condition A is true.

Defining left and right matrix products

ML
�n� = T̂�1�

¯ T̂�n�, MR
�n� = T̂�n�

¯ T̂�N−1�

for n=1, . . . ,N−1, and ML
�0�=MR

�N�=1, we obtain

�f�rn�g�cos �n�� =
�v�ML

�n−1�T̂f ,g
�n�MR

�n+1��v�
Z

�f�rN�� =
�v�ML

�N−2�T̂f
�N��v�

Z
.

The different transfer matrices T̂�n� for n=1, . . . ,N−2
choose between 16 different matrices, one for each nucle-
otide step-type. These matrices, together with one matrix

T̂�N−1� for the final bond, are computed first and stored on
disk. For a given sequence we then compute and store the
left and right matrix products. For a given pair �f ,g� we

compute again first the 16 possible matrices, T̂f ,g
�n�, and the

two matrices, T̂f ,g
�N−1� and T̂f ,g

�N�. With these matrices, we can
then compute, e.g., a profile n� �f�rn�g�cos �n�� by the
above formulas. By the simplicity of the transfer matrix for-
malism, the computational complexity of this procedure
clearly increases only linearly with N.

However, even for sequences of moderate length �a few
kilobase pair with double precision calculations�, the left and
right matrix products have such small entries, that they con-
sist of round-off error only, and the computations become
meaningless. This is a common problem due to the extensiv-
ity of the free energy. To make this computation work for
sequences of arbitrary length, we define normalized left and
right vectors;

�wL
�n�� =

�wL
�n−1��T̂�n�

��wL
�n−1��T̂�n��

, �wR
�n�� =

T̂�n��wR
�n+1��

�T̂�n��wR
�n+1���

,

with wL
�0�=wR

�N�=v / �v�, and while inductively creating these
vectors we store

cn = �T̂�n��wR
�n+1�� .

A short calculation reveals that

�f�rn�g�cos �n�� =
�wL

�n−1��T̂f ,g
�n��wR

�n+1��
cn�wL

�n−1��wR
�n��

�f�rN�� =
�wL

�N−2��T̂f
�N��wR

�N��
cN−1�wL

�N−2��wR
�N−1��

,

involving only normalized vectors, sequence length indepen-
dent �f ,g� matrices, and the constants cn, which are formed
by sequence length independent matrices acting on normal-
ized vectors.

If g1, transfer matrices are of the form �3� and �4�, and
the formulas are even simpler. Denote by Df the multiplica-

tion operator with the function f and by D̂f its diagonal ma-
trix discretization. We get

�f�rn�� =
�wL

�n−1��D̂f�wR
�n��

�wL
�n−1��wR

�n��
�5�

�f�rN�� =
�wL

�N−2��T̂�N−1�D̂f�wR
�N��

�wL
�N−2��wR

�N−1��
. �6�

This method can be easily extended to compute higher
moments. For example, to compute �f�rn�f�rm�� for fixed n

and all m, we define T̂�n��= T̂f
�n� and T̂�l��= T̂�l� for l�n. Writ-

ing �·�� to denote expectation with respect to these transfer
matrices, we have, for functions f �0,

�f�rn�f�rm�� = �f�rn���f�rm���. �7�

The practical applicability of the method clearly relies on
the grid size values ML and MC, which were determined as
follows. First we started from the value ML=70, which ac-
cording to Zhang et al. �25� gives exact results for the
Peyrard-Bishop model. For this value, the upper limit of the
integration domain has to be set to b=40, larger values of b
require larger ML �25�. The lower limit a can be put equal to
9.7 as the Morse potential can be considered infinite for
smaller values. We determined a value MC=35 to give accu-
rate results in comparison with the MELTSIM program �31�.
Like in the Peyrard-Bishop model �25�, we then found that
ML could be further decreased with negligible error, to a
value of 36. Further reducing the dimension leads to a dra-
matic change, where suddenly all the interesting transitional
behavior is lost, the chain is either completely open, or com-
pletely closed. After ML was minimized, we decreased MC.
Around MC=20, we loose again all interesting behavior, but
the transition is less sharp in this case. We settled on
MC=24.

The computational method presented so far works well up
to a certain sequence length, where memory becomes the
bottleneck instead of the CPU speed �around 106 bp on a
typical PC�. To treat even longer sequences, the sequence is
divided into a number of smaller overlapping subsequences
and the probability profiles of those are combined to obtain
the full-length profile. This is a standard procedure �12,17�,
which, however, is much simpler in a nearest-neighbor
model than in the long-range helix-coil models. More pre-
cisely, assume we cut the sequence of N base pairs into N /N0
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subsequences of length N0. To correct for the artificial
boundaries thus introduced, we compute the opening prob-
abilities for an interval �lN0−d , �l+1�N0+d� but only keep
the values for the interval �lN0 , �l+1�N0�. If d is much larger
than the typical correlation length, this gives the exact open-
ing probability for the full sequence. In the helix-coil model,
such a cut is never exact because d is always smaller than the
interaction length. In Sec. III A, we will see that at typical
values of T and � �i.e., values differentiating between stable
and unstable regions�, the correlation length is typically
rather short, a few 100 base pairs at most. Therefore, a win-
dow size of length N0=105 and overlap 2d between 103 and
104 leads to an exact algorithm for long sequences whose
speed is only mildly affected by the windowing procedure.

B. Equilibrium solution in the linking number ensemble

The partition function in the linking number ensemble is
again given by an integral of the form �2�, but the angular
integrals are now restricted to the subspace of �0,��N−1 for
which the linking number or total twist satisfies

1

N
�
n=1

N−1

�n = �

for some fixed �� �0, �N−1�� /N�. Very often, instead of �,
the superhelical density � is specified,

� =
Lk − Lk0

Lk0
,

where Lk= �2��−1�n�n is the linking number, and
Lk0= �2��−1�n�n,n+1

�0� is the ground state, zero torque linking
number. As we remarked in Sec. II, our model is only suit-
able for negative or small positive superhelicity, and for defi-
niteness we will consider in this section only negative torque
�, corresponding to the negative superhelicity �.

The situation is completely analogous to the standard sta-
tistical mechanics situation of canonical and grand-canonical
ensembles; � plays the role of the “density,” � the role of a
“chemical potential,” and by changing in Eq. �2� the angular
integration variables to �1 , . . . ,�N−2, �=�n�n, we see that the
grand-canonical �torque ensemble� and canonical �linking
number ensemble� partition functions are related by a
Laplace transform

Ztq��� = 	
0

�

d�e	��Zlk� �

N
� ,

where it is understood that Zlk���=0 for �� �N−1�� /N.
By standard inverse Laplace transform techniques, the

linking number partition function can be obtained from the
torque partition function by a contour integration in the com-
plex plane

Zlk��� = 		
�−i�

�+i� dz

2�i
e−	zN�Ztq�z� = 		

�−i�

�+i� dz

2�i
e−	N�z�+Ftq�z��,

�8�

where the integral is carried out on a line parallel to the
imaginary axis, with ��0, and Ftq�z� is the free energy in
the torque ensemble.

Standard statistical mechanics proceeds by choosing a
line which crosses the real axis at a critical point of the
harmonic function z�+Ftq�z�. This point is a saddle-point
and the contour is a path of steepest descent, such that for
large 	N, the integrand in Eq. �12� is significantly different
from zero in a small interval near the real axis only. Since we
are interested in inhomogeneous, finite sequences, we do not
consider the question of equivalence of ensembles in the
thermodynamic limit.

More precisely, for a given ��0 and corresponding �,
the function,

� � 0 � �� + Ftq��� ,

attains a maximum at some value �0�0, namely the value
�0 for which ��n�n�tq,�0

=N�, where �·�tq,�0
denotes expecta-

tion in the torque ensemble. The line passing through �0 is
chosen as the integration contour, and we can write

Zlk��� = 	e−	N�0�e−	NFtq��0�


 	
−�

� d�

2�
e−i	�N�e−	N�Ftq��0+i��−Ftq��0��. �9�

Because of the large parameter 	N, the function,

� � �e−	N�Ftq��0+i��−Ftq��0��� ,

is tightly concentrated around �=0, and the integral can be
restricted to a small interval �−�N ,�N�. It is important to re-
mark that to apply the standard stationary phase expansion,
�N would have to be much smaller than �	N�−1/2, a condition
which is typically not fulfilled here. An efficient method to
numerically compute the remaining integral consists of com-
puting the integrand at a number of points and find a cubic
splines interpolation which can be readily integrated.

The algorithm to compute expectation values proceeds as
follows. Like in the previous section, let �f ,g� be single-site
test functions and denote by Z�n� the partition functions ob-

tained by substituting at position n the transfer matrix T̂f ,g
�n� for

T̂�n�. Further denote by ptq
�n����= �f�rn�g�cos �n��tq,� the ex-

pectation value at torque � and analogously plk
�n����. Recall-

ing that ptq
�n����=exp�−	N�Ftq

�n����−Ftq�����, we find

plk
�n���� = ptq

�n���0�




	 d�ptq
�n���0 + i��e−i	N��e−	N�Ftq��0+i��−Ftq��0��

	 d�e−i	N��e−	N�Ftq��0+i��−Ftq��0��

.

�10�

Since the lhs of this equation is obviously real, we take the
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real parts of the integrands before numerically computing the
integral. The torque expectation values ptq

�n���� are evaluated
using the efficient algorithm of Sec. II A, which can be easily
extended to also return the free energy,

− 	NFtq��� = ln�v�T̂�1�
¯ T̂�N−1��v�

= ln�v�T̂�1��v� + �
n=2

N−1

ln
�v�T̂�1�

¯ T̂�n��v�

�v�T̂�1�
¯ T̂�n−1��v�

= �
n=1

N−1

ln
�wL

�n−1��T̂�n��wR
�N��

�wL
�n−1��wR

�N��
.

Hence the algorithm to compute expectation values for all n
in �10� is still O�N�, but M times slower than in the torque
ensemble, where M only depends on the number of discreti-
zation points chosen to compute the �-integrals.

To prove equivalence of the ensembles between the
torque and linking number ensemble �for the given test func-
tions� in the thermodynamic limit for homogeneous se-
quences, we would have to show that the fraction of the
integrals in Eq. �10� tends to 1. For finite, inhomogeneous
sequences, the nontriviality of this fraction causes a nonlin-
ear coupling between base pairs that will be illustrated in
Sec. III B.

III. EXAMPLE RESULTS

A. Torque ensemble

For easy comparison with the Poland-Scheraga helix-coil
model, we show example results for the PN/MCS13 se-
quence �N=4608� which is the main example of �31�. This
sequence is the pBR322 sequence �36� with an insert
�AAGTTGAACAAAAR�17AAGTTGA at position 972 �33�
��¯�x means �¯�x times repeated�. The conclusions drawn
here are equally valid for all other sequences we tested.

In the Peyrard-Bishop and related models a base pair is
said to be denatured when it is stretched more than 2 Å away
from its equilibrium length of 10 Å, hence the probability of
denaturation is given by

pn = �h�rn − 12�� , �11�

where h�r� is the Heaviside function, h=1 for r�0 and 0
otherwise. Notice that we only need the simpler formulas �5�
and �6� to compute melting profiles n� pn.

Figure 1 shows the melting profile for the PN/MCS13
sequence at typical in vivo temperature T=310 K. The torque
value �=−0.042 eV/rad is chosen to give a good delineation
of unstable regions �pn�1�. Decreasing � increases the
number of open base pairs, and increasing � has the opposite
effect. On the basis of this melting profile we identify three
unstable regions, the first one around position 1000 corre-
sponding to the AT-rich insert in the pBR322 sequence, and
the other two with maximums at position 3489 and at posi-
tion 4423.

For whole genome sequences of several million base
pairs, the opening probability is computed by dividing the
sequence in shorter overlapping subsequences �see the end of

Sec. II A�. To do this correctly, we need to know the corre-
lation length, or more precisely the length at which the cor-
relation between a base pair and the rest of the sequence
vanishes. Hence for a fixed base pair n we compute, using
�7�,

Cm
n = �rnrm� − �rn��rm� .

Figure 2 shows the correlation function Cm
n for two differ-

ent values of n, n=3289 in the middle of the second opened
bubble �see Fig. 1�, and n=2200 in the largest closed region.
Clearly, the correlation is much larger in the denatured re-
gion, but even here it does not extend beyond a few 100 base
pairs.

Due to the inhomogeneity of base-pair bonding and stack-
ing energies, DNA melting is a stepwise process with differ-
ent domains melting at different temperatures. This can be

FIG. 1. PN/MCS13 opening probability at T=310 K and
�=−0.042 eV/rad.

FIG. 2. Correlation function Cm
n for n=3489 �top� and n=2200

�bottom� for the PN/MCS13 sequence at T=310 K and
�=−0.042 eV/rad.
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visualized by computing differential melting curves and
melting maps. Let � be the fraction of open base pairs,
�= ��npn� /N. A differential melting curve is a plot of d� /dT
vs temperature T. A melting map is obtained by displaying
for each temperature the base pairs which have an opening
probability greater than 1/2 �shaded area�. Such a map gives
another picture of thermodynamically stable �high melting
temperature� vs unstable �low melting temperature� regions
in the particular sequence.

Figure 3 shows the differential melting curve �obtained by
differentiating a cubic splines interpolation of the computed
values ��T�� and the melting map for the PN/MCS13 se-
quence under the same condition �=−0.042 as in Figs. 1 and
2. We can clearly identify again the AT-rich inserted region
around position 1000 which melts first, as well as the two
unstable regions around positions 3500 and 4500.

Comparison of the differential melting curve and melting
map with the MELTSIM result ��31� Fig. 3� shows first of all
that the general shape of the melting curve is correct, but the
temperature range from a completely closed to a completely
denatured molecule is about twice as large in the helicoidal
Peyrard-Bishop model with the current set of parameters. On
the other hand, the melting map as a map depicting the suc-
cessive melting order of different regions is in precise agree-
ment with the MELTSIM melting map.

A more systematic determination of the physical value of
the various energy parameters in the helicoidal model is de-
sirable, but since the whole process of fitting model compu-
tations to experimental results of DNA denaturation in solu-
tion is quite subtle �the experimental results also depend on
external conditions like, e.g., the solvent salt concentration
�1,29��, it falls beyond the scope of this paper. It should also
be pointed out that while such fitting was important in the
early stages of the theoretical study of DNA melting, present
day problems concern more the identification of stable and
unstable regions and linking those to genomic content. As
long as the relative strength of the various energy terms is
kept within certain limits, this identification is unaffected by
changing the model parameters.

In Figs. 4 and 5 we illustrate some of the effects of chang-

ing the model parameters. Figure 4 shows the differential
melting curve and melting map with homogeneous stacking
and twist energy terms, where the values of K, E, and �0 are
the averages of the values given in the Appendix. The overall
identification of stable vs unstable regions remains intact, but
comparison with Fig. 3 shows that considerable detail in the
melting map is lost, with larger regions melting at once.

Figure 5 shows the effect of changing the relative strength
of the stacking and twisting energy terms. Again they are
taken homogeneous, but now with the original values of
Barbi et al. �23�. Although with these values the transition
temperature interval is of the right magnitude, the differential
melting curve and melting map clearly display insufficient
detail. Most notably, the two distinct unstable regions around
positions 3500 and 4500 are merged into one large region.

So far, we have shown results for a chosen value
�=−0.042 for easy comparison between the different figures,

FIG. 3. PN/MCS13 differential melting curve and melting map
�shaded area� �temperature increment 0.5 K, �=−0.042 eV/rad�.

FIG. 4. PN/MCS13 differential melting curve and melting map
�shaded area� with homogeneous stacking and twist energy
�K=0.1486 eV, E=0.0942 eV, �0=34.81°� �temperature increment
0.5 K, �=−0.042 eV/rad�.

FIG. 5. PN/MCS13 differential melting curve and melting map
�shaded area� with homogeneous stacking and twist energy
�K=0.65 eV, E=0.04 eV, �0=34.78°� �temperature increment
0.5 K, �=−0.042 eV/rad�.
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but other values can be considered as well. At fixed tempera-
ture, increasing � decreases the fraction of open base pairs,
corresponding to an increase in the phase transition tempera-
ture in the thermodynamic limit �23�. What is perhaps more
interesting is the fact that increasing � also smooths the dif-
ferential melting curve �see Fig. 6�, and broadens the transi-
tion; decreasing � has the opposite effect. Heuristically, in-
creasing � effectively increases the stiffness of the double
stranded DNA, which is indeed known to broaden the tran-
sition �7,34�. The value �=0 plays no special role in this
respect. In contrast, a recent model �35� which adds angular
degrees of freedom to the Poland-Scheraga helix-coil model
singles out the value �=0 as special and predicts a broaden-
ing of the transition for ��0 as well as ��0.

Finally, we have also tested the performance of the trans-
fer matrix algorithm on larger sequences, up to about
N�3
105. The algorithm was written in MATLAB and run
on a 2.8 GHz PC, and computed times follow the line
t=10−4N+0.40, with t in seconds. Comparison with �8�
shows that our algorithm performs as fast as the fastest avail-
able helix-coil algorithm.

B. Linking number ensemble

In this section, we illustrate the solution of the fixed link-
ing number ensemble, and compare it to the fixed torque
ensemble as well as the helix-coil SIDD model �13�, by
showing example results for the C-MYC sequence
�N=3200�, available as Example 3 on the WebSIDD server
�16�. Again, the qualitative conclusions drawn from this ex-
ample are valid in general. Following the outline of
Sec. II B, we start by showing in Fig. 7 a plot of
Ftq���+�� for different values of the superhelical density
�=−0.06, −0.045, −0.03, and −0.015, corresponding to val-
ues �= �1+��Lk0 /N=0.572, 0.581, 0.590, and 0.600. As �
goes to 0, the graph becomes constant for � smaller than a
critical value corresponding to the torque induced melting
transition observed in the homogeneous model �22,23�. For
nonzero � the graph has a maximum at some value �0���

and this is the value we need for constructing the integration
contour and for comparing the linking number and torque
ensembles. We emphasize here that obtaining a very precise
value of the location of the maximum is not necessary. In-
deed, the integration in Eqs. �9� and �10� can be carried out
along any line parallel to the imaginary axis. Taking a line at
or close to the maximum will simply ensure that the function
to be integrated falls off very quickly along this line.

Next we turn our attention to the integrand in Eq. �9�,

u��� = e−	N�Ftq��0+i��−Ftq��0��e−i	N��. �12�

Figure 8 shows the absolute value of u in a neighborhood of
�=0 for a superhelical density �=−0.03 and temperature
T=310 K. For this value of � and T, the critical point is
given by �0=−0.041 49. As expected, the function decays to
0 rapidly, but clearly not rapidly enough to apply a stationary
phase approximation ��	N�−1/2=0.003�. Figure 9 shows the
real part of u, which is the function to be integrated to obtain

FIG. 6. PN/MCS13 differential melting curves for �=−0.05,
0.0, and 0.05 eV/rad �left to right, temperature increment 0.5 K�.

FIG. 7. C-MYC Ftq���+�� for �=0.572, 0.581, 0.590, and
0.600 �top to bottom� at T=310 K.

FIG. 8. C-MYC absolute value of u��� �Eq. �12�� at �=−0.03
��=0.59� and T=310 K ��-interval 5 ·10−4�.
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the partition function in Eq. �9�. Both Figs. 8 and 9 are gen-
erated by interpolating between a number of computed data
points. Due to the oscillations, it is important to compute
enough data points, we used an interval of ��=5·10−4. One
way to determine the accuracy of the numerical approxima-
tion is to check if the expectation value of the superhelical
density matches the imposed value. We find
��2��−1�n��n�lk,�−Lk0� /Lk0=−0.030 05 which compares
well with the exact value of −0.03. Similarly, we can check
how well the value of �0 was determined by computing the
expected helical density in the fixed torque ensemble with
torque �0, and find a value of −0.030 26. This is the value
obtained by differentiating the splines approximation of Fig.
7, and due to the broad maximum, better accuracy should not
be expected. However, it is clear from the fast decay of the
function �u���� in Fig. 8, that this value of �0 is accurate
enough for computing expectation values in the linking num-
ber ensemble. If a more accurate value is desired, such as in
Fig. 11 below, we can start from this approximate �0, and
fine tune it by computing ��n�n�tq,� for some values ���0

until the correct linking number is found.
To visualize how the linking number constraint affects the

melting behavior of a sequence by introducing an effective
long range base pair coupling in the partition function, we
follow Benham and Bi �17�, and compare the original
C-MYC sequence to a modified sequence which differs from
the C-MYC sequence in a tiny fragment only. More pre-
cisely, we compute the opening probability for the C-MYC
sequence at a fixed linking number ��=−0.03� �Fig. 10, top
panel�, then remove from the sequence a small 44 bp seg-
ment in the center of the main untwisted region �sequence
positions 781–824�, and compute the opening probability for
this modified sequence at the same superhelical density �Fig.
10, bottom panel�.

For the C-MYC sequence, we find that there are two lo-
cations that are preferentially opened, a first, large one, be-
tween positions 760–850, and a second, smaller one, be-
tween position 2900–2950, with a much higher opening
probability for the largest region. In agreement with the

SIDD-model �17� we see that a small modification of the
sequence is sufficient to shift the main opening activity to the
second region.

In Fig. 11, we show the corresponding opening probabili-
ties in the fixed torque ensemble. For a fair comparison, we
adjusted the torque values for both sequences separately to
return a superhelical density expectation value �=−0.03 with
high accuracy. As a final check that we are comparing both
ensembles with the right parameters, we compute the total
fraction of open base pairs N−1�npn, and find that it is equal
to 0.018 for both top panels of Figs. 10 and 11, and equal to
0.017 for both bottom panels.

The main qualitative difference that can be observed be-
tween both ensembles is that the effect of removing the small

FIG. 9. C-MYC real value of u��� �Eq. �12�� at �=−0.03
��=0.59� and T=310 K ��-interval 5 ·10−4�. FIG. 10. The opening probability at T=310 K and fixed super-

helical density �=−0.03 for the C-MYC sequence �N=3200� �top�
and the modified C-MYC sequence �N=3156� �bottom�.

FIG. 11. The opening probability at T=310 K in the fixed
torque ensemble for the C-MYC sequence �N=3200,
�=−0.041 475, ����=−0.03004� �top� and the modified C-MYC
sequence �N=3156, �=−0.044 365, ����=−0.030 03� �bottom�.
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segment is much more localized in the torque ensemble, and
the first region is still dominant. If we consider a base pair to
be open if pn�0.5, like in constructing the melting maps in
Sec. III A, we see that in the linking number ensemble the
open region shifts from the left to the right upon modifying
the sequence, while in the torque ensemble, the open region
disappears.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have connected the particle-lattice heli-
coidal Peyrard-Bishop model to more familiar Ising-type
models for inhomogeneous DNA melting. In the simplest
setting of a fixed external torque, the model has the same
melting behavior as the Poland-Scheraga helix-coil model.
Since the numerical integrations needed to compute the pro-
files in the particle-lattice model can be carried out using a
limited number of discretization points, and since the inter-
actions are only nearest neighbor, we have obtained a
method to compute melting profiles which is both very
simple to implement and very efficient to execute, and which
is therefore highly attractive to analyze very long, or even
whole genome sequences.

Furthermore we have shown that also the more compli-
cated setting of a fixed linking number can be treated and
that the results are in agreement with Benham’s SIDD
model. The algorithm is again simple to implement and con-
sists of numerically integrating the fixed torque results over a
small range of complex torque values. Some of the points
raised here, such as the inequivalence of ensembles, are
worthwhile of investigating mathematically more rigorously
in the setting of the homogeneous helicoidal Peyrard-Bishop
model to see if they persist in the thermodynamic limit.

The equivalence between nearest-neighbor lattice models
with continuous degrees of freedom on the one hand, and
Ising models with loop entropy weights or long-range inter-
action on the other hand, raises more fundamental questions
as well. A better understanding of this equivalence will pre-
sumably lead to a better understanding of nonlinear phenom-
ena in one-dimensional systems.
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APPENDIX: ENERGY PARAMETERS

In this appendix we collect the various parameters used in
the potential energy �1�. All lengths are measured in Å, en-
ergies in eV, and angles in rad.

For the depth Di of the Morse potentials, we choose val-
ues close to the value 0.15 of �23�, but taking into account
that a C–G base pair has a 1.5 times stronger bond than an
A–T base pair. For the widths ai we take the values of �29�.

D1 = D4 = 0.12, D2 = D3 = 0.18,

a1 = a4 = 4.2 a2 = a3 = 6.9.

The equilibrium distance r0 is equal to 10.
The length �n,n+1 between successive nucleotides on the

same DNA strand in the twist energy term is given by

�n,n+1 = 
h2 + rn
2 + rn+1

2 − 2rnrn+1 cos �n, �19�

where h=3.4 is the fixed vertical distance between base
pairs. The rest length �n,n+1

�0� is step dependent and given by

�sn,sn+1

�0� =
h2 + 4r0
2sin2�1

2
�sn,sn+1

�0� � ,

where �sn,sn+1

�0� is the average helical twist angle of the given
step, taken from the database of El Hassan and Calladine
�30�

��0� =
2�

360

�

35.9 32.9 34.8 32.4

37.4 31.9 35.1 34.8

37.8 37.4 31.9 32.9

30.6 37.8 37.4 35.9
� .

The parameter E is taken inversely proportional to the twist
angle standard deviations, taken from the same database
�30�,

E = 0.4 
�
0.3030 0.2632 0.2083 0.3571

0.1053 0.2703 0.1887 0.2083

0.2632 0.2500 0.2703 0.2632

0.1493 0.2632 0.1053 0.3030
� .

Similarly, the stacking energy parameter K is taken inversely
proportional to the slide stan dard deviations of �30�:

K = 0.1 
�
3.5714 1.4085 1.2195 2.0833

0.8130 0.8547 0.9804 1.2195

1.4493 1.1628 0.8547 1.4085

0.9174 1.4493 0.8130 3.5714
� .

The constant � in the exponential is put equal to 0.5 as in
�23�.
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