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In breeding programs, robustness of animals and uniformity of end product can be improved by exploiting genetic variation in
residual variance. Residual variance can be defined as environmental variance after accounting for all identifiable effects. The
aims of this study were to estimate genetic variance in residual variance of body weight, and to estimate genetic correlations
between body weight itself and its residual variance and between female and male residual variance for broilers. The data sets
comprised 26 972 female and 24 407 male body weight records. Variance components were estimated with ASREML. Estimates
of the heritability of residual variance were in the range 0.029 (s.e. 5 0.003) to 0.047 (s.e. 5 0.004). The genetic coefficients of
variation were high, between 0.35 and 0.57. Heritabilities were higher in females than in males. Accounting for heterogeneous
residual variance increased the heritabilities for body weight as well. Genetic correlations between body weight and its residual
variance were 20.41 (s.e. 5 0.032) and 20.45 (s.e. 5 0.040), respectively, in females and males. The genetic correlation
between female and male residual variance was 0.11 (s.e. 5 0.089), indicating that female and male residual variance are
different traits. Results indicate good opportunities to simultaneously increase the mean and improve uniformity of body weight
of broilers by selection.

Keywords: genetic heterogeneity of residual variance, body weight, broilers, genetic parameters, uniformity

Implications

Robustness of animals and uniformity of end product can be
improved by exploiting genetic variation in uniformity in
breeding programs. The aim of this study was to estimate
genetic variation in uniformity of body weight of broilers. Data
from a commercial dam line were used and analyzed with
different models. Although heritability of uniformity was low
(0.03 to 0.05), a relatively high genetic variation was esti-
mated as indicated by high genetic coefficients of varia-
tion (0.35 to 0.57). Surprisingly, uniformity in females and
males was not correlated. Nevertheless, results indicate that
uniformity can be improved by means of genetic selection.

Introduction

Uniformity of body weight of broilers is of economic interest,
because slaughterhouses want to produce homogeneous
products. As a consequence, producers get price penalties

when too many broilers delivered to the slaughterhouse are
outside the preferred range. Management and breeding stra-
tegies can be used to improve uniformity (Hohenboken, 1985),
but selective breeding for uniformity in livestock breeding
programs can be useful only if it varies genetically.

There is some empirical evidence that genetic variation in
residual variance exists. SanCristobal-Gaudy et al. (2001),
Sorensen and Waagepetersen (2003), Ros et al. (2004),
Gutierrez et al. (2006) and Ibanez-Escriche et al. (2008a and
2008b) used a structural model for heterogeneous residual
variance and found substantial genetic variation in residual
variance for litter size in sheep, litter size in pigs, body
weight in snails, litter size and weight in mice, body weight
traits in mice, and slaughter weight in pigs, respectively.
Rowe et al. (2006) found substantial genetic heterogeneity
of residual variance between sire families in body weight
of broilers. Probably the clearest example is by Mackay
and Lyman (2005), who derived 300 isofemale lines of
Drosophila melanogaster and found substantial highly sig-
nificant genetic variance in residual variance between lines
under controlled laboratory conditions.- E-mail: herman.mulder@wur.nl
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If there is genetic variance in residual variance, it should
be possible to change it by selection. Phenotypic variance
changed in some selection experiments with Drosophila
melanogaster or Tribolium, with stabilizing selection or diver-
gent selection on phenotypic variance (Rendel et al., 1966;
Kaufman et al., 1977; Cardin and Minvielle, 1986), while it did
not in an experiment with mice (Falconer and Robertson,
1956). More recently, Larzul et al. (2006) did not find con-
clusive results in selection of pigs on high or low residual
variability of muscle pH, but Garreau et al. (2008) found sig-
nificant responses in residual variance in rabbits when
selecting on high or low residual variance of birth weight. The
relatively substantial responses obtained by Garreau et al.
(2008) seem to support the large responses in residual var-
iance predicted by Mulder et al. (2007 and 2008) using
simulation, whereas the study of Larzul et al. (2006) lacked
power because of small numbers of sires and small numbers
of progeny per sire.

One of the main problems with analysis of genetic het-
erogeneity of residual variance is its estimability. Rowe et al.
(2006) used a two-step approach, in which the first stage used
a model to analyze body weight with allowance for differences
in residual variance among sire families, and in the second
stage the variation among these estimates of the residual
variance were analyzed with least squares. In some studies,
log transformed squared residuals have been analyzed, also
using a two-step approach (Larzul et al., 2006; Bolet et al.,
2007), which gives the flexibility to account for environmental
effects on the residual variance at the level of the record that
is not possible in the least squares analysis of Rowe et al.
(2006). Ideally, one would simultaneously fit a model for the
mean of the trait (e.g. body weight) and for the residual
variance using a structural model. Sorensen and Waage-
petersen (2003), Ros et al. (2004) and Gutierrez et al. (2006)
applied these structural models in a Bayesian context, imple-
mented using Markov chain Monte Carlo sampling (MCMC).
The disadvantages of those methods are that there is no
standard software package available and no extension has yet
been made to estimate genetic correlations between residual
variances of different traits or of different sexes. Therefore, in
this study, we have applied the two-step approach of Larzul
et al. (2006) and Bolet et al. (2007), and extended this to
bivariate analyses using standard REML-software.

The objectives of this study were to estimate genetic var-
iance in residual variance for body weight in broilers, and to
estimate the genetic correlations between the additive genetic
effects for the mean and the residual variance and between
female and male residual variance. It therefore provides a
confirmation of the results of Rowe et al. (2006) and those
recently presented by Wolc et al. (2009) using a different
population of broilers and different analytical approaches.

Material and methods

Data
The data were provided by Hendrix Genetics, Boxmeer, the
Netherlands, and comprised 106 818 records of body

weight of birds of a maternal dam line with ongoing
selection on number of eggs, breast meat, feed conversion,
and average daily gain. Birds were weighed at an age
between 37 and 60 days. Data were collected between
1 January 1995 and 1 June 2007. Birds were wing banded
at day of hatching. Birds of both sexes were housed in two
housing systems – floor housing and cage housing – and
were fed ad libitum. From each sire family some birds were
housed in cages at 3 weeks of age to measure feed con-
version. The barns were fully controlled with temperature
and light schemes as used in standard commercial broiler
husbandry. The pedigree file comprised 123 328 animals
and traced back at least four generations, so that younger
animals had longer pedigrees.

First a few general edits were applied. Records of body
weights over 3.5 phenotypic standard deviations from the
mean were excluded (73 records , mean 2 3.5 s.d.; 143
records . mean 1 3.5 s.d.), considered a suitable compro-
mise between removing severe abnormalities and mini-
mizing the effect of data trimming on the estimated genetic
variance in residual variance. Owing to very few records
in some age classes, records on birds weighed outside
the range 43 to 53 days were excluded (595 records), to
minimize the age range. From this data set (106 007
records) two edited data sets were extracted: one for
females, the other for males. For each data set, sire families
were selected which had at least 50 offspring of one sex,
and classes for the interaction between hatch week of the
individual and the hatch week of its dam (hwihwd) were
selected if they had at least five animals. These require-
ments were met by 402 sire families and 26 972 records of
females, and 369 sires and 24 407 records of males. The
requirements of 50 offspring per sire and five animals per
hwihwd halved the size of the data sets. Table 1 shows
some characteristics of these two data sets.

Analysis
The female and male data were analyzed separately to
quantify genetic variation in residual variance using the
two-stage method (Larzul et al., 2006; Bolet et al., 2007).

First stage: estimation of genetic variance in body
weight. In all analyses, body weight data for each sex
separately were first analyzed with an animal model using

Table 1 Summary statistics of the female and male data set

Parameter Female offspring Male offspring

Records (n) 26 972 24 407
Sires (n) 402 369
Dams (n) 3026 2814
Average dams/sire (n) 7.95 7.96
Hatch weeks progeny (n) 251 255
Hatch weeks sires (n) 158 150
Average body weight (g) 2048 2335
s.d. body weight (g) 217 307

Mulder, Hill, Vereijken and Veerkamp
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ASREML (Gilmour et al., 2006), accounting for differences
between sire families in residual variance:

yijkln ¼ mþhj þ agek þhwihwdl þAmi
þDnþ eijkln;

ð1Þ

where yijkln is body weight of individual i, which has sire o
and dam n, m is the overall mean, hj is the housing system
effect j (floor and cage system), agek is the effect for age
class k (9 classes), hwihwdl is the joint effect l of the hatch
week of the individual and the hatch week of its dam (1515
classes for females and 1521 for males), Ami

is the random
genetic animal effect for the mean for individual i (variance
s2

Am
), Dn is the random maternal environmental effect of

dam n (variance s2
D) and eijkln is the residual error with

variance s2
eo

for sire family o. The hwihwd-effects accoun-
ted for time effects when the dam was hatched and when
the bird itself was hatched, such as seasonal effects. A
model including maternal genetic effects was also tested,
but did not converge for the male data set and only slightly
improved likelihood for females. Therefore, maternal
genetic effects were not considered in this study. In contrast
to the sire and dam model used by Rowe et al. (2006) and
Wolc et al. (2009), an animal model was chosen so that the
residual variance was expected to be less confounded with
Mendelian sampling variance and had substantially higher
likelihood than a sire–dam model (females: 117; males:
129); although a formal likelihood ratio test (LR-test) can
not be applied here because these models are not nested.
For model comparison, the model in equation (1) was also
fitted assuming a homogeneous residual variance structure.

Second stage: estimation of genetic variance in residual
variance. The residuals from equation (1) were transformed
by using the natural log of the squared residuals (lnðe2

ijklnÞ)
to reduce the dependency of e2

ijkln on its variance and non-
normality of the distribution of e2

ijkln. Density plots showed
that the log-transformation did not completely remove non-
normality, but simulation showed that the transformation
was adequate to estimate genetic variance.

The log-transformed squared residuals, lnðe2
ijklnÞ, were

analyzed as a trait. The same fixed effects were fitted as for
body weight, but in this case the fixed effects (denoted * to
distinguish them from those in the first stage) account for
differences in lnðe2

ijklnÞ between different fixed effect levels
due to environmental heterogeneity of residual variance.
The model is:

lnðe2
ijklnÞ ¼ mþh�j þ age�k þhwihwd�l þAresi

þ eresijkl
;

ð2Þ

where Aresi
is the additive genetic value of animal i for

lnðe2
ijklnÞ (variance s2

Ares
) and eresijkl

is the residual effect. In
equation (2), a constant residual variance (variance s2

eres
)

was assumed for lnðe2
ijklnÞ. The maternal environmental

effect was excluded from the model because its variance
was not significantly different from zero.

Estimation of a genetic correlation between the mean and
the residual variance. To estimate the genetic correlation
between the additive genetic effects for the mean and the
residual variance, bivariate analyses were carried out
iteratively, updating lnðe2

ijklnÞ for each of 20 iterations. Each
iteration comprised an ASREML-run, which was considered
converged when the REML-likelihood changed less than
0.002 3 iteration number (,20), and the individual var-
iance parameter estimates changed less than 1% between
successive iterations (Gilmour et al., 2006). The bivariate
analysis can be written in matrix notation as:

y

lnðe2Þ

" #
¼

Xy 0

0 Xlnðe2Þ

" #
b

b�

" #
þ

Zy 0

0 Zlnðe2Þ

" #
am

ares

" #

þWydy þ
ey

eres

" #
; ð3Þ

where y is the vector of yijkln; ln(e2) is the vector of
lnðe2

ijklnÞ; Xy and Xlnðe2Þ are the incidence matrices for the
fixed effects for body weight and lnðe2

ijklnÞ, respectively;
b and b* are the solution vectors for the fixed effects;
Zy and Zlnðe2Þ are the incidence matrices for the additive
genetic effects Ami

and Aresi
; am and ares are the solution

vectors with estimates of Ami
and Aresi

; Wy is the inci-
dence matrix for maternal environmental effects that are
modeled only for body weight; dy is the solution vector for
the random maternal environmental effect Dn; and ey and
eres are the vectors with residuals for body weight (5eijkln

in equation (1)) and lnðe2
ijklnÞ (5eresijkl

in equation (2)). The
vector ln(e2) was updated in each iteration using ey of the
previous iteration. The additive genetic effects Am and Ares

are assumed bivariate normally distributed as
�

am
ares

�
�

MVNð0;A� GmvÞ, A is the additive genetic relationship

matrix, Gmv ¼

h
s2

Am
rAm ; AressAmsAres

rAm ; AressAmsAres s2
Ares

i
and

rAm; Ares is the genetic correlation between Am and Ares . The

residuals ey and eres are assumed bivariate normally dis-

tributed as
�

ey
eres

�
�MVNð0; I� RÞ, where I is the identity

matrix and R ¼
h
s2

eo
0

0 s2
eres

i
; including heterogeneous

residual variances per sire family o for body weight and
homogeneous residual variance for eres . The residuals eijkln

and eresijkl
are assumed uncorrelated, because cov(e,e2) 5 0

when e is normally distributed. Parameter estimates oscillated
somewhat (the standard deviation of parameter estimates was
less than 5% of the average parameter estimate) between two
very similar sets of parameters after the first five to ten
iterations; therefore, results are presented as the average of
the last ten iterations. Oscillations can be explained by the
interplay between Ami

and Aresi
, the residual eijkln and the

other effects in the model. When Ami
increases, the residual

eijkln decreases and therefore Aresi
decreases; and when

Ami
and Aresi

are genetically correlated, one will also affect
the other directly. Both mechanisms explain the oscillations.

Genetic variation in uniformity of broilers
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Estimation of a genetic correlation between female and
male residual variance. To calculate the genetic correlation
between the additive genetic effects for the residual var-
iance in females and males, the data sets were combined
using lnðe2

ijklnÞ of iteration 20 of equation (3). The bivariate
analysis in matrix notation can be written as:

lnðe2
FÞ

lnðe2
MÞ

" #
¼

XF 0

0 XM

" #
b�F

b�M

" #
þ

ZF 0

0 ZM

" #
aresF

aresM

" #

þ
eresF

eresM

" #
; ð4Þ

where the effects are the same as in equation (3), but now
with subscripts F and M to indicate whether it is for females
and males, AresF and AresM are assumed to be bivariate
normally distributed as

�
aresF
aresM

�
�MVNð0;A� GFMÞ, where

GFM ¼

h
s2

AresF
rAresF

; AresM
sAresF

sAresM

rAresF
; AresM

sAresF
sAresM

s2
AresM

i
, where

rAresF
; AresM

is the genetic correlation between AresF and
AresM . The residuals eresF and eresM are assumed to be

bivariate normally distributed as
h

eresF
eresM

i
�MVNð0; I� RÞ,

where R ¼ diagð s2
eresF

;s2
eresM
Þ .

Calculation of quantitative genetic parameters
To facilitate interpretation and implications for breeding,
two standardized parameters were calculated: the herit-
ability of residual variance h2

v and the genetic coefficient of
variation GCVE. Both h2

v and GCVE are possible measures
to choose: the former largely determines the accuracy of
estimated breeding value (EBV) for residual variance and
the latter, the size of the possible selection response rela-
tive to the current residual variance. These were calculated
as h2

v ¼ s2
Av

�
ð2s4

P þ 3s2
Av
Þ and GCVE ¼ sAv

�
ðs2

eÞ, where
s2

P ¼ s2
Am
þ s2

D þ s2
e and s2

e is the average residual var-
iance (Mulder et al., 2007). Therefore, the genetic variance
in lnðe2

ijklnÞ needs to be converted to s2
Av

, which is the
genetic variance of the additive genetic effect for residual
variance (Av) in the quantitative genetic model for genetic
heterogeneity of residual variance (Hill and Zhang, 2004;
Mulder et al., 2007). The genetic variance s2

Av
can be cal-

culated as s2
Av
¼ h2

res2ðs2
eÞ

2, where h2
res ¼

s2
Ares

s2
Ares
þs2

eres

is the heritability of lnðe2
ijklnÞ.

The heritability of the mean was calculated as h2
m ¼

s2
Am

�
s2

P and the maternal environment variance ratio
as c2 ¼ s2

D

�
s2

P. Approximate standard errors were calcu-
lated for estimated variance components and variance
ratios using ASREML (Gilmour et al., 2006). For h2

v, the
standard error was crudely approximated as
h2

v � seðh2
resÞ
�

h2
res. For GCVE and s2

Av
, no simple approx-

imations were available to calculate the standard error.

Comparison of models with and without heterogeneity of
sire-family residual variance
The model variants in equation (1), with and without
heterogeneity of residual variance, were compared using a

LR-test, assuming x2 with ns 2 1 degrees of freedom for the
increase from fitting estimated variance components (one
for each of ns sires) in the full model compared to the
reduced model of homogeneity (Wilks, 1938). REML like-
lihoods were obtained from ASREML. Models were also
compared using Akaike’s information content (AIC) (Akaike,
1973) and the Bayesian or Schwarz information criterion
(BIC) (Schwarz, 1978) to penalize those with a large num-
ber of parameters. BIC produces a more drastic penalty than
AIC, which increases with sample size.

Relationships between sire EBV and residual
variance of offspring
Plots were used to visualize the relationship between sire
EBV for residual variance (equation (3)) and the observed
log-transformed residual variance of its offspring (i.e. the
phenotypic variance corrected for fixed effects, genetic
effects for the mean and maternal environmental effects),
which would be of relevance when improving uniformity by
selection. EBVs (Âres) of iteration 20 of the bivariate ana-
lyses (equation (3)) were used. To quantify the strength of
the relationship, correlations were calculated between
these EBVs and the observed log-transformed residual
variance of its offspring.

Results

Comparison of models with homogeneous or
heterogeneous residual variance among sire families
Table 2 shows estimated variance components, estimates of
variance ratios and likelihood-based parameters for females
and males for models (equation (1)) with homogeneous and
heterogeneous residual variances among sire families. For
both sexes, fitting heterogeneous residual variance for each
sire family increased the estimates of genetic variance in
mean body weight (s2

Am
) and decreased those for maternal

environmental variance (s2
D). Estimated variance compo-

nents, especially the average residual variance s2
e, were

larger for males than for females, resulting in a larger h2
m

(s2
Am

�
s2

P) for females. A model with heterogeneous resi-
dual variances among sire families fitted significantly better
than one with a homogeneous residual variance (LR-test:
P , 0.001). Taking into account the number of parameters
estimated, it is not obvious which model is better because
the AIC is lower (i.e. better fit), but the BIC is higher (i.e.
poorer fit) for the model with heterogeneous residual var-
iance among sire families.

Genetic variation in residual variance
Table 3 shows estimates of genetic variance in residual
variance using a univariate (equation (2)) and a bivariate
analysis (equation (3)) to analyze data for females and
males. Estimates of s2

Ares
deviated significantly from zero

(P , 0.001). With the bivariate analysis estimates of s2
Ares

,
h2

v and GCVE increased substantially in comparison to the
univariate analysis. Table 4 shows that s2

Am
and h2

m also

Mulder, Hill, Vereijken and Veerkamp
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increased, while the maternal environment variance and c2

decreased with the bivariate analysis. It can be concluded
that substantial genetic variance in residual variance exists
for body weight of broilers. Accounting for genetic het-
erogeneity of residual variance also affects conventional
genetic parameters, such as the usual heritability of the
mean h2

m.

Genetic correlation between mean and residual variance
and between female and male residual variance
The estimates from the bivariate analysis of body weight
and log-transformed squared residuals (equation (3)) of the
genetic correlations between Am and Ares (rAm; Ares ) were
20.41 (s.e. 5 0.032) and 20.45 (s.e. 5 0.040) in females
and males, respectively. The estimate of rAresF

; AresM
, the

Table 2 Variance component estimates, estimates of variance ratios and likelihood-based parameters for body weight (g) of females and males
using models (equation (1)) with homogeneous or heterogeneous residual variance structure (approximate s.e. within brackets)

Female offspring Male offspring

Parametera Homogeneous Heterogeneous Homogeneous Heterogeneous

s2
Am

9379 (856) 10 118 (868) 10 791 (1282) 11 734 (1333)

s2
D

1092 (180) 870 (168) 1761 (314) 1229 (291)

s2
e or s2

e
18 512 (435) 18 187 (447) 34 459 (687) 34 321 (735)

s2
P

28 984 (438) 29 175 (456) 47 012 (655) 47 284 (701)

h2
m

0.324 (0.026) 0.347 (0.026) 0.230 (0.025) 0.248 (0.026)

c2 0.038 (0.006) 0.030 (0.006) 0.037 (0.007) 0.026 (0.006)
L 23456 22675 25257 24549
AIC 6918 6158 10 519 9839
BIC 6925 7140 10 526 10 725

as2
Am

is the estimated genetic variance in the additive genetic effect for the mean Am; s2
D is the estimated variance of the maternal environmental effect;

s2
e or s2

e is the (average) estimated residual variance with homogeneous (heterogeneous) residual variance per sire family; s2
P is the estimated phenotypic

variance ð¼ s2
Am
þ s2

D þ s2
eÞ; h2

m ¼ s2
Am
=s2

P ; c2 ¼ s2
D=s

2
P , L is log-likelihood; AIC is Akaike’s information criterion and BIC is the Bayesian information criterion.

Table 3 Comparison of estimated genetic variance in residual variance of body weight (g) (approximate s.e. within brackets for s2
Ares

and h2
v ) using

univariate or bivariate analysisa for male and female broilers

Female offspring Male offspring

Parameterb Univariate Bivariate Univariate Bivariate

s2
Ares

0.506 (0.050) 0.832 (0.071) 0.308 (0.050) 0.607 (0.066)

s2
Av

6.43E 1 07 9.81E 1 07 1.43E 1 08 2.55E 1 08

h2
v

0.034 (0.003) 0.047 (0.004) 0.029 (0.003) 0.046 (0.005)

GCVE 0.441 0.573 0.349 0.493

aIn the univariate analysis only log-transformed squared residuals (equation (2)) are analyzed; in the bivariate analysis body weight and its log-transformed
squared residuals (equation (3)) are analyzed with iterative updating of the residuals.
bs2

Ares
is the estimated genetic variance of the additive genetic effect Ares for ln(e2) (equation (2)); s2

Av
is the estimated genetic variance for Av in the

quantitative genetic model for genetic heterogeneity of residual variance (Hill and Zhang, 2004; Mulder et al., 2007); h2
v ¼ s2

Av
=2s2

P þ 3s2
Av

and
GCVE ¼ sAv=s2

e.

Table 4 Comparison of estimates of variance components and variance ratios obtained by univariate (equation (1)) and bivariate analysis
(equation (3)) of body weight (g) and the log-transformed squared residuals of female and male broilers (approximate s.e. within brackets)

Female offspring Male offspring

Parametera Univariate Bivariate Univariate Bivariate

s2
Am

10 118 (868) 11 964 (886) 11 734 (1333) 15 630 (1519)

s2
D

870 (168) 697 (162) 1229 (291) 835 (296)

s2
e

18 187 (447) 17 271 (452) 34 321 (735) 32 360 (804)

s2
P

29 175 (456) 29 932 (470) 47 284 (701) 48 825 (777)

h2
m

0.347 (0.026) 0.400 (0.024) 0.248 (0.026) 0.320 (0.027)

c2 0.030 (0.006) 0.023 (0.006) 0.026 (0.006) 0.017 (0.006)

aSee Table 2.
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genetic correlation between female and male residual var-
iance (equation (4)), was very small: 0.11 (s.e. 5 0.089).

Relationships between sire EBV for residual variance and
the observed residual variance of offspring
The scatter plots of log-transformed residual variance of
female and male offspring as a function of Âres;f and
Âres;m in Figure 1 show that there was substantial varia-
bility in residual variance between sires. There was a
positive trend between the EBVs for residual variance and
the observed log-transformed residual variance, but there
was also substantial noise, especially for male offspring.
The correlation between Âres;f and log-transformed resi-
dual variance of female offspring was 0.65, and the
equivalent for male offspring was 0.54.

Discussion

In this study, it was shown that there is substantial genetic
variation in residual variation, the so-called genetic het-
erogeneity of residual variance, for body weight in broilers.
A REML-analysis on log-transformed squared residuals was
used (e.g. Larzul et al., 2006; Bolet et al., 2007) and
extended to multivariate approaches to estimate genetic
correlations between the additive genetic effects for mean
and residual variance, and between additive genetic effects
for residual variance in males and females. The iterative
bivariate analysis with body weight itself and log-trans-
formed squared residuals of body weight was closest to a
structural model, as suggested by SanCristobal-Gaudy et al.
(1998) and Sorensen and Waagepetersen (2003). It had a
side effect in that the estimate of h2

m increased by 15% in
females and 29% in males, thereby increasing the accuracy
of Âm, unless the genetic variance in mean (s2

Am
) is biased

upwards and the residual variance (s2
e) is biased down-

ward. A similar trend was also observed by Sorensen and
Waagepetersen (2003), who observed an increase of 15%
in h2

m when extending a model with homogeneous residual
variance to a model with genetically structured residual

variances. Ibanez-Escriche et al. (2008a) reported increases
in additive genetic variance of the mean between 28%
and 200%.

The method used, incorporates both genetic and envir-
onmental effects on the residual variance, but hetero-
geneous residual variance and effects on the mean are not
estimated simultaneously at the level of individual records.
Although in principle less appealing, the current method is
flexible and can be applied in standard REML-software. This
enables the study of genetic relationships between residual
variances of different traits, environments, and so on, and
can be applied to breeding value estimation using standard
BLUP-software (e.g. Lidauer and Stranden, 1999), in con-
trast to a structural model in a Bayesian context imple-
mented using MCMC sampling. The same two-step method
was used in selection experiments to change the residual
variance (Larzul et al., 2006; Bolet et al., 2007; Garreau
et al., 2008). The method presented here was tested using
simulations with one generation of parents and offspring,
and results showed that it is able to estimate genetic var-
iance in residual variance. Wolc et al. (2009) used a similar
REML approach as in this study and also a Bayesian
approach, and the two methods yielded similar results. In
this study, the BIC favored the model with homogeneous
residual variance, although both the LR-test and AIC
favored the model with heterogeneous residual variance
per sire family. This probably indicates that the residual
variances were estimated with low accuracy in each sire
family rather than the absence of heterogeneity of residual
variance. Future research may focus on evaluating different
modeling approaches.

In general, estimates of h2
v obtained here are higher than

those of Rowe et al. (2006), who used a different method
and data set. When the least-squares method of Rowe et al.
(2006) was applied to the current data set, however, esti-
mates of h2

v were higher: 0.088 in females and 0.087 in
males. The large difference found using the same method is
probably due to more severe confounding of genetic and
environmental heterogeneity of residual variance, because
the data in this study spanned a longer time period than for
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Figure 1 Scatter plots of residual variance of female and male offspring as a function of the sire’s estimated breeding value (EBV) based on log-
transformed squared residuals (ln(e2)) (ÂresF and ÂresM ).
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Rowe et al. (2006) and because the ages at which birds
were weighed ranged more widely, between 43 and 53
days of age, possibly introducing an extra source of het-
erogeneity. Wolc et al. (2009) used data that partly over-
lapped those in the study of Rowe et al. (2006) and
estimates of h2

v were very similar to those of our univariate
analysis. Estimates of h2

v from studies in other species (e.g.
SanCristobal-Gaudy et al., 2001; Sorensen and Waagepe-
tersen, 2003; Ros et al., 2004) are in the same range as
those obtained here (see review in Mulder et al. (2007)).
The estimate of the genetic correlation between the addi-
tive effects for the mean and the residual variance (rAm ;Ares )
was more negative in this study than obtained by Rowe
et al. (2006). Variation in estimates of this genetic corre-
lation between studies is large, although generally negative
for body weight traits. Estimates obtained were 20.07 for
slaughter weight in pigs (Ibanez-Escriche et al., 2008b),
20.31 and 20.38 for body weight at two ages in mice
(Ibanez-Escriche et al., 2008a) but, exceptionally, a highly
positive genetic correlation of 0.81 for adult body weight in
snails (Ros et al., 2004).

In this study, body weights of females and males were
analyzed separately because they differ greatly in the var-
iance of observations. A large difference in estimated var-
iance components and estimated variance ratios (Tables 3
and 4) was found between them; rather more extreme than
in the studies of Rowe et al. (2006) and Wolc et al. (2009).
The large difference in h2

m indicates that it might be
advantageous in breeding value estimation to use different
variance ratios for female and male offspring. The genetic
correlation between female and male residual variance was
close to zero, rather surprisingly indicating that these traits
have different genetic bases. Whilst Rowe et al. (2006) also
found a low correlation for ln(s2) between sexes, Wolc et al.
(2009) obtained an estimate of the genetic correlation of
0.36 using an improved method. It would be useful to
understand the basis of these low correlations; but,
assuming they are real, it is recommended that the body
weight and (log-transformed) squared residuals of females
and males be analyzed as four different traits.

Genetic heterogeneity of residual variance may have
biological meaning in terms of environmental sensitivity,
disease resistance, biological limits and mean–variance
relationships. Genotypes that are very sensitive to changes
in micro-environment (e.g. feed changes, weather changes
and so on) would have a larger residual variance than those
insensitive to such changes. The moderate negative genetic
correlation between the additive genetic effects for the
mean and the residual variance may indicate that animals
with a higher mean are also less sensitive; but another
explanation is that animals with a lower mean are more
sensitive to diseases and have higher residual variance
because of higher disease incidence. Therefore, mixture
models for diseased and non-diseased animals (e.g. Odegard
et al., 2005) and models for genetic heterogeneity of residual
variance might capture part of the same genetic information.
If there is a biological limit caused by an environmental

constraint (e.g. restricted feeding) it may also create a
negative genetic correlation between the mean and the
residual variance, because the variability would be reduced
on one side of the distribution. A positive mean–variance
relationship (scale effect), however, would create a positive
genetic correlation between the mean and the residual
variance, in contrast to the negative genetic correlation
found here.

This study shows that there is substantial genetic varia-
tion in residual variance (high genetic coefficient of varia-
tion, GCVE). Although the underlying model is slightly
different, we use the methodology of Mulder et al. (2008)
to show what could be achieved in a breeding program
based on sib-testing with 50 half-sibs. Based on the esti-
mates obtained, h2

v between 2.9% and 4.7% and GCVE

between 0.35 and 0.57, it would be possible to decrease
the residual variance by 20% to 30% when selecting solely
on it for one generation. The phenotypic standard deviation
would then be substantially reduced, for example, from
173 g to 145–155 g in females. Furthermore, the genetic
correlation between the mean and the residual variance is
negative, which is favorable when the breeding goal is to
increase the mean and to decrease the residual variance. In
addition, the negative genetic correlation would counter-
balance the increase in residual variance, because of
intense selection mainly on ones’ own performance (Hill
and Zhang, 2004; Mulder et al., 2007). Results seem to be
promising for selection for increased uniformity, but it
should be noted that the accuracy of EBV for residual var-
iance is not high (Figure 1). Another complication is that the
additive genetic effects for female and male residual var-
iances are correlated to a very less extent and, therefore,
phenotypic information on one sex adds little to the accu-
racy of the EBV of residual variance in the other sex.
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