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SUMMARY

oskar mRNA localization to the posterior of the Dro-
sophila oocyte defines where the abdomen and
germ cells form in the embryo. Although this localiza-
tion requires microtubules and the plus end-directed
motor, kinesin, its mechanism is controversial and
has been proposed to involve active transport to
the posterior, diffusion and trapping, or exclusion
from the anterior and lateral cortex. By following os-
kar mRNA particles in living oocytes, we show that
the mRNA is actively transported along microtubules
in all directions, with a slight bias toward the poste-
rior. This bias is sufficient to localize the mRNA and
is reversed in mago, barentsz, and Tropomyosin II
mutants, which mislocalize the mRNA anteriorly.
Since almost all transport is mediated by kinesin, os-
kar mRNA localizes by a biased random walk along
a weakly polarized cytoskeleton. We also show that
each component of the oskar mRNA complex plays
a distinct role in particle formation and transport.

INTRODUCTION

mRNA localization is a common mechanism for targeting pro-

teins to specific regions of a cell and plays an important role in

axis formation in many organisms, where localized mRNAs func-

tion as cytoplasmic determinants. This has been extensively

studied in Drosophila, where both main body axes are defined

by the localization of bicoid, oskar (osk), and gurken mRNAs to

distinct regions of the oocyte (Bashirullah et al., 1998; St

Johnston, 2005). osk mRNA moves to the posterior of the oocyte

during stages 8–10 of oogenesis and is translated as soon as it is

localized to the posterior pole, where Oskar protein nucleates

the polar granules, which contain the abdominal and germline

determinants (Ephrussi et al., 1991; Kim-Ha et al., 1991, 1995;

Markussen et al., 1995).

The Drosophila egg chamber consists of a syncytium of 15

nurse cells that are connected by ring canals to the oocyte.

osk mRNAs are transcribed in the nurse cells and must first be

transported into the oocyte. This localization depends on the ac-

tivity of BicD and Egalitarian, which are thought to couple the

mRNA to dynein, which moves the mRNAs toward the minus

ends of microtubules in the oocyte (Bullock and Ish-Horowicz,

2001; Clark et al., 2007). The localization of osk mRNA within

the oocyte is also microtubule dependent and is disrupted by

treatments with microtubule depolymerizing drugs (Clark et al.,

1994).

Microtubule stainings or live imaging of microtubule-associ-

ated proteins reveal that the oocyte contains an anterior-poste-

rior gradient of microtubules during the stages when osk mRNA

is localized, in which most microtubules are nucleated from the

anterior and lateral cortex. In addition, a fusion between the

plus end-directed motor, kinesin, and b-galactosidase accumu-

lates at the oocyte posterior, suggesting that plus ends are

enriched at this pole (Clark et al., 1994). However, it has been ar-

gued that the Kinbgal fusion protein localizes to the posterior by

hitchhiking since microtubules cannot be detected at the oocyte

posterior (Cha et al., 2002). Thus, the organization of the micro-

tubules in the oocyte is still controversial, and it is unclear how

the microtubule network directs osk mRNA to the posterior.

Several mutants disrupt osk mRNA localization within the oo-

cyte without affecting the cytoskeleton and are good candidates

for mutants in essential trans-acting factors. These include three

factors (HRP48, the exon junction complex [EJC], and Staufen)

that colocalize with osk mRNA both before and after its localiza-

tion and whose posterior localization is osk mRNA dependent,

strongly suggesting that they are essential components of the

osk mRNA localization complex. Null mutants in the hnRNPA/B

protein, HRP48, are cell lethal, but three point mutations lead

to a uniform distribution of osk mRNA in the oocyte (Huynh

et al., 2004). Mutants in the EJC components, Mago nashi,

Y14, eIF4AIII, and Barentsz, lead to the mislocalization of the
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mRNA to the anterior of the oocyte (Hachet and Ephrussi, 2001;

Mohr et al., 2001; Newmark and Boswell, 1994; Palacios et al.,

2004). The EJC is recruited to mRNAs during splicing and marks

where exons have been removed. Consistent with this, the first

intron of osk is necessary for its posterior localization (Hachet

and Ephrussi, 2004). Mutants in the dsRNA-binding protein,

Staufen (Stau), cause a similar accumulation of osk mRNA at

the anterior of the oocyte to EJC mutants, but a small amount

of RNA is always localized to the posterior at stage 9 (Ephrussi

et al., 1991; Kim-Ha et al., 1991; St Johnston et al., 1991; van

Eeden et al., 2001). This localization is only transient, however,

because Stau is also required for the translational activation of

osk mRNA and its anchoring at the posterior pole (Micklem

et al., 2000). While the EJC and HRP48 disappear from the oo-

cyte posterior at stage 10 of oogenesis, Stau associates with

osk mRNA throughout oogenesis (St Johnston et al., 1991; Jenny

et al., 2006).

As well as these RNA-binding proteins, Tropomyosin II (TmII)

and the Kinesin heavy chain (Khc) are also required for osk

mRNA localization. A P-element allele of TmII leads to the mis-

localization of osk mRNA to the anterior (Erdelyi et al., 1995).

Tropomyosin stabilizes F-actin and modulates its interaction

with other actin-binding proteins, but there is no other evidence

for a direct role of actin in osk mRNA localization, and Tropomy-

osin does not colocalize with osk mRNA. Null alleles of the Khc

cause a different phenotype, in which osk RNA localizes around

the anterior and lateral cortex (Brendza et al., 2000; Cha et al.,

2002). Kinesin is enriched at the oocyte posterior at stage 9, al-

though this localization is not osk mRNA dependent, unlike the

RNA-binding proteins mentioned above (Palacios and St

Johnston, 2002).

The role of the Khc suggests a simple model for osk mRNA lo-

calization, in which this plus end-directed motor is linked to the

mRNA by HRP48, the EJC, and Stau and transports the mRNA

along microtubules to the posterior pole. It is not known, how-

ever, if kinesin associates with the osk mRNA localization com-

plex directly, and the motor is also required for the cytoplasmic

flows in the oocyte cytoplasm and for the posterior localization

of dynein (Brendza et al., 2002; Januschke et al., 2002; Palacios

and St Johnston, 2002). Thus, the requirement for kinesin in osk

mRNA localization may be indirect.

Glotzer et al. have proposed an alternative model for osk

mRNA localization, in which the RNA diffuses throughout the oo-

cyte cytoplasm and is selectively captured at the posterior by

a prelocalized anchor (Glotzer et al., 1997). This model is based

on the observation that injected osk mRNA accumulates at the

posterior of late-stage oocytes without showing any directed

movement toward the posterior pole. Instead, the RNA is

washed around the oocyte by the cytoplasmic flows at these

stages. Both the strong cytoplasmic flows in late oocytes and

the weaker ‘‘seething’’ movements at stage 9 depend on kinesin

(Serbus et al., 2005). The motor might therefore play an indirect

role in osk mRNA localization by generating flows that facilitate

its diffusion, thereby ensuring its efficient delivery to a posterior

anchor.

Cha et al. have proposed a third model in which kinesin trans-

ports osk mRNA away from all regions of the cortex except the

posterior (Cha et al., 2002). This cortical exclusion model is

based on the observation that the mRNA accumulates in the

center of the oocyte at stage 8 but is found all round the cortex

in Khc germline clones. According to the model, osk mRNA local-

ization is driven by the lack of microtubules emanating from the

posterior cortex, thereby preventing kinesin from removing the

RNA from this region. Both the central accumulation of osk

mRNA at stage 8 and its posterior localization at stage 9 are de-

layed in Khc hypomorphs that reduce the speed of the motor

without affecting its other properties (Serbus et al., 2005). This

has led to the proposal that kinesin is required for both steps in

osk mRNA localization: it first transports the mRNA to the center

of the oocyte and then facilitates its targeting to the posterior,

perhaps by directed transport along a specific subset of micro-

tubules or by catalyzing random movements that are somehow

biased toward the posterior.

One way to distinguish between the models for osk mRNA lo-

calization is to observe its movement in living oocytes. The most

common approach for visualizing mRNA localization has been

injection of fluorescently labeled transcripts (Cha et al., 2001;

MacDougall et al., 2003; Weil et al., 2006; Wilkie and Davis,

2001). This technique cannot be used for osk mRNA, however,

because splicing of the first intron is required for its localization.

An alternative approach is to fuse GFP to an RNA-binding protein

that associates with the mRNA of interest, and ZBP-1-GFP and

Exu-GFP have been used in this way to track b-actin and bcd

mRNA movements (Oleynikov and Singer, 2003; Theurkauf and

Hazelrigg, 1998). One caveat with this method is that most

RNA-binding proteins bind to more than one mRNA, making it

important to demonstrate that the tagged RNA-binding protein

only associates with the appropriate transcript.

An elegant way to solve this problem is to target GFP to the

mRNA by inserting binding sites for the MS2 phage coat protein

into the mRNA and coexpressing an MS2-GFP fusion protein

that also includes a nuclear localization signal (Bertrand et al.,

1998). Since MS2 does not bind any endogenous RNAs in Dro-

sophila, the fusion protein is targeted to the nucleus unless it

binds to the MS2-binding sites in the transcript of interest and

is exported with the RNA into the cytoplasm. This method has

been used successfully to study Ash1 mRNA localization in yeast

(Beach et al., 1999; Bertrand et al., 1998), CaMKIIa3 and b-actin

mRNA localization in cultured mammalian cells (Fusco et al.,

2003; Rook et al., 2000), and nanos and bicoid mRNA in Dro-

sophila oocytes (Forrest and Gavis, 2003; Weil et al., 2006).

Here we report the use of two labeling strategies to image the

dynamics of osk mRNP particles in living oocytes. Our analysis of

their movements rules out all of the proposed mechanisms for

osk mRNA localization and leads us to propose a revised model

for how the mRNA is transported to the posterior of the oocyte.

RESULTS

Visualization of osk mRNPs in Living Oocytes
We have previously tried to visualize osk mRNA by following the

movement of a GFP-tagged version of Stau that colocalizes with

the mRNA throughout oogenesis and fully rescues the osk mRNA

localization defects of stau null mutants (Figures 1A–1C) (Pala-

cios and St Johnston, 2002). Although we observed large GFP-

Stau granules in the oocyte cytoplasm by confocal microscopy,
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the velocity of these granules never exceeded the speed of cyto-

plasmic flows (0.1 mm/s), and the granules always moved in the

same direction as other organelles in the surrounding cytoplasm.

Furthermore, these large granules only form when the protein is

overexpressed and cannot be detected by antibody staining of

endogenous Stau. This suggested that the large granules are

aggregates of overexpressed GFP-Stau, and that the particles

containing osk mRNA are too faint or too fast to visualize using

standard imaging systems.

To overcome this limitation, we imaged oocytes expressing

GFP-Stau at high magnification with much faster frame rates

(2–4 frames/s) using a sensitive wide-field deconvolution micro-

scope (Figure 1E). This revealed the existence of a population of

very small and faint Stau particles throughout the oocyte cyto-

plasm, which often underwent fast, directed movements at

speeds of up to 1 mm/s, consistent with active transport (Figures

1I and 1J; Movie S1 available online). Furthermore, GFP-Stau

particles often followed each other along the same track,

suggesting that they were moving along the same microtubule

or actin filament (Movie S2). Surprisingly, these movements oc-

curred in all directions. In contrast to these fast movements,

many particles moved only slowly along irregular paths (>0.1

mm/s), suggesting that they were being carried by the slow cyto-

plasmic flows and undergoing Brownian motion (Figure 1H and

data not shown).

The lack of a clear bias in the direction of GFP-Stau particle

movements was unexpected given the models for osk mRNA lo-

calization and raised the question of whether all of the particles

contain osk mRNA. Stau associates with other transcripts at

other stages of development, and it is therefore possible that

some of the particles in the stage 9 oocyte represent Stau com-

plexed with another mRNA, or free Stau aggregates (St John-

ston, 2005). We therefore used the MS2 system to label osk

mRNA directly by generating an osk genomic rescuing construct

in which 10 MS2-binding sites were inserted immediately after

the osk stop codon. When this transgene is crossed to flies ex-

pressing MS2-nls-GFP, the MS2-GFP-labeled oskMS2 mRNA

accumulates at the posterior of the oocyte in an identical pattern

to endogenous osk mRNA (Figure 1D). oskMS2 rescues the early

oogenesis defect of an osk mRNA null mutant and still localizes

normally to the posterior of the oocyte at stage 9 in the absence

of endogenous osk, confirming that the introduction of MS2-

binding sites does not disrupt its localization signal

(Figure S1A). Unlike GFP-Stau, oskMS2 RNA does not form large

cytoplasmic aggregates, confirming that the latter are probably

an overexpression artifact.

When visualized at high magnification in living oocytes,

oskMS2 mRNA labeled small particles throughout the oocyte

cytoplasm, which showed fast movements in all directions sim-

ilar to those of the small GFP-Stau particles (Movies S3 and S4).

Indeed, we could detect even more moving particles of oskMS2

mRNA, presumably because this labeling system introduces up

to 20 GFPs per osk mRNA and is therefore more sensitive than

the single GFP attached to Stau. Nevertheless, it appears that

most if not all small Stau particles contain osk mRNA since

RFP-Stau particles were also labeled by oskMS2/MS2-GFP,

and alternate imaging of the red and green channels revealed

that the two labels move in concert on the same particle

(Figures 1G and 1G0; Movie S5). Thus, GFP-Stau is a reliable

marker for osk mRNA particles, suggesting that the protein

does not associate with other RNAs to form particles at stage

9 of oogenesis.

Figure 1. osk mRNA Particles Undergo Fast, Directed Movements

in All Directions in the Oocyte Cytoplasm

(A and B) osk mRNA localization to the posterior of a wild-type stage 9 oocyte.

(B) An overlay of a pseudo differential interference contrast image and the

in situ hybridization signal (red channel) from (A).

(C) GFP-Stau localization in a live stage 9 oocyte.

(D) The localization of osk mRNA labeled with MS2-GFP in a live stage 9 egg

chamber. MS2-GFP contains a nuclear localization signal and therefore local-

izes to the nurse cell nuclei when not associated with osk mRNA.

(E and F) Overlays of 25 frames from timelapse movies of wild-type stage 9 oo-

cytes expressing GFP-Stau (E) or oskMS2/MS2-GFP (F) to show the move-

ments of osk mRNA particles. Examples of individual tracks are highlighted

by colored rectangles and shown in (I)–(L).

(G) oskMS2/MS2-GFP and RFP-Stau colocalize at the posterior pole of the oo-

cyte and in individual moving particles. (G0) shows an overlay of 25 frames from

a movie in which the red and green channels were imaged alternately. See also

Movie S5.

(H) An example of a particle moving passively with the cytoplasmic flows and

undergoing Brownian motion.

(I–L) Closeups of the fast, directed particle tracks, highlighted by the colored

rectangles in (G) and (H). GFP-Stau (I and J); oskMS2/MS2-GFP (K and L).

Scale bars are 2 mm.
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Movement of osk mRNP Particles Requires
Microtubules
Injection of the microtubule-destabilizing drug, colcemid, into

the oocyte abolished almost all fast, directed movements of

the particles, which instead underwent random Brownian oscil-

lations (Movie S6). Feeding flies with colcemid caused a similar

cessation of the movement of the GFP-Stau particles and abol-

ished their accumulation at the posterior pole (Figure S2A). The

fast movements of the GFP-Stau particles resumed after the

colcemid was inactivated with a short UV-pulse, and the fusion

protein showed a visible accumulation at the posterior pole

within 50 min (Figures S2B and S2C and Movie S7). Neither feed-

ing, immersion of the ovaries, nor direct injection of Latrunculin A

into the oocyte stopped the motility of GFP-Stau and oskMS2

particles (Movie S8). Thus, most, if not all, of the fast particle

movements are microtubule rather than actin dependent.

The results above indicate that osk mRNA particles are trans-

ported along microtubules, strongly suggesting that these move-

ments represent the microtubule-dependent step in its posterior

localization. However, the behavior of the particles does not cor-

respond to the predictions of the main models for the localization

of the mRNA. The movement of the particles in all directions rules

out the model in which kinesin transports osk mRNA along

a highly polarized microtubule cytoskeleton to the posterior.

Two aspects of our results also argue against the cortical exclu-

sion model. First, osk mRNP particles frequently undergo fast,

directed movements to the posterior pole (for example,

Figure 1L), indicating that they are not simply transported away

from the anterior and lateral cortex. Second, the osk mRNP par-

ticles show a similar frequency of fast microtubule-dependent

movements close to the posterior pole as they do in other areas

of the oocyte, indicating that a significant number of microtu-

bules extend into this region. Finally, the active transport of the

particles suggests that the mRNA does not localize by passive

diffusion and anchoring. However, random fast movements

could facilitate the diffusion of the mRNA throughout the oocyte

so that it can be efficiently captured by a posterior anchor.

osk mRNA Particle Movement Shows a Weak
Posterior Bias
To determine whether there are any anterior-posterior biases in

the behavior of osk mRNP particles that might contribute to their

delivery to the posterior, we analyzed the particle movements in

more detail. We first determined the proportion of particles un-

dergoing active transport at any moment by tracking all moving

and ‘‘nonmoving’’ particles in several oocytes. Most particles

move along irregular paths at the same speed as the yolk gran-

ules in the surrounding cytoplasm (%0.1 mm/s), indicating that

they are being carried by the Khc-dependent slow seething of

the cytoplasm. However, in any given 5 s period, 13.4% of the

oskMS2 particles (91/689 particles, 7 movies) and 13.1% of

the GFP-Stau particles (178/1111, 6 movies) move in a directed

and processive manner at speeds that are indicative of active

transport (See Figures 1E–1L).

Because we needed to image as quickly as possible to detect

the moving particles, we could only collect data in a single focal

plane and could therefore follow only a segment of the trajectory

of most fast-moving particles. Nevertheless, both GFP-Stau and

oskMS2 particles showed similar average track lengths (2.4 and

2.8 mm, respectively), and the longest in focus movements were

over 10 mm, indicating that the transport is processive. There

were no significant differences between the track lengths of par-

ticles moving toward the anterior and those moving toward the

posterior (Table S1).

Both GFP-Stau and oskMS2/MS2-GFP particles also moved

with very similar average velocities toward the anterior or poste-

rior of the oocyte (Table S1). In both cases, however, particles in

the anterior half of the oocyte moved with a higher average

speed than those in the posterior half (Table S1). Plotting the

velocity distributions of particles in both halves of the oocyte re-

vealed that particles in the anterior have a bimodal distribution of

velocities, indicating that a small population of particles move

considerably faster than the rest (Figure 2B). Since osk mRNA

is transported from the nurse cells into the oocyte by dynein,

this fast population may represent particles that have just en-

tered the oocyte and are still coupled to this pathway (Bullock

and Ish-Horowicz, 2001; Clark et al., 2007).

We used the angle of the vector between the start and finish of

each particle movement as a measure of their net direction and

compared the number of particles traveling toward the posterior

or the anterior (Figure 2C). The number of tracks in each 180�

sector showed a significant excess of movements toward the

posterior, with 56.5% (277/491, p < 0.005) of the GFP-Stau

tracks and 57% (155/272, p < 0.025) of oskMS2/MS2-GFP

tracks having a posterior orientation (Figure 2C, ii and iv; Table

S1). We used the direction and velocity of each particle from

the tracking data to calculate the net displacement for the aver-

age particle. This gives a net posterior displacement of 0.03 ±

0.01 mm/s for GFP-Stau particles and 0.04 ± 0.02 mm/s for

oskMS2/MS2-GFP particles (Figure 2D; Table S1). The bias

therefore gives the transport of osk RNPs an overall posterior

vector.

mago, btz, and TmII Mutants Reverse the Directional
Bias in osk mRNA Movement
The results above raise the question of whether the weak poste-

rior bias in osk mRNP particle movement is necessary for the

posterior localization of the mRNA, or whether this active trans-

port merely facilitates the diffusion of the mRNA so that it can be

efficiently trapped at the posterior. To distinguish between these

models, we examined the effects of mutants that disrupt osk

mRNA localization. If the bias is important, one would expect it

to be altered in some of these mutants, whereas the facilitated

diffusion and anchoring model predicts that mutants should dis-

rupt either the motility or the anchoring, but not the bias itself.

No GFP-Stau particles are visible in the oocyte cytoplasm of

germline clones of hrp4810B2-9 or hrp487E7-18 (Figures 3A–3B).

Thus, HRP48 appears to be essential for the formation of osk

mRNA transport particles, which may account for the uniform

distribution of the mRNA in these mutants.

In contrast, particle formation appears normal in btz, mago,

TmIIgs mutants. In these mutants, osk mRNA forms a diffuse gra-

dient extending away from the anterior cortex of the oocyte,

when visualized either by in situ hybridization or by GFP-Stau

or oskMS2 (Figures 3C–3E). There is about a 5-fold reduction

in the proportion of particles that undergo fast, directed
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movements in these mutants, although there is still a significant

amount of active transport in each case (Figure 3G, Table 1, and

Movies S9, S10, and S11). Thus, the EJC and Tropomyosin af-

fect the behavior of the osk RNP particles but are not required

for their assembly.

To determine whether any of these mutants also affect the

directional bias, we tracked a large number of particles and mea-

sured the vector of their movement. This revealed that mago, btz,

and TmIIgs mutants cause a highly significant reversal in the

directional bias, with 57%–59% of particles moving anteriorly,

compared to only 43% in wild-type (Figures 3H and 3I). This re-

sults in a net anterior displacement of the particles that may ex-

plain the steady-state localization of the mRNA at the anterior of

mutant oocytes.

Stau Does Not Affect the Speed and Directionality
of Particle Movements
stau mutants also contain normal numbers of oskMS2/MS2-GFP

particles, but the majority of these are tightly localized at the

oocyte anterior in a narrower region than the shallow anterior

gradient seen in mago, btz, and TmIIgs mutants (Figure 3F; Movie

S12). In addition, a trace amount of osk mRNA always localizes

to the posterior of stau mutant oocytes at stage 9 (van Eeden

et al., 2001).

As in the other localization mutants, the frequency of fast, di-

rected oskMS2 particle movements in the oocyte cytoplasm is

reduced about 4-fold in stau null mutants (Figure 3G). Despite

the visible anterior accumulation of oskMS2/MS2-GFP, there is

no change in the directional bias of particle movements, with

59% moving toward the posterior, resulting in a positive net pos-

terior displacement of the particles of 0.08 mm/s (Table 1). Most

osk mRNP particles appear to be trapped at the anterior of the

oocyte, but those that escape the anterior move with a similar av-

erage velocity (0.47 mm/s) and posterior bias to wild-type. Since

Stau is required for the posterior anchoring and translation of osk

mRNA, the weak accumulation of the mRNA at the posterior of

stau oocytes at stage 9 cannot be explained by random transport

and localized anchoring. This therefore suggests that this poste-

rior enrichment is caused solely by the posterior bias in particle

movements.

Most osk RNP Particles Move toward Microtubule
Plus Ends
The discovery that osk RNP particles move in all directions with

a slight posterior bias raises the question of how this bias arises.

This is difficult to address because the organization of the micro-

tubules in the oocyte is unclear, but one can imagine two ex-

treme scenarios. In the first, the microtubule cytoskeleton is

Figure 2. osk mRNA Particle Movements Show a Weak Posterior Bias

(A) A graph showing the average speeds of GFP-Stau and oskMS2/MS2-GFP particle movements in the oocyte and in the anterior and posterior halves of the

oocyte. The error bars show the standard error of the mean (SEM).

(B) The distribution of GFP-Stau particle speeds in the anterior (black) and posterior (red) halves of the oocyte.

(C) Circular graphs showing the orientation of GFP-Stau (i and ii) and oskMS2/MS2-GFP (iii and iv) particle tracks. Both methods reveal a significant posterior bias

in the direction of particle movements (p < 0.005 and p < 0.025, c2 test).

(D) The posterior bias of particle movement results in an overall positive net posterior displacement of GFP-Stau and oskMS2/MS2-GFP particles in the oocyte.

Error bars show SEM.
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highly polarized along the anterior-posterior axis with the plus

ends at the posterior, but the particles undergo transport toward

both the plus and minus ends of the microtubules, with a slight

excess of plus end-directed transport. This type of bidirectional

transport has been observed for several organelles, such as mi-

tochondria in axons, and lipid droplets and pair rule transcripts in

the Drosophila embryo (Bullock et al., 2006; Welte, 2004). At the

other extreme, osk RNP particles could undergo exclusively plus

end-directed transport along a weakly polarized microtubule cy-

toskeleton, in which microtubules extend in all directions, with

slightly more having their plus ends pointing posteriorly.

The models for the bias in osk mRNP movement can be distin-

guished by quantifying the proportion of particles that move to-

ward the plus or minus ends of the microtubules. Although this is

not possible in wild-type oocytes because of the complexity of

the microtubule organization, treatments with actin-depolyme-

rizing drugs induce premature streaming of the oocyte cyto-

plasm, which washes the microtubules into alignment around

the oocyte cortex (Manseau et al., 1996). Cytoplasmic streaming

requires kinesin and is thought to result from the plus end-di-

rected transport of large organelles or vesicles (Dahlgaard

et al., 2007; Serbus et al., 2005). The parallel arrays of microtu-

bules generated by the flows are therefore aligned with their

plus ends pointing in the direction of the flow. We took advan-

tage of this to examine the movement of osk mRNP particles

along microtubules of known polarity by imaging oskMS2 in

wild-type oocytes that had been treated with Latrunculin A

(Movie S8). As shown in Figure 4E, 82% of the fast-moving par-

ticles move in the same direction as the flow. Assuming that

Latrunculin does not affect the behavior of osk mRNP particles,

this suggests that the vast majority of movements are plus end

directed.

The obvious candidate for a plus end-directed motor that

moves osk mRNPs is kinesin 1. We therefore imaged particle

movement in Khc27 germline clones (Movie S13). The proportion

of particles that showed fast, directed movements during a 5 s

period was only 2.4%, which is more than a 5-fold reduction

compared to wild-type (Figures 5A–5F). Some movements can

still be detected, however, indicating that other motors can

move the particles processively (Table 1).

Although these data indicate that more than 80% of osk mRNA

particle movements are kinesin dependent, this does not neces-

sarily mean that kinesin directly transports the particles because

the loss of kinesin could affect the activity of other motors. For

example, kinesin is required for the localization of cytoplasmic

dynein to the posterior of the oocyte, suggesting that the two

motors are associated (Januschke et al., 2002; Palacios and St

Johnston, 2002). Thus, the removal of the Khc could alter dynein

function, either by disrupting a kinesin/dynein complex or by dis-

rupting dynein localization.

We therefore examined the behavior of oskMS2 particles in

Dhc6-6/Dhc6-12, a viable mutant combination that significantly

delays the localization of gurken mRNA and halves the speed

at which dynein transports mRNAs in the nurse cells (Clark

Figure 3. Behavior of osk RNP Particles in Localization Mutants

(A–F00) Low magnification images (A–F) and overlays of 25 frames from high-

magnification timelapse movies of oskMS2 (A and F) or GFP-Stau (B–E). The

blue lines indicate the nurse cell/oocyte boundary. The posterior pole of the

oocyte is marked with white asterisks.

(A–A00) Wild-type. (A00) shows a closeup of the track marked by the red rectan-

gle in (A0).

(B–B00) hrp4810B2-9 germline clones. There are no detectable particles in this mutant.

(C–C00) btz2 germline clones.

(D–D00) mago1/Df(2R)F36.

(E-E00) TmIIgs.

(F–F00) stauD3.

(G) A graph showing the proportion of particles that undergo fast, directed

movements in a normalized area of cytoplasm in wild-type, stau, and mago

mutant oocytes. Error bars show SEM.

(H) A bar chart showing the percentages of fast particle movements toward

the anterior and posterior of the oocyte in wild-type, mago, btz2, TmIIgs, and

stau mutants. The asterisks indicate the mutants in which the bias differs

significantly from wild-type. (c2 test: *p % 0.05; **p % 0.01; ***p % 0.001.)

(I) A bar chart showing the net posterior displacement in wild-type, mago, btz2,

TmIIgs, and stau mutants. Error bars show SEM. (*p % 0.05; **p % 0.01;

***p % 0.001.)
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et al., 2007; MacDougall et al., 2003; Mische et al., 2007). The

posterior localization of oskMS2 was not affected in this mutant

combination, and the particles underwent fast movements

toward the anterior and posterior of the oocyte with similar

frequencies to wild-type, giving a normal net posterior displace-

ment (Figures 5E–5H; Table 1). The speed of particle movement

in both directions was slightly increased compared to wild-type

(0.53 mm/s). Since one would expect the dynein hypomorphs to

reduce the speed of any dynein-dependent particle movements,

these data argue against a direct role for dynein in the transport

of osk mRNPs within the oocyte.

To address the role of kinesin in osk mRNA transport without

the complications of indirect effects caused by the null allele,

we examined two missense mutations in the kinesin motor do-

main, Khc17 and Khc23, which reduce the speed of the motor

without having any detectable effects on its other functions

(Brendza et al., 1999; Serbus et al., 2005). As previously re-

ported, osk mRNA still localizes in germline clones of both al-

leles, but there is a delay in its posterior accumulation (Figures

5B and 5C). Unlike the Khc null mutation, Khc17 and Khc23

have little effect on the frequency of particle movements, consis-

tent with idea that the mutant motor proteins associate normally

with their cargoes (Figure 5F). More importantly, there is a signif-

icant reduction in the speed of oskMS2 particle movement in

these mutants, with values of 0.35 mm/s (p < 0.001) for Khc17

and 0.25 mm/s (p < 0.001) for Khc23 (Table 1; Figure 5G). This

slower movement proves that kinesin transports osk mRNP par-

ticles along microtubules.

Since the reduced speed in Khc17 and Khc23 provides a direct

indication of kinesin-dependent transport, it allowed us to ask

whether kinesin moves osk mRNP particles specifically toward

the posterior of the oocyte, or both anteriorly and posteriorly.

The velocity profile of particles moving toward the anterior

showed a pronounced shift to lower speeds in both mutants

that was indistinguishable from that seen in particles moving to-

ward the posterior (Figures 5I and 5J). Thus, kinesin mediates the

majority of fast particle movements in both directions, indicating

that the posterior bias is chiefly due to a weak bias in the orien-

tation of the microtubules, rather than bidirectional transport

along a more strongly polarized cytoskeleton.

DISCUSSION

The mechanism of osk mRNA localization has been controver-

sial, and a number of competing models have been proposed

to explain its targeting to the posterior. Here, we have observed

directly how the RNA travels to the posterior by tracking the

movements of osk mRNA particles at high temporal resolution

in living oocytes. Surprisingly, our results are incompatible with

the existing models, leading us to propose a new mechanism

for the localization of the mRNA.

First, it is clear that the mRNA is not transported in a highly di-

rected fashion toward the posterior since the particles move in all

directions with only a slight posterior bias. Second, the rapid

transport of the osk mRNPs argues against a role for passive dif-

fusion (Glotzer et al., 1997). Third, our results are inconsistent

with the two-step model for osk mRNA localization, in which ki-

nesin first transports the RNA away from the anterior and lateral

cortex to the oocyte center before it is translocated to the poste-

rior in a second step (Cha et al., 2002). osk mRNP particles show

a similar behavior in all regions of the oocyte at stage 9, with

a consistent small excess of particles moving posteriorly, and

this is incompatible with the idea that particles are first trans-

ported to the center. Moreover, slow kinesin mutants have an

identical effect on the speeds of particle movements in all re-

gions of the oocyte, strongly arguing that kinesin transports the

mRNA in a one-step pathway all of the way to the posterior pole.

Instead, our data suggest that osk mRNA is localized by a bi-

ased random walk, in which each particle undergoes a large

number of active movements in many different directions, with

Table 1. GFP-Stau and oskMS2/MS2-GFP Particle Behavior in Localization Mutants

Phenotype

Number of

Tracks

Number of

Movies

Track

Distance, mm

Average Speed,

mm/s

Percent

Tracks

to Anterior

Percent

Tracks to

Posterior

Net Posterior

Displacement, mm/s

WT (GFP-Stau) 491 28 2.43 (0.07) 0.45 (0.01) 43.6 56.4 +0.03 (0.01)

btz2 (GFP-Stau) 77 20 2.88 (0.19) 0.53 (0.03) 57.1 42.9 �0.02 (0.04)

TmIIgs (GFP-Stau) 150 23 1.83 (0.09) 0.77 (0.03)*** 58.7 41.3 �0.12 (0.04)***

mago (GFP-Stau) 192 30 1.84 (0.1) 0.62 (0.02)*** 58.9 41.1 �0.057 (0.03)***

WT (oskMS2/MS2-GFP) 272 9 2.85 (0.11) 0.47 (0.01) 43.0 57.0 +0.04 (0.02)

TmIIgs(oskMS2/MS2-GFP) 199 17 2.09 (0.08) 0.55 (0.02)** 58.8 41.2 �0.08 (0.03)**

stau (oskMS2/MS2-GFP) 152 31 3.00 (0.1) 0.47 (0.01) 40.8 59.2 +0.08 (0.03)

Khc27 (oskMS2/MS2-GFP) 154 19 2.37 (0.09) 0.50 (0.02) 49.4 50.6 +0.02 (0.03)

Khc17 (oskMS2/MS2-GFP) 272 8 2.59 (0.09) 0.35 (0.01) *** 43.8 56.2 +0.01 (0.01)

Khc23 (oskMS2/MS2-GFP) 231 8 3.01 (0.11) 0.25 (0.004)*** 47.2 52.8 +0.004 (0.01)*

Dhc6-6/6-12 (oskMS2/MS2-

GFP)

231 21 3.06 (0.11) 0.53 (0.01)*** 42.7 57.3 +0.04 (0.02)

Values shown are means for all particles that move faster than cytoplasmic flows (>0.1 mm/s) with the SEM in the parentheses. Statistically significant

differences between the behavior of particles in wild-type and a given mutant are shown by asterisks: *p % 0.05; **p % 0.01; ***p % 0.001. Correspond-

ing p values are shown in parentheses. WT: wild-type.
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a small excess of movements toward the posterior. After hun-

dreds of movements, the 14% excess of posterior movements

results in a large net posterior displacement that delivers the

mRNA to its destination. Given that 13% of particles are moving

at any one time, the average osk mRNP will undergo a net pos-

terior displacement during the 6–10 hr of stage 9 of 112–187 mm

(6–10 3 3600 s 3 0.13 3 0.04 mm/s). Since this is more than 1.5

times the length of the oocyte (80 mm), this is more than sufficient

to produce a robust posterior localization of osk mRNA by the

end of stage 9.

This model is supported by the observation that the direction

of the bias correlates perfectly with the site of osk mRNA accu-

mulation: wild-type oocytes show a posterior bias and posterior

localization of the mRNA, whereas the bias is reversed in mago,

TmII, and btz mutants, and osk mRNA accumulates at the ante-

rior. The effectiveness of the biased random walk in localizing the

RNA is even more clearly demonstrated by stau mutants: most of

the mRNA is trapped at the anterior of stau mutant oocytes, and

the mRNA that is released into the oocyte cytoplasm moves four

times less frequently than in wild-type. Nevertheless, the small

number of movements that occur show a normal posterior

bias, which leads to a transient posterior enrichment of the

mRNA that is lost at later stages because the RNA is not

anchored.

Similar biased bidirectional transport has been described for

lipid droplets in the Drosophila embryo and for many other parti-

cles and organelles in other systems (Welte, 2004). In most

cases, the bias depends on the competing activities of motors

that move in opposite directions. By contrast, our results indicate

that the vast majority of osk mRNA movements are directed to-

ward microtubule plus ends and are mediated by kinesin. First,

when the microtubules are aligned around the cortex by prema-

ture cytoplasmic streaming, over 80% of fast-moving particles

move in the same direction as the cytoplasmic flows, i.e., toward

the plus ends. Second, more than 80% of movements are abol-

ished by null mutations in the Khc. Third, point mutations in kine-

sin reduce the speed of particle movements in all directions.

Fourth, we have never observed any particles that show a clear

180� reversal in the direction of their movement out of more than

3000 particle tracks analyzed, indicating that particles rarely

switch between plus and minus end-directed motion.

The traditional view of the oocyte microtubule cytoskeleton is

that it is polarized along the anterior-posterior axis with minus

ends at the anterior and plus ends at the posterior. This view is

based on the localization of fusion proteins containing the motor

domains of Nod and kinesin to the anterior and posterior of the

oocyte, respectively, and the assumption that these act as minus

and plus end markers (Clark et al., 1994, 1997). The microtubule

organization appears much more complex, however, when visu-

alized directly: the microtubules appear to be nucleated from

both the anterior and lateral cortex and extend in all directions

to form an anterior-posterior gradient (Cha et al., 2001; MacDou-

gall et al., 2003). Our data are consistent with this latter view be-

cause osk mRNA particles move in all directions in every region

of the oocyte. More importantly, because almost all osk mRNA

movements are plus end directed, each RNA track provides

a snapshot of the polarity of a microtubule segment. The obser-

vation that 57% of tracks have a net posterior vector therefore

indicates that the microtubules have only a weak orientation

bias toward the posterior. Even if all 10%–20% of kinesin-inde-

pendent osk mRNA movements are minus end directed, this

would still give a posterior bias in microtubule polarity of only

62%. Thus, our data suggest a revised view of the organization

of the cytoskeleton, in which the microtubules extend in all direc-

tions from the anterior and lateral cortex, with about a 20% ex-

cess of microtubules with their plus ends pointing posteriorly.

One appealing aspect of this model is that it can reconcile the

two opposing views of the microtubule organization. Kinbgal is

an unregulated motor that constitutively moves toward the plus

ends of microtubules, and we propose that it accumulates at

Figure 4. Most osk mRNA Particles Move toward the Microtubule

Plus Ends

(A and B) a-tubulin stainings to show the shallow gradient of microtubules in

a wild-type oocyte (A) and the cortical microtubule bundles induced by treat-

ment with Latrunculin A (B).

(C) An overlay of 25 sequential images of a movie of a Latrunculin A-treated oo-

cyte. All of the passively diffusing particles and most fast-moving particles

move in the direction of streaming, which was followed by tracing yolk particles.

(D) Two examples of fast-moving particle tracks (green arrows) from the area

highlighted by the green rectangle in (C). The blue arrows show particles

moving with the flow.

(E) A bar chart showing the ratio of fast oskMS2/MS2-GFP particle move-

ments in the same direction or the opposite direction to the cytoplasmic flows.

Error bars show SEM.

(F) A box plot comparing the average speed of particle movements in wild-

type and Latrunculin A-treated egg chambers and the speed of streaming

measured by following yolk vesicles. Actively transported particles move

significantly faster then yolk vesicles. Error bars show SEM.
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the posterior by following a biased random walk similar to osk

mRNA. According to this view, it is not a marker for microtubule

plus ends but for regions where plus ends are most enriched.

Mutants in different components of the osk mRNA localization

complex produce very similar phenotypes when analyzed by

in situ hybridizations to fixed samples. However, they have differ-

ent effects on the dynamics of osk mRNA particles. First, hrp48

mutants abolish the formation of visible osk mRNA particles,

indicating a requirement for this HnRNPA/B-like protein in the

assembly of functional transport particles.

Mutants in the EJC components, Mago nashi and Btz, do not

affect osk mRNP particle formation but reduce the frequency of

particle movement and reverse the bias, so that the particles ac-

cumulate at the oocyte anterior. This behavior is what one would

expect if the movement is primarily mediated by a minus end-di-

rected motor. Furthermore, the anterior accumulation of osk

mRNA in these mutants resembles that of many other mRNAs

that are transported into the oocyte by the dynein/Bic-D/Egl

pathway, and which are thought to localize to the anterior by de-

fault, because this pathway remains active in the oocyte (Serano

and Cohen, 1995). Thus, the EJC may be required to turn off the

dynein/Bic-D/Egl pathway when osk mRNA enters the oocyte so

that it can then associate with the kinesin pathway.

TmII mutants have the same effects on osk mRNP dynamics

as EJC mutants, suggesting that Tropomyosin is required for

the same step in localization. This raises the possibility that

Tropomyosin plays a role in either the recruitment of the EJC

to osk mRNA or the subsequent activity of the EJC in switching

from the anterior to the posterior localization pathway.

Stau seems to function downstream of the EJC since osk

mRNA is either trapped at the anterior or moves with a normal

posterior bias toward the posterior pole. Our results suggest

that Stau regulates several aspects of osk mRNA behavior

once it enters the oocyte. First, it seems to be required for the ef-

ficient release of the mRNA from the anterior. This may reflect

a role of Staufen in the coupling of the mRNA to the kinesin-de-

pendent posterior transport pathway. osk mRNA particles that

escape the anterior move with a normal bias but a reduced

frequency, suggesting that Stau is also required for full kinesin

activity. Finally, Stau is essential for the activation of osk

mRNA translation once the mRNA has reached the posterior

pole (Micklem et al., 2000). Thus, the in vivo analysis of osk

mRNA dynamics reveals that different components of the osk

mRNP complex are required for at least three distinct steps in

the localization pathway, namely particle formation, uncoupling

from the dynein/BicD pathway, and release from the anterior

and coupling to the kinesin pathway, and this may begin to ex-

plain why so many trans-acting factors are required for the local-

ization of this mRNA.

The dynamics of osk mRNA particles have several features in

common with the behavior of MS2-labeled mRNAs in mamma-

lian cells. Fusco et al. (2003) found that RNA particles undergo

stochastic movements in COS cells, in which they switch be-

tween fast microtubule-dependent movements, diffusion, and

stationary phases. Furthermore, an RNA containing the b-actin

localization signal showed a 5-fold higher frequency of fast

movements than a random RNA. This is very similar to the behav-

ior of osk mRNA, which undergoes fast, direct movements 4–5

times more frequently in wild-type oocytes than in EJC, TmII,

and stau mutants. MS2-GFP has also been used to image Cam-

KIIa mRNA in the dendrites of cultured neurons and labels parti-

cles that show similar bidirectional movements to osk mRNA

(Rook et al., 2000; Kanai et al., 2004). Since dendrites contain mi-

crotubules of mixed orientations and Stau, Barentsz, and kinesin

Figure 5. Slow kinesin Mutants Reduce the

Speed of the Anterior and Posterior osk

mRNA Particle Movements

(A–E) An overlay of 25 sequential images to illus-

trate the fast-directed movements of osk mRNA

particles in wild-type (A), in germline clones

of Khc17 (B), Khc23 (C), and Khc27 (D), and in

Dhc6-6/Dhc6-12 (E). Note that oskMS2/MS2-GFP

localizes to the posterior pole in Khc17 and

Khc23, but this localization is slower than in wild-

type. (A0)–(E0) show close-ups of the tracks high-

lighted by red rectangles in (A)–(E).

(F) A graph showing the frequencies of fast particle

movements in kinesin and dynein mutants. Error

bars show SEM.

(G) A graph showing the speed of oskMS2/MS2-

GFP particle movements in kinesin and dynein

mutants. Error bars show SEM.

(H) A bar chart showing the average net posterior

displacement in wild-type, Khc17, Khc23, and

Dhc6-6/Dhc6-12. Error bars show SEM.

(I and J) The distribution of velocities of particles

moving toward the anterior (I) or posterior (J) in

wild-type, Khc17, and Khc23 mutants.
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have been implicated in dendritic mRNA localization, it will be in-

teresting to determine whether CamKIIa mRNA localizes by a bi-

ased random walk similar to osk mRNA (Kanai et al., 2004;

Macchi et al., 2003).

EXPERIMENTAL PROCEDURES

Drosophila Stocks

GFP-Stau was expressed from the maternal a4-tubulin promotor from a trans-

gene on an X chromosome that also carries hsFLP (Martin et al., 2003).

To generate the oskMS2 construct, we inserted 10 MS2-binding sites into an

Spe1 site that was introduced immediately after the osk stop codon in a full-

length osk genomic rescue construct (Munro et al., 2006). oskMS2 transgene

inserts were recombined with MS2-GFP transgenes on the same chromosome

(Forrest and Gavis, 2003).

Germline clones were generated using the ovoD/Flp system by heat-shock-

ing second to third instar larvae for 2 hr at 37�C for 3 consecutive days (Chou

and Perrimon, 1996).

Other fly strains used were FRT82B btz2 (Palacios and St Johnston, 2002),

TmIIgs (Erdelyi et al., 1995), mago1/Df(2R)F36 (Boswell et al., 1991), FRT 42B

c Khc27/CyO, FRT 42B c Khc17/CyO, FRT 42B c Khc23/Cyo (Brendza et al.,

2000), FRT40A hrp4810B2-9/CyO, FRT40A hrp487E7-18/CyO (Huynh et al.,

2004), oskA87 /Df(3R)pXT103 (Jenny et al., 2006), and Dhc6-6/Dhc6-12 (McGrail

and Hays, 1997).

Fast Imaging and Deconvolution

Egg chambers were dissected directly onto coverslips in 10S Voltalef oil (Alta-

chem). Imaging was performed on a wide field DeltaVision microscope (Ap-

plied Precision). Out-of-focus light was reassigned to its point of origin by iter-

ative deconvolution.

Particle Tracking and Image Analysis

Moving particles were tracked manually using the Metamorph (Universal Imag-

ing Corporation) image analysis software. To avoid bias in the selection of par-

ticles, we tracked all visible particles in each movie. We analyzed an average of

240 particle tracks per genotype from 3 to 30 oocytes. A custom program was

used to calculate the average speed, distance, and directionality of each track

from the original tracking data. A vector was taken between the first and last

points of each track to calculate the overall direction of the movement. The

proportion of moving particles was calculated by counting the number of par-

ticles in a selected 300 3 300 pixel region (19.89 mm 3 19.89 mm) and deter-

mining how many of these particles underwent active movements during the

next 10 frames.

The comparisons of speeds and net posterior displacements were per-

formed using t tests and Wilcoxon rank-sum tests. The normality of the distri-

bution was tested using the Jacque-Bera normality test. When normal, the sig-

nificance of the difference in the means was assessed using a standard

Student’s t test for distributions with equal variance, or the Welch-Sat-

terthwaite-corrected Student’s t test for distributions with unequal variance.

When the distribution was non-normal, we compared medians using the non-

parametric counterpart of the Student’s t test, the Wilcoxon rank-sum test.

The difference in the posterior versus anterior bias was assessed using the

standard c2 test. To test whether the net posterior displacement in wild-type

was significantly larger than zero we performed a Wilcoxon 1-sample test.

All tests were performed using the Matlab, Minitab, and Excel software.

Drug Treatments

The microtubule cytoskeleton was depolymerized by treating egg chambers

with colcemid or colchicine (Sigma). Wild-type flies were starved for 1 day after

hatching and then fed fresh yeast paste containing 100 mg/ml colcemid over-

night (Pokrywka and Stephenson, 1995). Colcemid was inactivated by a 10 s

pulse of UV light (Theurkauf and Hazelrigg, 1998). For immersion experiments,

we dissected ovaries in 20 mg/ml colcemid in Schneider’s media. Colchicine

was injected into the oocyte at 100 mg/ml in water.

F-actin was depolymerized either by feeding females 200 mg/ml Latrunculin

A in yeast paste or by dissecting ovaries in 50 mg/ml Latrunculin A.

SUPPLEMENTAL DATA

Supplemental Data include one table, two figures, and thirteen movies and can

be found with this article online at http://www.cell.com/cgi/content/full/134/5/

843/DC1/.

ACKNOWLEDGMENTS

We would like to thank Liz Gavis and Bill Saxton for providing fly stocks, Simon

Bullock for help with the statistical analysis of particle movement, and I. Pala-

cios and C.P. Heisenberg for support during writing. V.L.Z. and K.B. were sup-

ported by the Darwin Trust. This work was supported by the Wellcome Trust.

Received: January 21, 2008

Revised: April 30, 2008

Accepted: June 25, 2008

Published: September 4, 2008

REFERENCES

Bashirullah, A., Cooperstock, R., and Lipshitz, H. (1998). RNA localization in

development. Annu. Rev. Biochem. 67, 335–394.

Beach, D., Salmon, E., and Bloom, K. (1999). Localization and anchoring of

mRNA in budding yeast. Curr. Biol. 9, 569–578.

Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S., Singer, R., and Long, R.

(1998). Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2,

437–445.

Boswell, R.E., Prout, M.E., and Steichen, J.C. (1991). Mutations in a newly

identified Drosophila melanogaster gene, mago nashi, disrupt germ cell forma-

tion and result in the formation of mirror-image symmetrical double abdomen

embryos. Development 113, 373–384.

Brendza, K.M., Rose, D.J., Gilbert, S.P., and Saxton, W.M. (1999). Lethal kine-

sin mutations reveal amino acids important for ATPase activation and struc-

tural coupling. J. Biol. Chem. 274, 31506–31514.

Brendza, R., Serbus, L., Duffy, J., and Saxton, W. (2000). A function for kinesin I

in the posterior transport of oskar mRNA and Staufen protein. Science 289,

2120–2122.

Brendza, R., Serbus, L., Saxton, W., and Duffy, J. (2002). Posterior localization

of Dynein and dorsal-ventral axis formation depend on Kinesin in Drosophila

oocytes. Curr. Biol. 12, 1541–1545.

Bullock, S., and Ish-Horowicz, D. (2001). Conserved signals and machinery for

RNA transport in Drosophila oogenesis and embryogenesis. Nature 414,

611–616.

Bullock, S.L., Nicol, A., Gross, S.P., and Zicha, D. (2006). Guidance of bidirec-

tional motor complexes by mRNA cargoes through control of dynein number

and activity. Curr. Biol. 16, 1447–1452.

Cha, B., Koppetsch, B., and Theurkauf, W. (2001). In vivo analysis of Drosoph-

ila bicoid mRNA localization reveals a novel microtubule-dependent axis spec-

ification pathway. Cell 106, 35–46.

Cha, B.J., Serbus, L.R., Koppetsch, B.S., and Theurkauf, W.E. (2002). Kinesin

I-dependent cortical exclusion restricts pole plasm to the oocyte posterior.

Nat. Cell Biol. 4, 592–598.

Chou, T., and Perrimon, N. (1996). The autosomal FLP-DFS technique for

generating germline mosaics in Drosophila melanogaster. Genetics 144,

1673–1679.

Clark, A., Meignin, C., and Davis, I. (2007). A Dynein-dependent shortcut

rapidly delivers axis determination transcripts into the Drosophila oocyte. De-

velopment 134, 1955–1965.

Clark, I., Giniger, E., Ruohola-Baker, H., Jan, L.Y., and Jan, Y.N. (1994). Tran-

sient posterior localization of a kinesin fusion protein reflects anteroposterior

polarity of the Drosophila oocyte. Curr. Biol. 4, 289–300.

Clark, I., Jan, L., and Jan, Y. (1997). Reciprocal localization of Nod and kinesin

fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithe-

lium, neuron and muscle. Development 124, 461–470.

852 Cell 134, 843–853, September 5, 2008 ª2008 Elsevier Inc.

http://www.cell.com/cgi/content/full/134/5/843/DC1/
http://www.cell.com/cgi/content/full/134/5/843/DC1/


Dahlgaard, K., Raposo, A.A., Niccoli, T., and St Johnston, D. (2007). Capu and

Spire assemble a cytoplasmic actin mesh that maintains microtubule organi-

zation in the Drosophila Oocyte. Dev. Cell 13, 539–553.

Ephrussi, A., Dickinson, L.K., and Lehmann, R. (1991). Oskar organizes the

germ plasm and directs localization of the posterior determinant nanos. Cell

66, 37–50.

Erdelyi, M., Michon, A.M., Guichet, A., Glotzer, J.B., and Ephrussi, A. (1995).

Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localiza-

tion. Nature 377, 524–527.

Forrest, K.M., and Gavis, E.R. (2003). Live imaging of endogenous RNA reveals

a diffusion and entrapment mechanism for nanos mRNA localization in Dro-

sophila. Curr. Biol. 13, 1159–1168.

Fusco, D., Accornero, N., Lavoie, B., Shenoy, S.M., Blanchard, J.M., Singer,

R.H., and Bertrand, E. (2003). Single mRNA molecules demonstrate probabi-

listic movement in living mammalian cells. Curr. Biol. 13, 161–167.

Glotzer, J.B., Saffrich, R., Glotzer, M., and Ephrussi, A. (1997). Cytoplasmic

flows localize injected oskar RNA in Drosophila oocytes. Curr. Biol. 7, 326–337.

Hachet, O., and Ephrussi, A. (2001). Drosophila Y14 shuttles to the posterior of

the oocyte and is required for oskar mRNA transport. Curr. Biol. 11,

1666–1674.

Hachet, O., and Ephrussi, A. (2004). Splicing of oskar RNA in the nucleus is

coupled to its cytoplasmic localization. Nature 428, 959–963.

Huynh, J.R., Munro, T.P., Smith-Litiere, K., Lepesant, J.A., and Johnston, D.S.

(2004). The Drosophila hnRNPA/B homolog, Hrp48, is specifically required for

a distinct step in osk mRNA localization. Dev. Cell 6, 625–635.

Januschke, J., Gervais, L., Dass, S., Kaltschmidt, J.A., Lopez-Schier, H., St

Johnston, D., Brand, A.H., Roth, S., and Guichet, A. (2002). Polar transport

in the Drosophila oocyte requires Dynein and Kinesin I cooperation. Curr.

Biol. 12, 1971–1981.

Jenny, A., Hachet, O., Zavorszky, P., Cyrklaff, A., Weston, M.D., St Johnston,

D., Erdelyi, M., and Ephrussi, A. (2006). A translation-independent role of oskar

RNA in early Drosophila oogenesis. Development 133, 2827–2833.

Kanai, Y., Dohmae, N., and Hirokawa, N. (2004). Kinesin transports RNA:

isolation and characterization of an RNA-transporting granule. Neuron 43,

513–525.

Kim-Ha, J., Smith, J.L., and Macdonald, P.M. (1991). oskar mRNA is localized

to the posterior pole of the Drosophila oocyte. Cell 66, 23–35.

Kim-Ha, J., Kerr, K., and Macdonald, P. (1995). Translational regulation of

oskar messenger RNA by Bruno, an ovarian RNA binding protein, is essential.

Cell 81, 403–412.

MacDougall, N., Clark, A., MacDougall, E., and Davis, I. (2003). Drosophila

gurken mRNA localizes as particles that move within the oocyte in two dy-

nein-dependent steps. Dev. Cell 4, 307–319.

Macchi, P., Kroening, S., Palacios, I., Baldassa, S., Grunewald, B., Ambrosino,

C., Goetze, B., Lupas, A., St Johnston, D., and Kiebler, M. (2003). Barentsz,

a new component of the Staufen-containing ribonucleoprotein particles in

mammalian cells, interacts with Staufen in an RNA-dependent manner. J. Neu-

rosci. 23, 5778–5788.

Manseau, L., Calley, J., and Phan, H. (1996). Profilin is required for posterior

patterning of the Drosophila oocyte. Development 122, 2109–2116.

Markussen, F., Michon, A., Breitwieser, W., and Ephrussi, A. (1995). Transla-

tional control of oskar generates short Osk, the isoform that induces pole

plasm assembly. Development 121, 3723–3732.

Martin, S.G., Leclerc, V., Smith-Litiere, K., and St Johnston, D. (2003). The

identification of novel genes required for Drosophila anteroposterior axis for-

mation in a germline clone screen using GFP-Staufen. Development 130,

4201–4215.

McGrail, M., and Hays, T. (1997). The microtubule motor cytoplasmic dynein is

required for spindle orientation during germline cell divisions and oocyte differ-

entiation in Drosophila. Development 124, 2409–2419.

Micklem, D.R., Adams, J., Grunert, S., and St Johnston, D. (2000). Distinct

roles of two conserved Staufen domains in oskar mRNA localization and trans-

lation. EMBO J. 19, 1366–1377.

Mische, S., Li, M., Serr, M., and Hays, T.S. (2007). Direct observation of regu-

lated ribonucleoprotein transport across the nurse cell/oocyte boundary. Mol.

Biol. Cell 18, 2254–2263.

Mohr, S., Dillon, S., and Boswell, R. (2001). The RNA-binding protein Tsunagi

interacts with Mago Nashi to establish polarity and localize oskar mRNA during

Drosophila oogenesis. Genes Dev. 15, 2886–2899.

Munro, T., Kwon, S., Schnapp, B., and St Johnston, D. (2006). A repeated IMP-

binding motif controls oskar mRNA translation and anchoring independently of

Drosophila IMP. J. Cell Biol. 172, 577–588.

Newmark, P., and Boswell, R. (1994). The mago nashi locus encodes an essen-

tial product required for germ plasm assembly in Drosophila. Development

120, 1303–1313.

Oleynikov, Y., and Singer, R.H. (2003). Real-time visualization of ZBP1 associ-

ation with beta-actin mRNA during transcription and localization. Curr. Biol.

13, 199–207.

Palacios, I., Gatfield, D., St Johnston, D., and Izaurralde, E. (2004). An eIF4AIII-

containing complex required for mRNA localization and nonsense-mediated

mRNA decay. Nature 427, 753–757.

Palacios, I.M., and St Johnston, D. (2002). Kinesin light chain-independent

function of the Kinesin heavy chain in cytoplasmic streaming and posterior lo-

calisation in the Drosophila oocyte. Development 129, 5473–5485.

Pokrywka, N.J., and Stephenson, E.C. (1995). Microtubules are a general com-

ponent of mRNA localization systems in Drosophila oocytes. Dev. Biol. 167,

363–370.

Rook, M.S., Lu, M., and Kosik, K.S. (2000). CaMKIIalpha 30 untranslated re-

gion-directed mRNA translocation in living neurons: visualization by GFP link-

age. J. Neurosci. 20, 6385–6393.

Serano, T., and Cohen, R. (1995). Gratuitous messenger RNA localization in

the Drosophila oocyte. Development 121, 3013–3021.

Serbus, L.R., Cha, B.J., Theurkauf, W.E., and Saxton, W.M. (2005). Dynein and

the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Dro-

sophila oocytes. Development 132, 3743–3752.

St Johnston, D. (2005). Moving messages: the intracellular localization of

mRNAs. Nat. Rev. Mol. Cell Biol. 6, 363–375.

St Johnston, D., Beuchle, D., and Nüsslein-Volhard, C. (1991). Staufen, a gene

required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63.

Theurkauf, W.E., and Hazelrigg, T.I. (1998). In vivo analyses of cytoplasmic

transport and cytoskeletal organization during Drosophila oogenesis: charac-

terization of a multi-step anterior localization pathway. Development 125,

3655–3666.

van Eeden, F., Palacios, I., Petronczki, M., Weston, M., and St Johnston, D.

(2001). Barentsz is essential for the posterior localization of oskar mRNA and

colocalizes with it to the posterior. J. Cell Biol. 154, 511–524.

Weil, T.T., Forrest, K.M., and Gavis, E.R. (2006). Localization of bicoid mRNA in

late oocytes is maintained by continual active transport. Dev. Cell 11, 251–262.

Welte, M.A. (2004). Bidirectional transport along microtubules. Curr. Biol. 14,

R525–R537.

Wilkie, G., and Davis, I. (2001). Drosophila wingless and pair-rule transcripts

localize apically by dynein-mediated transport of RNA particles. Cell 105,

209–219.

Cell 134, 843–853, September 5, 2008 ª2008 Elsevier Inc. 853


