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Toll-like receptor 4 signalling through MyD88 is essential to control
Salmonella enterica serovar Typhimurium infection, but not for the

initiation of bacterial clearance

Introduction

Systemic infection of mice with Salmonella enterica serovar

Typhimurium (S. Typhimurium) causes a disease similar

in many respects to typhoid fever in humans.1 The immune

responses to systemic sublethal S. Typhimurium infection

are well characterized and this is therefore a valuable model

for using to understand how different immune mechanisms

contribute to the control of Salmonella infections and for

studying how an immune response to infection develops

in vivo. In a systemic infection the bacteria reside and

replicate within phagocytes.2 During the first few hours of

systemic disease there is a decrease in bacterial numbers

that is dependent on bacterial killing by neutrophil and

macrophage nicotinamide adenine dinucleotide phosphate

(NADPH)-oxidase activity in the context of prevention of

bacterial growth through natural resistance-associated

macrophage protein (NRAMP)-1/Slc11a1 activity.2,3 Dur-

ing the next few days of systemic infection, exponential

growth of S. Typhimurium occurs, the rate of which

depends on the virulence of the bacterial strain and the

genetic background of the host. This growth may, in turn,
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Summary

Toll-like receptor-4 (TLR4) is important in protection against lethal

Salmonella enterica serovar Typhimurium (S. Typhimurium) infection.

Control of the early stages of sublethal S. Typhimurium infection in mice

depends on TLR4-dependent activation of macrophages and natural killer

(NK) cells to drive an inflammatory response. TLR4 signals through the

adapter proteins Mal/MyD88 and TRIF-related adaptor molecule

(TRAM)/TIR-domain-containing adaptor-inducing interferon-b (TRIF). In

the mouse typhoid model we showed that TLR4 and MyD88, but not Mal

or TRIF, are essential for the control of exponential S. Typhimurium

growth. TRIF)/) mice have a higher bacterial load in comparison with

wild-type mice during a sublethal infection because TRIF is important for

bacterial killing during the first day of systemic disease. Minimal pro-

inflammatory responses were induced by S. Typhimurium infection of

macrophages from TLR4)/), MyD88)/) and TRIF)/) mice in vitro. Pro-

inflammatory responses from Mal)/) macrophages were similar to those

from wild-type cells. The pro-inflammatory responses of TRIF)/) macro-

phages were partially restored by the addition of interferon-c (IFN-c), and

TRIF)/) mice produced markedly enhanced IFN-c levels, in comparison

to wild-type mice, probably explaining why bacterial growth can be con-

trolled in these mice. TLR4)/), MyD88)/), TRIF)/) and Mal)/) mice all

initiated clearance of S. Typhimurium, suggesting that TLR4 signalling is

not important in driving bacterial clearance in comparison to its critical

role in controlling early bacterial growth in mouse typhoid.

Keywords: Mal; MyD88; Salmonella; toll-like receptor; TLR4; TRIF
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be controlled by macrophages and natural killer (NK) cells

releasing cytokines to induce an inflammatory response.2

This control of S. Typhimurium growth has been referred

to as the plateau phase.4 Initiation and expansion of T

helper 1 (Th1)-type T-cell immunity is required for the late

phase of control and eventual clearance of the infection.2

Pro-inflammatory cytokines that are produced by the host

in response to systemic S. Typhimurium infection are

therefore critical for the control of bacterial growth.2

Initial host recognition of S. Typhimurium infection

depends on pattern recognition receptors (PRRs), in particu-

lar during systemic infection, on toll-like receptor (TLR)4;5–

9 however, TLR2 is important in the later stages of lethal

infection models.10 Lipopolysaccharide (LPS) expressed by

S. Typhimurium is recognized by TLR4, in association with

MD2 and CD14.6,11 TLR4 recognition of S. Typhimurium

activates macrophages, initiating the oxidative burst and

inducing cytokine production. TLR4 signals via recruitment

of at least four adapter proteins: MyD88, Mal, TRIF-related

adaptor molecule (TRAM) or TIR-domain-containing adap-

tor-inducing interferon-b (TRIF).12 TLR4/Mal/MyD88 sig-

nalling induces cytokines such as tumour necrosis factor-a
(TNF-a), interleukin (IL)-6 and IL-12p40, whereas signalling

through TLR4/TRAM/TRIF also induces Type I interferon

(IFN)-dependent proteins such as IFN-b, regulated on acti-

vation, normal, T-cell expressed, and secreted (RANTES)

and IL-12p35.12 Cytokines are required for granuloma for-

mation and for activation of inducible nitric oxide synthase

(iNOS)-dependent antibacterial functions of macrophages

during the plateau phase.2

TLR2 has a limited role in the early control of S. Typhimu-

rium infection,6–9 but is important in protection against

lethal sepsis driven by both Gram-positive13 and Gram-nega-

tive10 bacteria. The roles of TLR4 and TLR2 in protecting

mice against lethal infection with S. Typhimurium are

clear,5,8,10,14,15 but much less is known about how these

receptors and their signalling pathways are involved in the

immune responses that control and clear Salmonella infec-

tions. In LPS-resistant mice (C3H/HeJ; with mutated, non-

signalling TLR4) the plateau phase does not occur, indicating

that control of bacterial growth is dependent on the inflam-

matory response induced by TLR4 recognition of LPS.2,5,8,9

It is critical to understand the immune mechanisms involved

in the control and clearance of bacteria if successful manage-

ment of invasive salmonellosis is to be achieved.

Here we have studied how TLR2, TLR4, MyD88, Mal

and TRIF influence plateau formation during the suble-

thal infection of mice with S. Typhimurium. We showed

that TLR4 and MyD88, but not TLR2, Mal or TRIF, are

essential for plateau formation, whereas TRIF is involved

in the early phase of bacterial killing. By comparison,

whilst TLR4 is critical for driving the plateau phase in

S. Typhimurium growth, TLR4-dependent signalling

seems to be much less important in initiating the clear-

ance phase of this bacterial infection.

Materials and methods

Mouse strains

Mice were bred under specific pathogen-free conditions at

Harlan, Loughborough, UK or in the Department of Veter-

inary Medicine, the University of Cambridge (Cambridge,

UK). Mice were housed in isolators or in filter-top cages

and were provided with sterile water and food ad libitum.

TLR4)/),16 TLR2)/),17 TLR2)/) TLR4)/),8 MyD88)/),18

Mal)/),19 and TRIF)/)20 mice on a C57BL/6 background

were as described previously. C57BL/6 mice were pur-

chased from Harlan, UK.

Bacterial strains and ligands

Infection studies in vivo were performed using S.

Typhimurium M525P, a strain that establishes sublethal

infection in immunocompetent C57BL/6 mice, but is vir-

ulent enough to cause rapidly lethal infections in animals

with impaired innate resistance and/or adaptive

responses.7,21 To determine whether effective Th1

responses can be generated in TLR4)/) and MyD88)/)

mice we used S. Typhimurium SL3261, which is an

attenuated mutant that causes slowly progressive lethal

infections if the animals fail to mount T-cell immunity.22

In the macrophage experiments, virulent, wild-type

S. Typhimurium SL1344 was used for all experiments.

S. Typhimurium strain SL1344 LPS was a generous gift from

Anjam Khan (University of Newcastle, Newcastle, UK).

Infection of mice

Bacteria were grown overnight at 37� as a static culture

in Luria–Bertani (LB) medium. Bacteria were washed

and diluted in phosphate-buffered saline (PBS) to

obtain 5 x 103 colony-forming units (CFU)/ml. Unless

otherwise stated, 200 ll (103 CFU) of this bacterial sus-

pension was injected into the tail vein. Appropriate

dilutions of the inoculum were plated onto LB agar for

precise enumeration of the number of viable bacteria

given to the mice. At each time-point after infection,

mice were killed by cervical dislocation and spleens and

livers were removed. The organs were placed into

10 ml of sterile distilled water and homogenized in a

Colworth Stomacher (Sewerd Ltd, Worthing, UK) for

subsequent determination of viable bacterial counts by

plating out appropriate dilutions of the homogenates

onto LB agar. Viable CFU isolated per liver for individ-

ual mice are shown.

Preparation of livers for histological analysis

Livers were fixed in 10% formalin and then prepared

for standard paraffin embedding and sectioning. Three-
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micrometer sections of liver from each mouse were

stained with haematoxylin and eosin for histological

analysis. Analyses were performed by one investigator

(KH) who was blinded to the genotype of the mouse

and to the experimental conditions. Quantitative assess-

ment of liver lesions was undertaken by counting the

number of liver inflammatory lesions per 10 high-

power fields (·400 magnification) of hepatic paren-

chyma. Qualitative evaluation of lesion architecture was

also undertaken.

Infection of bone marrow macrophages

Primary bone marrow-derived macrophages (BMDMs)

were isolated from femurs and tibiae of mice killed by

cervical dislocation, then cultured in BMDM medium

[RPMI-1640 medium supplemented with 10 % (v/v) fetal

calf serum, 2 mM glutamine, 5 % (v/v) horse serum,

1 mM sodium pyruvate and 10 lg/ml of gentamicin], in

petri dishes. To isolate BMDM from MyD88 mice, femurs

from knockout and wild-type mice were shipped on ice

from Dr K. Fitzgerald (University of Massachusetts Medi-

cal School, Worcester, MA, USA). For maintenance of

BMDMs in culture this medium was further supple-

mented with 20% (v/v) supernatant taken from L929 cells

(a murine macrophage colony-stimulating factor

producing cell line).6,23 For experiments, cells were plated

onto 96-well plates at a plating density of 2 · 105 cells

per well, in the absence of gentamicin.

S. Typhimurium SL1344 in mid-log phase was added

to the cells at multiplicities of infection (MOI) of 1 or 10.

Following a 2 hr incubation, the cells were incubated in

BMDM medium containing 50 lg/ml of gentamicin for

1 hr to kill extracellular Salmonella. Cells were then incu-

bated in BMDM medium containing 10 lg/ml of genta-

micin until the end of the experiment.

We used the S. Typhimurium strain SL1344 for our in vi-

tro experiments to ensure that our data were comparable

with other published data on S. Typhimurium infections

in vitro.8,24–26 In our preliminary analysis comparing the

in vitro response of SL1344 and M525P strains in wild-type,

TLR4)/) and MyD88)/) BMDMs we saw similar levels of

TNF-a and slightly lower levels of nitric oxide (NO) in

response to SL1344. The effect of the gene knockouts on the

macrophage response was identical for both bacterial

strains.

Measurement of TNF-a production

To determine cumulative TNF-a production, supernatants

were obtained 7 hr after infection (cumulative 3–7 hr

after infection) and stored at )80� until analysed using

the Duoset� enzyme-linked immunosorbent assay

(ELISA) development system (R&D Systems, Abingdon,

Oxfordshire, UK).

Measurement of NO production

iNOS activity was determined indirectly using samples of

supernatant taken 22 hr after infection and stored at

)20�. Nitrite accumulation was measured using the Griess

reaction as an indication of iNOS activity.27

Splenocyte cytokine measurements

Splenocytes were isolated from mice infected with S. Ty-

phimurium. The spleens were removed aseptically and

passed through a 40-lm nylon strainer to yield spleno-

cytes. These were washed, then red blood cells were lysed

by incubation with Gey’s solution for 3 min, and plated

at 1 · 106 cells/well in a 96-well plate in RPMI-1640 con-

taining 10% (v/v) fetal calf serum (FCS), 1 mM HEPES,

5 mM L-glutamine, 2 · 10)5
M b-mercaptoethanol, 100 U/

ml of penicillin and 100 lg/ml of streptomycin. Spleno-

cytes were stimulated with S. Typhimurium strain M525P

grown to mid-log phase at an MOI of 1:1 or stimulated

with LPS (1 lg/ml; from S. Typhimurium SL1344). Sam-

ples of supernatant were taken 6 and 24 hr later and

assayed for TNF-a, or were taken 48 hr later and assayed

for IFN-c. Samples were stored at )80� until assayed

using the Duoset� ELISA development system (R&D Sys-

tems) for IFN-c or TNF-a.

Statistical analysis

Statistical analysis was performed using a two-way analy-

sis of variance (ANOVA) followed by Bonferonni post-test-

ing. A Mann–Whitney U-test was performed on data

pooled from two or more in vivo infections. Histological

analysis was compared using a Student’s t-test. Statistical

differences are given by asterisks as follows: *P < 0�05,

**P < 0�01, ***P < 0�001.

Results

TLR4, but not TLR2, is required to control the
growth of a sublethal systemic infection of
S. Typhimurium in vivo

Mice were infected with 200 ll (103 CFU) of S. Typhimu-

rium M525P and bacterial counts were measured in the

livers and spleens from these animals. In wild-type mice,

as expected, there was a drop in bacterial numbers of

approximately half a log within the first day of infection.4

After this, the growth of S. Typhimurium in liver and

spleen was exponential until it plateaued at day 3 postin-

fection (Fig. 1, spleen data not shown). The plateau was

sustained for the duration of the short-term experiment.

In TLR4)/) mice, higher bacterial numbers were seen on

day 1 postinfection and then, similarly to what is seen in

C3H/HeJ mice,5 bacterial growth increased more rapidly

474 � 2009 Blackwell Publishing Ltd, Immunology, 128, 472–483
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than in wild-type controls, at approximately 1 log per

day, until the experiment was stopped because an over-

whelming bacterial load had caused the mice to become

terminally ill (Fig. 1) [Analysis of the combined results

from two separate experiments using the Mann–Whitney

U-test found that bacterial burdens in the TLR4)/) mice

were significantly higher at all the time-points shown

(P < 0�01 at day 1 and P < 0�001 at days 3 and 5 post-

infection)]. TLR4 is therefore essential for both the con-

trol of the initial growth rate of S. Typhimurium and for

plateau formation to occur. The growth of S. Typhimuri-

um in TLR2)/) mice was identical in both liver and

spleen to what is seen in the wild-type mice (Fig. 1,

spleen data not shown) (No significant increase in bacte-

rial burdens were found in the TLR2)/) mice when the

data from two experiments were pooled). We infected

mice with higher numbers of bacteria (104 CFU) to see if

this would reveal any role for TLR2 in controlling S. Ty-

phimurium in vivo, but bacterial growth was again similar

to that seen in wild-type animals, suggesting that TLR2

does not play a role in controlling S. Typhimurium

growth in sublethal infection (data not shown). In a preli-

minary experiment, where we infected TLR2)/) TLR4)/)

double knockout mice, there was no difference in bacte-

rial counts from those seen during infection of TLR4)/)

mice, suggesting that TLR2 is unimportant, in compari-

son to TLR4, for the control of sublethal bacterial growth

in the spleen and liver (data not shown).

The macrophage pro-inflammatory response to
S. Typhimurium infection is absent in cells from
TLR4)/) mice

The generation of a pro-inflammatory response to S. Typhi-

murium is required in order for the host to control

bacterial growth. Activation of TLR4 by S. Typhimurium

induces the production of pro-inflammatory cytokines,

such as TNF-a, and inflammatory proteins, such as iNOS.6

To confirm that TLR4 activation by S. Typhimurium was

driving a pro-inflammatory response, we infected BMDMs

from wild-type and TLR4)/) mice with this bacterium and

measured TNF-a production after 7 hr and NO production

at 22 hr. Wild-type BMDMs produced a robust inflamma-

tory response to infection, but the TLR4)/) BMDMs, as

expected, produced little TNF-a or NO (Fig. 1c,d).

MyD88, but not Mal or TRIF, is essential for
establishing the plateau phase in controlling the
growth of sublethal infection of mice with
S. Typhimurium

The essential role of TLR4 in controlling bacterial growth

led us to investigate the contribution of both the MyD88

and TRIF signalling pathways in mouse typhoid. In

MyD88)/) mice, exponential bacterial growth continued
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Figure 1. Bacterial counts after intravenous infection of mice with

1 · 103 colony-forming units (CFU)/mouse of Salmonella enterica ser-

ovar Typhimurium (S. Typhimurium) M525P. Mice were killed by

cervical dislocation, bacterial loads were determined in the liver and

the results are expressed as log CFU per organ for each mouse with the

mean marked by a bar. Wild-type (WT), toll-like receptor (TLR)4)/)

(n = 4) (a) or TLR2)/) (n = 3) (b) mice were infected and the results

shown are representative of at least two separate experiments. Bone

marrow-derived macrophages (BMDMs) from WT and TLR4)/) mice

were infected with S. Typhimurium strain SL1344 at a multiplicity of

infection (MOI) of 0:1, 1:1 or 10:1 (bacteria : cell). Supernatant sam-

ples were analysed by enzyme-linked immunosorbent assay (ELISA)

for tumour necrosis factor-a (TNF-a) 7 hr after infection (n = 4) (c)

and for nitrite accumulation by the Griess reaction 22 hr after infec-

tion (n = 6) (d). The results are expressed as mean ± standard devia-

tion, **P < 0�01, ***P < 0�001. p.i., postinfection.
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unchecked, in a similar manner to that seen in the

TLR4)/) animals, and the mice were unable to mount an

effective response to control the growth of S. Typhimuri-

um (Fig. 2a) [a significantly higher (P < 0�01) bacterial

burden was observed in the MyD88)/) mice on days 3

and 5 when the combined results from two experiments

were analysed]. MyD88 is therefore essential for establish-

ment of the plateau phase of bacterial growth.

The importance of TLR4 and MyD88 in controlling

bacterial growth suggested that TLR4 signalling through

the TRIF pathway was likely to be less important in driv-

ing host responses to S. Typhimurium. TRIF)/) mice

infected with S. Typhimurium, however, showed higher

bacterial counts by day 1 in comparison to infected wild-

type mice (Fig. 2b). We studied bacterial growth over a

short time course and found that this difference in bacte-

rial counts was apparent [and statistically significant

(P < 0�001) when pooling results from two separate

experiments] by 4 hr (Fig. 2d). After day 1, however, the

rates of bacterial growth in livers and spleens were very

similar to those seen in the wild-type animals. This meant

that the TRIF)/) animals had a consistently higher bacte-

rial burden, at each time-point, of 0�4–1�2 log CFU/spleen

or of 0�8–1�6 log CFU/liver (Fig. 2b) [values determined

from data pooled from five separate experiments, which

found that the bacterial burdens in the TRIF)/) mice

were significantly higher (P < 0�001) than in the wild-

type mice on days 1, 4 and 7 postinfection]. TRIF)/) mice

are therefore able to control sublethal infection with

S. Typhimurium, but achieve the plateau phase at a

higher bacterial burden than the wild-type mice.

Finally, Mal)/) mice were infected with S. Typhimurium

and, surprisingly, unlike TLR4)/) and MyD88)/) mice, the

Mal)/) mice controlled the infection in a manner similar

to that of wild-type mice (Fig. 2c). By 7 days postinfection

the bacterial load in the Mal)/) mice was significantly

higher than in the wild-type mice. The difference between

Mal)/) and wild-type bacterial burdens at these time-

points was < 0�5 log CFU/organ. Biologically, the rele-

vance of this increase in CFU is small when compared

with the increase of approximately 4 log CFU/organ

observed in the TLR4)/) and MyD88)/) mice by day 5.

TNF-a and NO production in response to
S. Typhimurium infection are deficient in MyD88)/)

and TRIF)/) macrophages, but not in Mal)/)

macrophages

BMDMs from wild-type, MyD88)/), Mal)/) and TRIF)/)

mice were infected with S. Typhimurium, and TNF-a
production and iNOS activity were measured. S. Ty-

phimurium infection stimulated the production of TNF-a
from wild-type BMDMs, whilst the levels of this cytokine

were very low in BMDMs from MyD88)/) or TRIF)/)

mice (Fig. 3a). NO production was also negligible in
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Figure 2. Bacterial counts after intravenous infection of mice with

1 · 103 colony-forming units (CFU) per mouse of Salmonella enteri-

ca serovar Typhimurium (S. Typhimurium) strain M525P. Mice

were killed by cervical dislocation, bacterial loads were determined in

the liver and the results are expressed as log CFU per organ for each

mouse with the mean marked by a bar. Wild-type (WT), MyD88)/)

(n = 3) (a), TIR-domain-containing adaptor-inducing interferon-

b)/) (TRIF)/)) (b and d) (n = 4) and Mal)/) (n = 4) (c) mice were

infected and the graphs are representative of at least two separate

experiments, *P < 0�05, **P < 0�01, ***P < 0�001. p.i., postinfection.
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macrophages from the MyD88)/) or TRIF)/) mice after

infection (Fig. 4b). BMDMs from Mal)/) mice showed

minimal TNF-a and NO production in response to LPS,

as expected (Fig. 3c), but in response to infection, the lev-

els of these inflammatory mediators were mostly equiva-

lent to those seen in infected wild-type BMDMs.

5000
WT

Mal–/–4000

3000

2000

1000

[T
N

F
-a

] p
g/

m
l

0
0.01 0.1 1 10 100 1000

[LPS] ng/ml

30 WT

Mal–/–

20

10[N
itr

ite
] m

M

0
0·01 0·1 1 10 100 1000

[LPS] ng/ml

9000

(a)

WT

*** ***

MyD88–/–
8000
7000

6000

5000

4000

3000

2000

1000

[T
N

F
-a

] p
g/

m
l

0
0 1 10

MOI

9000 WT

***

Mal–/–
8000
7000

6000

5000

4000

3000

2000

1000

[T
N

F
-a

] p
g/

m
l

0
0 1 10

MOI

9000
WT

***

***

TRIF–/–

8000
7000

6000

5000

4000

3000

2000

1000

[T
N

F
-a

] p
g/

m
l

0
0 1 10

MOI

WT

MyD88–/–

0 1 10
MOI

[N
itr

ite
] m

M

20

15

10

5

0 * ***

WT

Mal–/–

0 1 10
MOI

[N
itr

ite
] m

M

20

15

10

5

0

*

WT

TRIF–/–

0 1 10
MOI

[N
itr

ite
] m

M

20

15

10

5

0 *** ***

(b)

(c)

Figure 3. Tumour necrosis factor-a (TNF-a) and nitric oxide (NO) production from MyD88)/), Mal)/) and TIR-domain-containing adaptor-

inducing interferon-b)/) (TRIF)/)) macrophages. Bone marrow-derived macrophages (BMDMs) from wild-type, MyD88)/), Mal)/) or TRIF)/)

mice were infected with Salmonella enterica serovar Typhimurium (S. Typhimurium) strain SL1344 at multiplicity of infections (MOIs) of 0:1,

1:1 or 10:1 (bacteria : cell). Supernatant samples were assayed by enzyme-linked immunosorbent assay (ELISA) for tumour necrosis factor-a
(TNF-a) 7 hr after infection (a) or analysed using the Griess reaction for nitrite accumulation 22 hr after infection (b). The results are expressed

as the mean ± standard deviation from at least four separate experiments, *P < 0�05, ***P < 0�001. Wild-type and Mal)/) BMDMs were also

stimulated with increasing doses of lipopolysaccharide (LPS) from S. Typhimurium SL1344, and TNF-a and NO production were assayed 7 and

22 hr after stimulation, respectively (c).
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The defective pro-inflammatory response of TRIF)/)

macrophages to S. Typhimurium infection in vitro
is compensated for by IFN-c production in vivo

TNF-a is one of the inflammatory proteins critical for

successfully achieving a plateau in bacterial growth in sub-

lethal S. Typhimurium infection of mice.2 It is therefore

surprising that the TRIF)/) mice controlled a sublethal

S. Typhimurium infection despite their defective macro-

phage TNF-a response. IFN-c is elevated during bacterial

infections and enhances LPS-induced macrophage

responses, including the production of TNF-a.28 To deter-

mine whether IFN-c priming was able to restore inflamma-

tory responsiveness to TRIF)/) BMDM in vitro, the cells

were pretreated with IFN-c for 1 hr before infection with

S. Typhimurium. TRIF)/) BMDM now produced levels of
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Figure 4. Interferon-c (IFN-c) and tumour necrosis factor-a (TNF-a) are up-regulated in TIR-domain-containing adaptor-inducing interferon-b)/)

(TRIF)/)) mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). Wild-type or TRIF)/) mice were injected intravenously

with 1 · 103 colony-forming units (CFU) per mouse of S. Typhimurium strain M525P. Four days after infection splenocytes were harvested and

challenged in vitro with 1 lg/ml of lipopolysaccharide (LPS) from S. Typhimurium SL1344 or infected with S. Typhimurium M525P at a multiplic-

ity of infection (MOI) of 1:1 (bacteria : cell). Supernatant samples were taken 48 hr later and assayed by enzyme-linked immunosorbent assay

(ELISA) for IFN-c (a), or 6 hr (upper panel) or 24 hr (lower panel) after stimulation and analysed by ELISA for TNF-a (b). The results are expressed

as mean ± standard deviation (n = 6). Bone marrow-derived macrophages (BMDMs) from wild-type and TRIF)/) mice were pretreated with 10 IU/

ml of IFN-c for 1 hr before infection with S. Typhimurium SL1344 at MOIs of 0:1, 1:1 or 10:1 (bacteria : cell). Supernatant samples were assayed by

ELISA for TNF-a 7 hr after infection. The results are expressed as mean ± standard deviation (n = 4), *P < 0�05, ***P < 0�001 (c). Wild-type or

TRIF)/) mice were injected intravenously with 1 · 103 CFU per mouse of S. Typhimurium M525P. Seven days after infection the livers were fixed

in formalin, prepared for histological analysis and stained with haematoxylin and eosin. In a liver from a wild-type mouse, a focus of necrotic he-

patocytes is surrounded by a rim of large numbers of degenerate neutrophils, mixed with lymphocytes. Arrowheads = coagulative necrosis of hepato-

cytes. Arrow = neutrophilic infiltrate (predominantly degenerate neutrophils) (d). In the liver from an infected TRIF)/) mouse there is a small

cluster of lymphocytes and viable and degenerate neutrophils surrounding a focus of individual necrotic hepatocytes (arrow). Bar = 50 lm (e).
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TNF-a and NO similar to those produced by unprimed

wild-type BMDM (Fig. 4c and data not shown). Infected

TRIF)/) mice showed higher bacterial burdens than the

wild-type mice, and IFN-c levels increased with increasing

bacterial burden,29 so we measured the levels of IFN-c in

these animals after infection. Splenocytes from day 4 of an

infection in TRIF)/) mice showed enhanced levels of IFN-c
in comparison to control animals when re-infected ex vivo

with S. Typhimurium (Fig. 4a). Therefore, the increased

capability of splenocytes from infected TRIF)/) mice to pro-

duce IFN-c may be sufficient to up-regulate cytokine pro-

duction in vivo and allow the control of bacterial growth. As

IFN-c priming of TRIF)/) macrophages restored their abil-

ity to produce TNF-a in response to Salmonella infection in

vitro, we measured TNF-a production from the splenocytes.

Splenocytes from uninfected TRIF)/) mice produced signif-

icantly less TNF-a than wild-type splenocytes when

re-infected ex vivo. Splenocytes from infected TRIF)/) mice

were still deficient in TNF-a production 6 hr after re-infec-

tion, but by 24 hr after re-infection these cells were produc-

ing wild-type levels of TNF-a (Fig. 4b). These data suggest

that IFN-c restores the ability of the TRIF)/) cells to induce

a pro-inflammatory response, probably explaining why

these mice can control bacterial growth in vivo.

Neutrophil recruitment to lesions is defective in
infected TRIF)/) mice

The reduced bacterial killing in the TRIF)/) mice, and the

fact that TRIF has been linked to neutrophil recruitment

in bacterial lung infections,30–32 suggested that these ani-

mals may be defective in neutrophil recruitment during a

Salmonella infection. Hepatic histological analysis on day

7, a time-point when the plateau is well established,

showed that both wild-type and TRIF)/) mice had small,

well-demarcated focal infiltrates of neutrophils and mac-

rophages, interspersed by hepatocytes with pyknotic

nuclei and scattered small deposits of fragmented nuclear

debris. Some of the larger lesions had a central area of

necrosis, surrounded by a rim of inflammatory cells (pre-

dominantly containing moderate numbers of neutrophils

and lymphocytes and small numbers of macrophages)

(Fig. 4d). The TRIF)/) mice, on qualitative assessment,

had smaller lesions that appeared to be more frequent

(P = 0�08). By contrast, the wild-type animals had a smal-

ler number of generally larger lesions, with a qualitatively

higher proportion of neutrophils. These data suggest a

deficit in neutrophil function in TRIF)/) mice.

Absence of signalling through TLR4 does not hinder
the initiation of clearance of S. Typhimurium from
the organs

Following control by the host of bacterial growth in a

sublethal infection, S. Typhimurium will eventually be

cleared predominantly through the activity of CD4+ T

cells. To study the clearance phase of infection in TLR4)/)

mice requires the use of an attenuated bacterial strain

because these animals are unable to control the growth of

fully virulent S. Typhimurium. We therefore infected

these mice with S. Typhimurium SL3261, a mutant that

causes slowly progressing lethal infections if the animals

fail to mount T-cell immunity.22 Bacterial counts were

1–2 log higher in TLR4)/) mice compared with wild-type

mice; hence, we decided to inoculate 10-fold fewer bacte-

ria into the TLR4)/) mice than into the wild-type mice to

achieve similar bacterial loads. Surprisingly, we found that

TLR4)/) mice could initiate bacterial clearance, albeit at a

higher bacterial load than in wild-type mice (Fig. 5a).

Similar results were seen in MyD88)/) mice (Fig. 5b).

The Mal)/) and TRIF)/) mice were able to control the

growth of the virulent M525P strain, and therefore this

strain was used for clearance studies in these mice. Mal)/)

mice infected with M525P initiated clearance of

S. Typhimurium (Fig. 5d). TRIF)/) mice were also able

to start clearing the M525P strain of S. Typhimurium,

although this process appeared to be defective compared

with that in wild-type and Mal)/)mice, as a large varia-

tion in the rate of clearance was observed between mice

(Fig. 5c), and the TRIF)/) mice continued to have signifi-

cantly higher (P < 0�01) bacterial burdens than the wild-

type mice after initiation of clearance (at days 21, 28 and

35), as determined from the combined results of two

separate experiments.

Discussion

Here we showed that TLR4 signalling through MyD88,

but not through Mal or TRIF, is critically required to pro-

tect mice in a typhoid model of S. Typhimurium infec-

tion. TRIF is required for the early control of bacterial

growth during the first day of an intravenous infection

and for the pro-inflammatory response of macrophages to

infection. IFN-c priming of TRIF)/) macrophages restores

the ability of these cells to produce an inflammatory

response to infection, and splenocytes from infected

TRIF)/) mice produce high levels of this cytokine, which

may explain why TRIF)/) mice can control bacterial

growth in vivo. TLR2 plays little or no role in the control

of bacterial growth in the sublethal mouse typhoid model.

TLR signalling is not required for initiating the clearance

phase of mouse typhoid, as shown by the presence of

normal clearance patterns in MyD88)/) mice.

TLR4 and MyD88 are important for the survival of

mice after lethal infection with S. Typhimurium.8 Here

we used well-described sublethal models of S. Typhimuri-

um infection,33 where the bacterial counts obtained are

very consistent and show little variability, which allowed

us to follow the course of prolonged infection. The

immunological processes controlling bacterial growth in
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these models are well understood.2 We therefore explored

whether TLR4 modifies the antibacterial immune

response to S. Typhimurium infection. Bacterial growth

from day 1 onwards continued exponentially and failed

to plateau in TLR4)/) mice in comparison with wild-type

mice. These results are similar to those seen in sublethal

infection of the TLR4 mutant strain of mice, C3H/HeJ,5

confirming a key role for TLR4 in controlling systemic

infection with S. Typhimurium. In MyD88)/) mice, from

day 1 postinfection onwards, the exponential bacterial

growth was also unchecked, confirming that TLR4 signal-

ling through MyD88 is vital for controlling S. Typhimuri-

um growth in vivo. In both TLR4)/) and MyD88)/)

macrophages, as expected,6,8 the response to infection, as

measured by TNF-a and NO production, was almost

completely lost. These in vitro data are consistent with

the failure of the TLR4)/) and MyD88)/) mice to estab-

lish a plateau phase in bacterial growth in vivo, which is

dependent on the LPS-driven inflammatory response

induced by S. Typhimurium.5,34

MyD88 is essential for signalling through other TLRs,

including TLR2,12 and in lethal sepsis models TLR2

helps to protect the host against infection,10 but here, in

the sublethal mouse typhoid model, TLR2)/) mice

showed control of S. Typhimurium growth which was

similar to that seen in wild-type mice. These data sug-

gest that any role which TLR2 may play in protecting

the host against systemic Salmonella infections is second-

ary to the role of TLR4. In survival studies, TLR2)/)

mice showed a similar phenotype to wild-type mice, but

lower bacterial loads were seen in tissues from these ani-

mals.8 In our sublethal model, very similar spleen and

liver bacterial loads were seen in wild-type and TLR2)/)

mice, suggesting that TLR2 does not play a role in con-

trolling this type of infection. Differences in the role of

TLR2 in the host response to Salmonella infection seen

in our sublethal study and in the lethal salmonellosis

model used by us and by Weiss et al.,8 are probably the

result of a combination of elevated bacterial numbers

seen in the lethal model (increasing the availability of

TLR2 ligands produced by the bacteria) and the different

routes of infection used, leading to activation of differ-

ent cell types and/or different levels of TLR2 expressed.

To determine whether a role for TLR2 becomes appar-

ent at higher bacterial loads, we infected the TLR2)/)

mice with more bacteria, but again bacterial growth was

controlled in a manner similar to what is seen in wild-

type mice. We performed preliminary experiments in

TLR2)/) TLR4)/) mice to see if this would reveal a role

for TLR2 in sublethal S. Typhimurium infection, but the

results were very similar to those seen in TLR4)/) mice.

We concluded, therefore, that any role which TLR2 is

playing in the immune response to sublethal S. Typhimu-

ium infection is unlikely to be important in the control

of bacterial growth.
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Figure 5. Bacterial counts after intravenous infection of wild-type

(WT) mice [with 1 · 107 colony-forming units (CFU)/mouse] in com-

parison with toll-like receptor (TLR)4)/) (n = 3) (a) and MyD88)/)

(n = 4) (b) mice (with 1 · 106 CFU/mouse) of Salmonella enterica ser-

ovar Typhimurium (S. Typhimurium) SL3261, or intravenous infection

of wild-type, TIR-domain-containing adaptor-inducing interferon-b)/)

(TRIF)/)) (n = 3) (c) and Mal)/) (n = 4) (d) mice with 1 · 103 CFU

per mouse of S. Typhimurium M525P. Mice were killed by cervical dis-

location, bacterial loads were determined in the liver and the results are

expressed as log CFU per organ for each mouse with the mean marked

by a bar *P < 0�05, **P < 0�01, ***P < 0�001. p.i., postinfection.
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MyD88)/) mice are particularly susceptible to lethal

infection with S. Typhimurium, probably because of the

presence of a range of immune defects, including those

in cytokine production, in the development of Th1-type

responses, in NADPH oxidase activation, in phagocytic

capacity, and in IL-1 and IFN-c signalling.8,35–37 In this

study we have shown that, predictably, MyD88 plays a

central role in host protection in a mouse typhoid

model of infection. This is probably mostly through

TLR4 stimulation, given that very similar data were

seen in the MyD88)/) and TLR4)/) mice. The redun-

dancy of Mal in the typhoid model is a particular sur-

prise. Mal is required to bridge MyD88 and TLR438

and here we see a defective response of Mal)/) macro-

phages to LPS, but not to S. Typhimurium. Our studies

in vivo showed that Mal)/) mice behaved like wild-type

mice in response to S. Typhimurium infection. The lack

of a role for Mal in the control of S. Typhimurium is

similar to that seen in another study.39 These authors

suggested that mice lacking Mal accelerate the clearance

phase of infection compared with wild-type mice. In

our work, Mal played no role in the plateau or clear-

ance phases of S. Typhimurium infection. It is unclear

why Mal, which is important in some lung infection

models,30,40,41 is redundant in systemic S. Typhimurium

infection. Potentially, Mal may be more important in

controlling mucosal infections, rather than systemic

infections or a Salmonella protein; for example, one of

the newly identified Toll–interleukin-1 receptor domain

proteins42–44 may compensate for the lack of Mal. The

lack of Mal-dependency in our data, except at low

MOIs in vitro, is puzzling. It may be that at low MOIs

Mal sensitizes the MyD88 signalling pathway, but at

higher MOIs Mal is no longer required for full activa-

tion of MyD88-dependent signaling. In vivo our data

would therefore suggest that there are sufficient num-

bers of bacteria present to drive a Mal-independent

response. An alternative explanation for our data would

be that a protein produced by Salmonella may compen-

sate for the lack of Mal. At low MOIs of Salmonella

the levels of this protein may be insufficient to com-

pensate for the lack of Mal in terms of TNF-a produc-

tion. At the higher MOI there may be enough of the

Salmonella protein to allow full TNF-a production,

similar to that seen from wild-type cells.

TLR4 activation of TRIF signalling is linked to the gener-

ation of a Th1 response to LPS.35,45 In our study, TLR4 sig-

nalling through TRIF was required for controlling the early

growth of S. Typhimurium in vivo, but despite the fact that

macrophages from these mice are defective in inflammatory

responses to infection, these mice control bacterial growth.

Mice with elevated bacterial loads produce more IFN-c29

and in the present study we saw that infected TRIF)/) mice

had elevated levels of this cytokine. In BMDMs from these

mice, IFN-c restored cytokine production in response to

infection, and the enhanced production of IFN-c in S. Ty-

phimurium-infected TRIF)/) mice probably explains why

they can control bacterial growth in vivo. IFN-c signals via

the JAK/signal transducer and activator of transcription

[janus tyrosine kinase (JAK)/STAT] pathway, and STAT-

binding sites have been recognized in the promoter regions

of various inflammatory mediators, including iNOS.46 LPS

and IFN-c synergize to increase the production of iNOS

and TNF-a;46,47 therefore, in the absence of TRIF-depen-

dent TLR4 signalling, the IFN-c driven activation of the

STAT pathway could compensate for the lack of TRIF-dri-

ven IFN-b production, thus leading to full gene expression,

even in the absence of this signalling protein. IFN-c produc-

tion in response to Gram-negative bacterial infection is

TLR4 and MyD88 dependent10 and will not be generated in

the TLR4)/) and MyD88)/) mice. The elevated IFN-c levels

in TRIF)/) mice may be attributable to TRIF-dependent

TNF receptor associated factor (TRAF)3 signalling.

BMDMs from TRAF3-deficient mice lack IL-10 production

in response to LPS stimulation.48 IL-10 is a negative regula-

tor of IFN-c production49 and therefore the lack of this

cytokine may allow enhanced levels of IFN-c to accumulate

in the TRIF)/) mice.

TLR4 signalling through TRIF induces dendritic cell

maturation and may modulate NADPH-oxidase activa-

tion.12,50 In vivo, TRIF signalling contributes to the pro-

tection of mice against lung infections with Pseudomonas

aeruginosa and Escherichia coli.31,32 Infection of TRIF)/)

mice with S. Typhimurium, similarly to what is seen in

TLR4)/) mice, results in elevated bacterial numbers on

day 1 postinfection in both liver and spleen in compari-

son to wild-type mice. The normal reduction in bacterial

numbers on day 1 postinfection is dependent on bacterial

killing by neutrophils and macrophages through comple-

ment and NADPH-dependent reactive oxidase activity.2

TRIF is important for neutrophil recruitment in bacterial

lung infections31,32 and therefore it is likely that a failure

in neutrophil recruitment may account, to some extent,

for the elevated bacterial numbers seen in these mice.

Histological analysis of tissue obtained on day 7 of a

S. Typhimurium infection in TRIF)/) mice supports this

hypothesis, with a smaller proportion of neutrophils

present in the liver lesions compared with tissue from

wild-type mice. TLR4 co-operates sequentially with the

complement receptor C3 in neutrophil-driven killing of

Salmonella.51 It is therefore likely that the TLR4-depen-

dent decrease in bacterial numbers seen by day 1 postin-

fection is driven, in part, by the TRIF pathway via a

defect in both neutrophil and macrophage activities

through a TLR4/C3 mechanism.

Our study also investigated whether PRRs are required

to initiate clearance of S. Typhimurium infection, a pro-

cess that is dependent on the activity of CD4+ T cells.1

TLRs have been linked to successful activation of CD4+ T

cells52 and we expected to see a profound effect upon
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bacterial clearance in mice lacking TLR4-dependent signal-

ling. We found that bacterial clearance was initiated in

TLR4)/), MyD88)/), Mal)/) and TRIF)/) mice if they were

infected with a Salmonella strain that could be controlled

by the host in the initial phase of infection. Our data are

strikingly similar to early work in C3H/HeJ mice, which

clear an S. Typhimurium aroA mutant and generate full

protective immunity against virulent S. Typhimurium.53

By contrast, MyD88, whilst also not being important for

initiating bacterial clearance, is required for protective

immunity against S. Typhimurium.54 MyD88, in addition

to being recruited to most TLRs, is an adapter in the sig-

nalling pathway for induction of IL-1b and IL-18,12 and is

important in IFN-c signalling.36 Protective immunity to

S. Typhimurium may either be generated by a TLR other

than TLR4 or by a nucleotide oligomerisation domain

(NOD)-like receptor that induces IL-18 (a cytokine impor-

tant in protection against this pathogen.55) Our data sug-

gest that initiation of bacterial clearance, a process

dependent on the successful activation of CD4+ T cells,

does not require TLR4- or MyD88-dependent signalling,

yet protective immunity, which is independent of TLR4,

does require MyD88. To reconcile these observations, we

now therefore need to determine the contribution of PRRs

to the different mechanisms of protective immunity

against S. Typhimurium.
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