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In a recent work on the wave of advance of a beneficial technology and associated
hitchhiking of cultural and biological traits, we simulated the advance of neolithic agri-
culture into Europe. That model embraced geographical variation of land fertility and
human mobility, conversion of indigenous mesolithic hunter-gatherers to agriculture, and
competition between invading farmers and indigenous converts. A key result is a sharp
cultural boundary across which the agriculturalists’ heritage changes from that of the
invading population to that of the converts. Here we present an analytical study of the
cultural boundary for some simple cases. We show that the width of the boundary is
determined by human mobility and the strength of competition. Simulations for the full

model give essentially the same result. The finite width facilitates irreversible gene flow
between the populations, so over time genetic differences appear as gradients while e.g.
linguistic barriers may remain sharp. We also examine the various assumptions of the
model relating to purposeful versus. random movement of peoples and the competition
between cultures, demonstrating its richness and flexibility.

Keywords: Wave of advanced; Neolithic; culture; boundary; Neanderthal; agriculture;
Indo-European; computer model.

1. Introduction

Mathematics has become established as the language of science, but its usefulness
deteriorates as the complexity of the system under study increases. Thus while
quantum physics produces extremely accurate predictions, chemistry is in less exact
correspondance and mathematical biology still poorer. One can debate how useful
such techniques are in examining human prehistory.
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From an archaeological perspective, it is worth recapping what modeling
and simulation can and cannot hope to achieve. Firstly, we distinguish between
modeling, mathematics and simulation. A model is based on experience and data,
although it is not a fit to data: it is an explanation of the key factors which under-
lie the history. Mathematics allows us to define rigorously a verbal argument from
which formal proofs of the logical consequences of the argument can be made. A
simulation is a solution to the model in a complex situation, with parameters fitted
to data, which can expose how the model would play out in the real world. Math-
ematics and simulation bring no opinions or value judgements, they are merely a
way of showing what the consequences of the model are, such that the model can
be evaluated against the archaeological record.

However, their key advantage is that the argument from premise to conclusions
is rigorous. Thus rival premises can be examined and discrepancies between model
conclusions and observations can be clearly traced to erroneous premises. This is
most useful if the model is a “null hypothesis”, incorporating the fewest assumptions
to see if they are sufficient to explain the observations.

Here we discuss the features which should be considered in building a mathe-
matical model of the emergence and spread of human populations. We are strongly
influenced by the arguments and models of Ammermann and Cavalli-Sforza, Fort
and Renfrew [3, 4, 19–21] which we extend to multiple populations. Previously, we
showed how the parameters of this “wave of advance” model can be related to bio-
geographical data and presented simulations for Europe, India and Africa [1]. We
present some mathematical results to show how distinct cultural boundaries arise
in the model and to determine their stability.

2. Mathematical Models of the Wave of Advance

Underlying our model is the obvious premise that food is essential to animal life.
For most of the existence of humans and of our ancestral species, food was pro-
cured by scavenging or hunting and/or gathering, methods attaining a high level of
sophistication by the mesolithic. With the introduction of neolithic agriculture, food
procurement was enriched by active production, a profound technological transfor-
mation. Agriculture was independently invented in 8–10 places around the globe
from each of which it spread outward, generating major increases in population
density. The manner of its spreading has long been debated: was it carried by an
advance of the population of those who invented it — a demic flow [24, 25], was it
adopted by the indigenous people, mesolithic hunter–gatherer societies — a process
of technology diffusion [16, 22], or was it a combination of both with intermarriage,
varying from case to case.

There are three sources of information to draw upon in formulating answers to
these questions: archaeology, linguistics and genetics. However, ambiguities abound
in the interpretation of the data each provides in the context of the advance of agri-
culture. Model-based quantitative analysis in the form of analytic theory, numerical
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simulation, or some combination of both can assist in distinguishing among existing
interpretations and suggesting new possibilities.

Models of the spread of agriculture have now evolved through three genera-
tions. The first generation consists of the wave of advance model of Ammermann
and Cavalli-Sforza [3, 4]. They noted that the archaeologically established dates of
local initiation of agriculture in Europe could be interpreted as a wave of advance
propagating out of the fertile crescent at a speed of 1 km/year. They modeled the
wave of advance as a solution of the FKPP equation,

∂n

∂t
= D∇2n +

1
τ

n(1 − n), (1)

introduced by Fisher [11] and Kolmogorov et al. [18] to describe the advance over
space and time of an advantageous gene into a population. It is well-known that
this model supports a single wavefront advancing with velocity c = 2

√
D/τ . The

two parameters are D, the “diffusion constant” and τ , the time taken for a small
population to increase 2.7-fold. AC took τ to be one generation and back-deduced a
value for D from the observed wave-speed, reassuringly finding that it corresponded
to an anthropologically reasonable value. Here, in the context of the advance of
neolithic agriculture,

n = N/Ns (2)

is the ratio of the local population density N(r, t) to the maximal (saturation)
population density Ns(r) which could be supported at that position, 0 ≤ n ≤ 1.

Later, a time-delayed version of the FKPP equation, effectively considering only
women of childbearing age has been studied [12, 13], while further work addressed
the consequences of the discreteness of population and has introduced more detailed
descriptions of the demic flow within the AC model [14, 15]. This significantly
clarified the relationship between model parameters and anthropological records.

In forming a second generation model (C), Cohen [8] addressed the modification
of the AC model necessary to account for variation of the fertility of the land
for neolithic farming, in addition rederiving a Fisher-type equation from detailed
consideration of the dependence of birth and death rates on food production and
population density. The resulting equation,

∂n

∂t
=

1
Ns

∇ · (DNs∇n) +
1
τ

n1 + n

n0 + n
n(1 − n) (3)

guarantees that no net demic flow occurs when the carrying capacity of the land
is reached despite the locale dependence of Ns(r). The factor n1+n

n0+n in the logistic
term in Eq. (3) takes into account the effects of population density and fertility
dependence of food production rates on birth and death rates. The parameters
Ns, n0, n1 and τ depend in turn on more fundamental parameters relating primarily
to culture, human biology, and land fertility. This model supports a wave of advance
with a speed of

c = 2
√

(n1/n0)(D/τ). (4)
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Subsistence boundaries exist beyond which the growth rate 1/τ and Ns vanish. The
wave of advance stops at subsistence boundaries because 1/τ vanishes there.

Renfrew examined the implications of the AC wave of advance model for the
spread of languages. In particular, he proposed that the wave of advance of agri-
culture into Europe carried with it the Indo-European languages, while into India
it carried Dravidic, with Indo-European following on a later expansion.

The third generation model (ASSC) [1] involves combining the spatial depen-
dence of the fertility with the idea of three discrete populations: original farmers
(F), indigenous hunter-gatherers (H), and converts (X) who adopt the farming tech-
nology without adopting some marker cultural trait or traits of the original farmers
and conversion from one population to another [5]. It addresses this issue of hitch-
hiking of cultural traits alongside advantageous technology. Terms representing
the kinetics of conversion to farming, the competition for land use, and inter-
cultural assimilation were incorporated into the model, resulting in the following
equations:

∂nF

∂t
=

1
NF

s
∇ · (DNF

s ∇nF ) + λnF nX(nF − nX)

+
1

τF (N t)
nF (1 − nF − nFH − nFX), (5a)

∂nH

∂t
=

1
NH

s
∇ · (DNH

s ∇nH) − γHnH(nF + nX)

+
1

τH(N t)
nH(1 − nH − nHF − nHX), (5b)

∂nX

∂t
=

1
NX

s
∇ · (DNX

s ∇nX) + γXnH(nF + nX) − λnF nX(nF − nX)

+
1

τX(N t)
nX(1 − nX − nXF − nXH). (5c)

Here D is the demic diffusivity, assumed the same for all three populations.
τi(N t) sets the timescale for the increase of each population i = F, H, X . N t =∑

i Ni is the total population density of all types, which enters τi in a way similar
to 1/τ n1+n

n0+n in [8, Eq. (3)]. N i
s(r), the maximum population possible (“saturation”).

The ni are the fractions of its maximum population currently attained by popula-
tion, i and nij = njN

j
s /N i

s means that competition enters in a way derived from
the assumption that each extra person in a region can occupy (or defend) an equal
amount of land regardless of whether that extra person is F, H or X. This reduces
the land available for others to grow food. The parameter γH sets the timescale
for conversion of H to X with γX = γHNH

s /NX
s . λ sets the rate at which X are

assimilated into the F culture and vice versa. It is thus assumed that nobody dies
in conversion or assimilation.

Although their derivation is lengthy, Eqs. (5) alone constitute the ASSC model.
It was parameterised for simulation of the advance of Neolithic agriculture into
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Europe and India and of the much later advance of European agriculturalists into
southern Africa. Time-dependence of coastlines, variable geographic fertility and
the terrain-dependence of D were all included using available data. Several findings
are worthy of particular note. First, a moving cultural boundary between F or X and
H is formed — equivalent to the AC wave of advance. Second, a cultural boundary
can form between F and X, behind which F, and ahead of which X, live at saturation
densities. This boundary forms on a timescale 1/γH and has width

√
D/λ: it moves

slowly and ultimately follows lines of low fertility. Third, subsistence boundaries
can form, with geography causing the FH wave to be diffracted at bottlenecks such
as around the Bosphorus, Black Sea and Northern Italy, which can give rise to
distinctive cultures.

For the specific parameterisations in Ackland, et al. (2007), the cultural bound-
ary was found within Europe running southwest to northeast, Fig. 1. In India the
cultural boundary runs into the Himalayas, splitting the X population in a way
comparable to the geographical bifurcation of the Dravidian languages.

Compared with the archaeological evidence, the model fails to show the wave
front sufficiently elongated along the Rhine-Danube or Indus corridors. It also fails
to produce island and early coastal development. This failure of the model as null
hypothesis is clear evidence for the importance of waterways [9].

These findings are important and controversial enough to warrant deeper mathe-
matical and structural analysis of the model. The discovery of the cultural boundary
has important implications for genetic gradients and trees, and for language trees as
well. According to the model, demic flow occurs across the cultural boundaries and
is balanced by cultural assimilation within the majority population, thus providing
a continual flow of genetic material, which assimilation cannot destroy.

Accordingly, in the present paper we carry out an analytic study of the per-
sistence of a stationary cultural boundary within a homogeneous terrain (i.e. N i

s

constant). We shall show the FX boundary to be marginally stable in infinite,
homogeneous terrain, destabilized by coastlines and regions of increased fertility,
but stabilised by regions of decreased fertility into which the boundary can lock.

Fig. 1. (Color online) A cultural boundary formed in simulations with the full model based on a
fertility map of Europe. The left panel shows the final distribution of invading neolithic farmers;

the right panel shows the area occupied by converts to farming technology. Orange shows the
population density, while shades of green indicate the fertility N i

s(r).
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We shall first illustrate the richness and flexibility of the ASSC model by discussing
the advance of a single population into virgin territory, the emergence of an advanta-
geous technology (farming), and the advance either by demic flow or by technology
diffusion of the advantageous technology as a moving cultural boundary. The next
sections are primarily mathematical, but we summarize the archaeological meaning
of the results at the end.

3. Wave of Advance as an Advancing Cultural Boundary:
Mathematical Analysis

The populations at any point in space x and time t can be labelled by n(x, t) =
(nF (x, t), nH(x, t), nX(x, t)). In this notation, the ASSC model allows five spatially
uniform fixed points, as follows:

(0, 0, 0) is trivial — no people, and is unstable to any fluctuation.
(0, 1, 0) hunters everywhere is the typical starting configuration: it is unstable to

fluctuations in nF or nX . It is this instability that gives rise to the wave of advance
F or X into a saturated population of H.

(0.5 0 0.5) is unstable against a general fluctuation in nF and/or nX . This would
be the population composition locally at a stationary cultural boundary between
F and X such as we had observed, e.g. in our simulation of the advance of farming
into Europe, Fig. 1, and its instability raises questions about the persistence of
stationary cultural boundaries in homogeneous terrains which we address in the
next section.

(1, 0, 0) and (0, 0, 1) are the only globally uniform stable states. A persistent
cultural boundary manifests as a stable inhomogeneous population between the
corresponding two locally uniform and locally stable states. As we shall see in
Sec. 4, a suitable local inhomogeneity in fertility is required for its existence.

In the absence of such an inhomogeneity, the advantageous technology advances,
borne either by its originator farming population (F) or converts (X). There is a
moving cultural boundary between peoples having and not having the technology,
the wavefront of the wave of advance. In our model, this cultural boundary is
between non-equivalent populations, and one can expect to find cultural artifacts
representing each group.

3.1. Emergence of hunters/gatherers from ice age refugia

At the end of the last ice age, Mesolithic hunter/gatherers were localized in refugia,
for example in Europe in the Spanish/French, Moldavian, and Ukrainian refugia.
As the climate warmed, they expanded outward into Europe in waves of advance
resulting in saturation of all suitable landscapes. the emergence of each wave was
probably constrained by environmental evolution rather than governed by the pop-
ulation dynamics modeled by the FPKK equation. Nevertheless, in this section we
shall use the FPKK equation as a way to introduce the mathematical methods we
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shall use to analyze applications of the more complex ASSC model. We consider a
single population of hunters H of density N in its early stage of emergence from a
refugium into a one-dimensional terrain. The population density is then well below
saturation, N � Ns, where Ns is the saturation population, so that the FPKK can
be linearized

∂N

∂t
= D

∂2N

∂x2
+

1
τ

N. (6)

In later applications, we find that the ASSC equation can be linearized and
separated to adopt the same form.

We solve this equation using a Fourier Transform method.
To solve this, let the initial condition be N(x, 0) and define a Fourier transform

over space,

M(k, t) =
∫

e−ikxN(x, t)dx,

N(x, t) =
1
2π

∫
eikxM(k, t)dk,

M(k, 0) =
∫

e−ikxN(x, 0)dx,

N(x, 0) =
1
2π

∫
eikxM(k, 0)dk.

Inserting N(x, t) into (6) and using Fourier transform,

dM(k, t)
dt

=
(
−Dk2 +

1
τ

)
M(k, t), (7)

which implies

M(k, t) = M(k, 0) exp
(
−Dk2 +

1
τ

)
t. (8)

For the initial condition f(x) on the population N(x, t) of the refugium, we
assume a Gaussian (normal) distribution for a total of ν hunters who are initially
localized in a region of width σ around x = 0,

f(x) ≡ N(x, 0) = ν
exp(−x2/2σ2)√

2πσ2
, (9)

from which it follows immediately that M(k, 0) = ν exp(−σ2k2/2), and therefore:
M(k, t) = ν exp[−(Dt + σ2/2)k2 + t/τ ], which can be inverse transformed to give
the time and position dependence of the population:

N(x, t) =
ν√

π(4Dt + 2σ2)
exp[−x2/(4Dt + 2σ2) + t/τ ]. (10)

Given this exact solution, we need to know whether it will develop into a wavelike
form. A characteristic of a wave-like solution is that the point (xA) where the
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number density has fixed value A moves at constant speed v = |dxA/dt| independent
of time and the value of A

Substituting x = xA and N(x, t) = A, and solving for xA gives

xA = ±
√

(4Dt + 2σ2)[t/τ − ln(
√

π(4Dt + 2σ2)A/ν)]. (11)

Continuing with our assumption that we are dealing with a small initial popu-
lation, i.e. the Gauss-asymptotic condition 4Dt � 2σ2 is met before the population
becomes large enough that the initial linearization is invalid, Max[N(x, t)] � Ns.
The maximum population is always at the center,

Max[N(x, t)] = N(0, t) = ν
exp(t/τ)√

π(4Dt + 2σ2)
. (12)

In order for the initial perturbation to be small ν � √
2πσNS , and then pro-

viding that these small-perturbation conditions are met, Eq. (11) becomes

xA = ±2
√

(D/τ)t, (13)

so that the wavespeed becomes v = xA/t = 2
√

D/τ when t � τ , which is indepen-
dent of time and A provided the perturbation is small and the linear approximation
remains valid. We can show that this result is independent of the shape of f(x),
provided it is small and smooth, by taking the inverse FT of M(x, t) [Eq. (8)]

N(x, t) =
∫

dy
exp[−(x − y)2/4Dt]√

4πDt
f(y) exp(t/τ). (14)

When
√

4πDt is greater than the width of f(x), this becomes

N(x, t) = et/τ exp[−x2/4Dt]√
4πDt

∫
f(y)dy. (15)

The exponential dependence on x2 and t in the numerator dominates the alge-
braic dependence in the denominator, so again we obtain xA = ±2

√
D/τt and

v = 2
√

D/τ .
Thus when population growth is initiated from a small local disturbance, after

a short incubation period two waves of population expansion advance in opposite
directions at speed v = 2

√
D/τ with a shape independent of the initial fluctuation.

The wave is driven forward by migration from the increased population density of
hunters behind the wave front, which rises to saturation. The controlling parameters
for the wave speed are D, the rate at which new territory can be colonized, and τ ,
the rate of population growth.

3.2. Emergence of farming

Farming emerged gradually over an extended period in various locales within
genetically homogeneous populations of hunters and gatherers. In the simulations
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carried out with the ASSC model, it was assumed that the newly emerged farming
population, a rising from among the hunters H, had completed this process, satu-
rated that locale, and then propagated outward as population F into neighboring
regions occupied solely by H who were potential converts X. In this section, we
examine the earlier stages of that emergence in a simplified model to provide a
mathematical description of the process and to make a point important to under-
standing the transition from a moving to a stationary cultural boundary as discussed
in Sec. 4. We consider a uniform, one-dimensional terrain saturated with a popula-
tion of H, time-independent until farming is initiated at time zero by a small local
population of farming innovators F. Some hunters convert to farming. As those H
who convert to farming are genetically identical with the pioneering farmers, there
is no need to distinguish a separate population X, and a two population version of
the ASSC model suffices:

∂nF

∂t
= D

∂2nF

∂x2
+ (1/τ)nF (1 − nF − nH/r) + γnF nH , (16)

∂nH

∂t
= D

∂2nH

∂x2
+ (1/τ)nH(1 − nH − rnF ) − rγnF nH . (17)

We assume that the terrain is favorable for farming, significantly more efficient
for food production than hunting/gathering, and define a new parameter, r, which
represents the advantage conferred by farming in terms of the total number of
people that the land can support r = NF

s /NH
s � 1. We assume also that nF � 1

everywhere and nH = 1 − δH is everywhere close to 1 with δH � 1 and vanishing
initially, while nF = f(x) � 1 initially. Under these assumptions, Eqs. (16) and (17)
linearize and simplify to

∂nF

∂t
= D

∂2nF

∂x2
+ (1/τ + γ)nF , (18)

∂δH

∂t
= D

∂δH

∂x2
− (1/τ)δH + r((1/τ) + γ)nF . (19)

Equation (18) is identical to Eq. (6) and can be solved by the same procedure with
the result that

nF (x, t) = exp[(1/τ + γ)t]
∫

exp[−(x − x′)2/4Dt]√
(4πDt)

f(x′)dx′. (20)

Inserting this result for nF (x, t) into Eq. (19) and employing the same procedure
to solve it yields for δH(x, t),

δH(x, t) = r

(
(1 + γτ)
(2 + γτ)

[exp(τ−1 + γ)t] − exp(−t/τ)
)

nF (x, t). (21)

We see from Eq. (21) that with the large value of r and an additional exponential
dependence on time, δH(x, t) can grow out of the linear domain far more quickly
than nF (x, t). Consequently, nH rapidly becomes small where that has happened,
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and the conversion term locally drops out of the equation for the evolution of nF .
We infer from these results and the analysis of Sec. 3.1 that in a terrain much more
favorable for farming than for hunting, r � 1, the following holds:

• The initial advance of farming occurs at a speed of 2
√

[D/τ + Dγ)], a result
previously noted in the mathematical biology literature [26, 27].

• Behind but near the advancing toe of the wave, the H population is rapidly wiped
out, both by conversion to farming and by lack of success in the competition for
land.

• The evolution of farming becomes governed there by the single population dynam-
ics of Sec. 3.1, and the wave speed slows to 2

√
(D/τ). When γ � (1/τ) this has

little effect on the shape of the wave front, behind which the F grows to satu-
ration in the absence of H without further conversion; otherwise, the toe of the
wave advances more rapidly than the main body, containing the newly converted
as well as the demic flow of already established farmers. The role of the relative
land fertility, as expressed through the value of r, in the contrapuntal interplay
among conversion, growth, and land competition proves key to understanding
the dynamic population patterns in the wave of advance of farming in the full
three population case, Sec. 3.3, and the conversion of a moving to a stationary
cultural boundary in Sec. 4.

The above discussion concerns the growth of farming once the technology has
become significantly more productive than hunting and gathering, i.e. r � 1, and
provides a rationalization of the initial conditions used in the simulations of the
spread of agriculture in Europe Asia, and Africa with the ASSC model. However,
this two-component model can as well be used to describe the much slower emer-
gence of farming as it first becomes competitive with hunting and gathering, i.e.
when r first exceeds 1. Clearly, if r < 1, there is no motivation to convert, and
γ must be taken as vanishing. As the technology slowly improves and r increases
beyond unity, γ presumably increases as well. However, for simplicity we shall ignore
this slow increase and assign γ a small value which can be taken a constant over the
generation time τ . Note that Eq. (16) contains 1/r which was ignored in obtaining
Eq. (18) by linearization. Restoring it yields a modified version of Eqs. (20) and (21)

nF (x, t) = exp[(1 − r−1)/τ + γ)t]
∫

exp[−(x − x′)2/4Dt]√
(4πDt)

f(x′)dx′, (22)

δH(x, t) = r

(
(1 + γτ)

(2 − r−1 + γτ)
exp([1 − r−1 + γτ ]t/τ) − exp(−t/τ)

)
nF (x, t). (23)

One sees from Eqs. (22) and (23) that with r near 1 and γ small, nF and δH

grow slowly, consistent with a gradual evolution of the farming technology and
concomitant increase of r and γ before it spreads rapidly by demic flow on a large
scale.
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3.3. Wave of advance of farming as a moving cultural boundary

We consider now the full three-population case of farmers F invading a one-
dimensional terrain favorable for farming, r � 1, but initially fully occupied by
hunters H genetically distinct from the F, some of whom, X, subsequently convert
to farming. We imagine that a small number of F colonizes a local region, with
the initial value f(x) = nF (x, 0) � 1 below saturation everywhere and that of the
converts nX(x, 0) everywhere zero. The ASSC model, Eq. (5), then linearizes at
early times to

∂nF

∂t
= D

∂2nF

∂x2
+ (1/τ)nF , (24)

∂nX

∂t
= D

∂2nX

∂x2
+ ((1/τ) + γ)nX + γnF , (25)

∂δH

∂t
= D

∂2δH

∂x2
− (1/τ)δH + r((1/τ) + γ)(nX + nF ). (26)

Here, as before, we assume that nH = 1 − δH . Using the methods of Sec. 3.1 of
the Supplementary Information, we obtain the solutions,

nF (x, t) = exp(t/τ)
∫

dx′f(x′)
exp[−(x − x′)2/4Dt]√

4πDt
, (27)

nX(x, t) = (exp(γt) − 1)nF (x, t), (28)

δH(x, t) = rnF (x, t)
1 + γτ

2 + γτ
(exp[(2 + γτ)t/τ ] − 1). (29)

These results imply the following.

• The farming colony grows and initiates an outward wave of advance moving at the
single-population speed 2

√
(D/τ), Eq. (27).

• The converts, starting from zero, initially grow more rapidly than the farmers
because of the factor (eγt − 1) in Eq. (28) and could overtake and overwhelm
the farmers were it not for the fact that this early rapid growth depends on the
presence of a nearly saturated population of hunters.

• Because of the large value of r favoring agriculture and the strong exponen-
tial factor in Eq. (29), δH rapidly increases out of the linear domain, and nH

becomes small, eliminating the conversion process from the dynamics before nX

becomes large enough for the converts to compete with the farmers successfully;
nF remains larger than nX everywhere.

• Over time, the nonlinear, competitive, assimilation-dynamics in Eqs. (5a)
and (5c) suppresses the converts, reducing nX to zero behind the wave.

• Consequently, behind the wave of advance of the farmers, there is an accompa-
nying pulse of converts, initially growing according to Eq. (28) and then decay-
ing because of the effects of the loss of hunters to convert and of subsequent
assimilation.
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• A moving cultural boundary results behind which the farming population grows
to saturation with a small admixture of the genes of the aboriginal hunters.

The final four conclusions were obtained by combining extrapolations from the
linear domain with a qualitative analysis of the full nonlinear equations. Numerical
simulations support these results in full detail.

Technology diffusion: Eqs. (28) and (29) imply that for given τ, γ, and λ, there is
a critical value of farming advantage r > 1 below which converts will dominate
and suppress both the farmers and the hunters after the introduction of the new
technology. The larger the rate of conversion γ, the larger that critical value of
r can be. Thus, provided the productivity of agriculture is not too much greater
than that of hunting and providing that the rate of conversion is not too slow,
converts can out-compete the invading farmers because of the exponential factor
in Eq. (28) and change the process of the advance of agriculture from demic flow
to technology diffusion. Broadly, this occurs if the number of hunters adopting the
technology is greater than the number of converts being assimilated into farming
culture. Technology diffusion is illustrated by the simulations displayed in Fig. 2.

Fig. 2. (Color online) Wavefronts of F (green) H (red) and X (blue) illustrating technology
diffusion in homogeneous terrain from a point source of F. At early time (dashed lines) a small
group of converts is found in the toe of the wave, but the diffusion is primarily demic. At later times
(solid lines) the wave of advance is driven by X (technology diffusion), with a cultural boundary

left behind at x = 80 the remnant population of F in the toe of the wave ultimately dies out. In
this and other figures we use the parameters reported in [1] except where stated otherwise.
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4. Steady State Cultural Boundary: Mathematical Analysis

From the ASSC model, there emerges the idea of a cultural boundary at which
the population switches to converts retaining their culture from primarily migrants
with the culture in which technology originated. The easiest example corresponds
to a uniform space (constant D, Ns) with (1, 0, 0) as x → −∞ and (0, 0, 1) as
x → ∞. Somewhere in between, at steady state, there is a cultural boundary. To
make analytic progress we assume that the time scales τi are independent of current
population density. Subsequently we check this assumption numerically. For the rest
of this section, we redefine dimensionless time and space units x → x/

√
D/λ, t →

λt, and assume that D, λ and τ are constant, independent of n, position and time.
A cultural boundary between farmers and converts occurs in an asymptotically

steady state with dn/dt = 0, nH = 0. Prior to that, unless nF + nX = 1 everywhere,
the logistic growth term is non-zero, and the global population rapidly relaxes
towards saturation, as discussed below.

The steady state solution for nF must satisfy

d2nF

dx2
+ nF nX(nF − nX − 1) = 0 (30)

with an equivalent symmetrical equation for nX . Without loss of generality, we
define the boundary by assuming that the state at n(x = 0, t = 0) = (0.5, 0, 0.5).
Due to symmetry nF (x) = nX(−x) = 1 − nX(x) ≡ n. Also nF − nX = (2nF − 1).
Substituting this into (30) we find that both populations must satisfy:

dn

dt
=

d2n

dx2
+ n(1 − n)(2n − 1) = 0 (31)

at all locations x. The first integral of Eq. (31) with respect to n gives
[
dn

dx

]2
− n4 + 2n3 − n2 = a, → dn

dx
=

√
a + n4 − 2n3 + n2. (32)

Now, since at saturation at x = −∞, n = 1 and dn
dx = 0, the constant of

integration a = 0, and, surprisingly, Eq. (32) simplifies to

dn

dx
= n(1 − n). (33)

Integrating from the origin (x = 0, n = 1/2, dn
dx = 1/4),∫ n

1
2

dz

z(1 − z)
=

∫ n

1
2

dz

[
1
z

+
1

1 − z

]
= ln

[
n

1 − n

]
= x (34)

follows, whence

nF = [1 + exp(−x)]−1, (35)

giving a boundary with a unit width (i.e.
√

D/λ). This is the width of the cultural
boundary (see Fig. 3), and the width is significant because it determines the area
in which the cultures overlap. For markers which can become permanently mixed,
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Fig. 3. (Color online) Shape of cultural boundary for the full model [1] in 1D started with (1, 0, 0)
at x = 0 and (0, 1, 0) elsewhere. with increasing competition λ (values for simulations given in
inset, analytic case corresponds to λ = 0.02); also D = 1, γ = 0.0008 and τ = 18.30127.

such as genes, the size of the overlap will determine the degradation over time of
the ability of such markers to measure distinct cultures.

We turn now to the stability of the cultural boundary against fluctuation in one
or the other population. Defining n± = nF ±nX , we find that the total population
n+ obeys the Fisher equation [11] with a weakly density-dependent timescale:

∂n+

∂t
= D∇2n+ +

1
τ
n+(1 − n+).

Consider a small perturbation δn+ about the fixed point n+ = 1,

∂δn+

∂t
= D∇2δn+ +

1
τ

δn+(1 − 2n+) = D∇2δn+ − 1
τ

δn+.

Solving by Fourier transform,

δn+ =
∫

νkeikxdk with νk =
1
2π

∫
e−ikxdxδn+,

gives

∂νk

∂t
= −Dk2νk − 1

τ
νk, and νk = νk(0) exp

[
−

(
Dk2 +

1
τ

)
t

]
.
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Since D and τ are positive, any perturbation decays away exponentially at a rate
greater than 1/τ . Turning now to perturbation in the difference n−,

∂n−
∂t

= D∇2n− +
1
τ
n−(1 − n+) + λ(n+ + n−)(n+ − n−)n−/2. (36)

Since we have proved that the stable case relaxes to n+ = 1 on the rapid
timescale τ � 1/λ, this simplifies to

∂n−
∂t

= D∇2n− + λ(1 − n2
−)n−/2, (37)

similar to Eq. (31). Consider the perturbation δn− to this equation,

∂δn−
∂t

= D∇2δn− + λ(1 − 3n2
−)δn−/2. (38)

To investigate stability, we set some initial perturbation Φ(x) at t = 0,

δn− = −Φ(x) exp(ωt). (39)

Writing 2nF −1 for the unperturbed n− for all x, Eq. (38) becomes the Schrödinger
equation,

−∂2Φ
∂x2

+ V (X)Φ = −ωΦ, (40)

with V (x) = 1−6nF (1−nF ). Rewriting the solution for nF from above as 2nF −1 =
tanh(x/2) gives

V (x) = 1 − 3
2 cosh2(x/2)

. (41)

An eigenfunction solution is then

Φ =
1

cosh2(x/2)
. (42)

As one sees by direct substitution, the corresponding eigenvalue −ω is zero. As
Φ is nodeless, this must be the lowest eigenvalue, so all other ω values are negative
and the cultural boundary is stable against all fluctuations except Eq. (42). By dif-
ferentiating Eq. (35), one sees that this mode consists of a simple time-independent
displacement of the position of the boundary. Thus the cultural boundary has neu-
tral stability and moves in response to nonuniformity in fertility and thence Ns.

These analytic results come from a linearization of the ASSC equation, which
is identical to the linearization of the FKPP equation. In Fig. 3 we show that the
analytic result is in good agreement with numerical results for the full, non-linear,
ASSC model.

To summarize this section, we have shown that, in the absence of any techno-
logical or geographical advantage, a boundary can still form and persist between
two cultures; it will be neutrally stable against fluctuations. The boundary region
will depend upon D, the diffusion rate of the population, and upon λ, the rate of
assimilation of one population by another.
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4.1. Geographical effects: pinning

In this section, we show that the cultural boundary can be pinned by a region of low
fertility, such as a mountain range, but is destabilised by a region of high fertility.

Let Ns = N I
s everywhere except between ±a (region I) while between ±a

(region II) it is Ns = N II
s . Define r̃ = N I

s /N II
s as the ratio of the fertilities,

such that ar̃ is a measure of the severity of the infertile region. Finally, recall that
the uniform stationary state is n = (100) or n = (001).

We assume nF +nX = 1 through the boundary, with nF (−∞) = 0; nF (∞) = 1.
From Eqs. (31)–(33), the assumed stationary solution for n = nF satisfies

dn

dx
=

√
A + n2(1 − n)2. (43)

Since dn
dx (±∞) = 0, n(∞) = 1, and n(−∞) = 0, the integration constant A must

vanish. Integrating Eq. (43) in region I, we find∫ n(x)

n(a)

dn

n(1 − n)
= ln

n

1 − n

1 − n(a)
n(a)

=
∫ x

a

dx = x − a, (44)

n =
n(a)

1−n(a)e
x−a

1 + n(a)
1−n(a)e

x−a
=

1

1 + 1−n(a)
n(a) ea−x

. (45)

In region II, supposed narrow with a � 1, we can make the linear expansion
n = 0.5 + gx since n(0) = 0.5 by symmetry.

One boundary condition at x = a is that the number of people leaving region I
is equal to the number arriving in region II, and vice versa, so via Fick’s law of
diffusion,

DN I
s

dnI(a)
dx

= DN II
s

dnII(a)
dx

.

Consequently, g = (N I
s /N II

s )dnI

dx (a) = r̃n(a)[1 − n(a)] ≈ r̃/4.
The second boundary condition is nI(a) = nII(a), i.e. the fractional population

density must be the same on each side of the boundary:

n(a) =
1
2

+ ga =
1
2

+ r̃n(a)(1 − n(a))a =
1
2

+
1
4
r̃a,

so, in the linear domain

for |x| < a : n(x) =
1
2

+ gx =
1
2

+
1
4
r̃x

for |x| > a : n(x) =
1
2 + 1

4 r̃a

(1
2 + 1

4 r̃a) + (1
2 − 1

4 r̃a)e−(x−a)

=
1

1 + e−(x−a)
+

r̃a/2
1 + e−(x−a)

[
1 − tanh

(
x − a

2

)]
. (46)

To check the stability of this boundary, we consider how a small fluctuation
in population evolves in time: n → n(x) + δn, where n(x) denotes the stationary
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solution. Using Eq. (31) with the time-dependence restored and using the fact that
n = n(x) is stationary to eliminate the leading terms, we find to first-order in δn

that

d(n + δn)
dt

=
d2(n + δn)

dx2
+ (n + δn)(1 − n − δn)(2n − 2δn − 1), (47)

dδn

dt
=

d2

dx2
δn + [6(n − n2) − 1]δn. (48)

This can be solved using the Fourier transform δn = νeωt to determine whether
δn will grow or decay.

ν′′ + [6n(1 − n) − 1]ν = ων, (49)

where n = n(x) is the steady state solution. Because a is small, we assume that the
population distribution will be similar to that of the boundary in infinite terrain,
with the barrier causing a small perturbation. The steady state for the population
which predominantly occupies the region of negative x, (i.e. n(x)) can be expanded
everywhere about its unperturbed (i.e. a = 0) value n0. To first-order in a, then,

n = n0 + ∆n,

n0 =
1

1 + e−x
,

∆n =
(1 − ea)

(ex + ea)(1 + e−x)
+ r̃ae−(x−a)[1 + e−(x−a)]−2, |x| > a,

=
1
2

+
(r̃ − 1)

4
x, |x| < a.

Because of the symmetry of the problem, ∆n must be an odd function of x. Fur-
thermore, it must be positive for x > 0 when r > 1 (small region of lower fertility)
but negative for x > 0 when r < 1 (small region of higher fertility). Inserting this
expansion of n into Eq. (31) yields

ν′′ + [6n0(1 − n0) − 1]ν + 6(1 − 2n0)∆nν = ων.

Note that this equation is an eigenvalue problem and has the form of Eq. (40) with
the small term in δn perturbing the remainder of the lhs, suggesting the expansion
ν = ν0 + ∆ν, ω = ω0 + ∆ω.

From Eq. (42), we know that the solution with a = 0 is

ν0 =
1

cosh2(x/2)
, and ω0 = 0,

and by first-order perturbation theory, with 6(1− 2n0)δn as the perturbation,

∆ω =
∫
(n2

06(1 − 2n0)δndx∫
n2

0dx
.
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The function (1 − 2n0)δn is everywhere negative for r̃ > 1 and everywhere
positive for r̃ < 1.

Thus the boundary is stabilized by a local decrease in fertility (r̃ > 1) at x = 0
and destabilized by an increase (r̃ < 1).

This is a crucial result, since it shows that within our model we can expect cul-
tural boundaries to be coincident with natural geographical features of low fertility,
which is obviously true for many national borders and has broad significance for
patterns of human migration.

4.2. Semi-infinite terrain

In the previous section, we assumed that the fertile terrain extends forever in all
directions. We now assume fertility goes to zero at x = 0, a coastline, and continues
at some constant value inland. We show that an FX cultural boundary is unstable
in this case, with the landward population advancing.

According to the boundary condition at the interface at x = 0, the population
density must be equal across the boundary, with nobody in the infertile regions
N(x < 0) = 0. Since N = Nsn and Ns = 0, this does not require a zero-scaled
density n at the boundary. However, people will not diffuse into the sea, so the
demic flow must be zero, implying dn

dx |x=0+ = 0.
We now assume that a stationary solution for n(x) exists which describes a

cultural boundary. From Eq. 43 above, we know the form for dn/dx,

dn

dx
=

√
A + n2(1 − n)2. (50)

A cultural boundary at x0 implies that dn
dx (∞) = 0 and n(∞) = 1. It follows

that A = 0 and n(x) = [1 + e−(x−x0)]−1.
With this result for n(x), we find

dn

dx

∣∣∣∣
x = 0+

=
1

4 cosh2((x − x0)/2)

= 0.

Thus the two boundary conditions cannot be satisfied simultaneously under the
assumption of the presence of a stationary cultural boundary. The cultural bound-
ary is unstable, it moves towards x = 0, generating a solution with F everywhere
(n = 1).

Simulation of this with the full model (Fig. 4) illustrates the analytic results
described above in eliminating a minority coastal culture. There are two compet-
ing effects: for high conversion factor, the interface is so narrow that there is no
discernable conversion. Furthermore, since the inland population are assimilated
before they reach the coast, the situation is effectively the same as in infinite ter-
rain. As the conversion factor reduces, so there is more interdiffusion, more contact,
and the conversion rate increases. For very small conversion factor, the rate reduces
again. The green line for λ = 0 overlies the large λ limit: in both cases the minor-
ity culture survives, but the distribution is completely different. In the “tolerant”
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Fig. 4. (Color online) Demise of minority population in a semi-infinite region for various values
of λ: Green = 0.005 (sharp boundary in space), Black = 0.001, Blue = 0.0005, Red = 0.0001,
Green = 0.0 (no boundary).

λ = 0 case, the populations mix and the cultural boundary is destroyed, while in
the “hostile” large λ case the minority culture stays in its own enclave. Except for
these two extremes which allow the minority culture to survive, the coastal popula-
tion is gradually eliminated. Thus a state of limited tolerance is the most effective
way to eliminate a minority culture.

4.3. Large finite terrain

In Sec. 4.1, we proved that a cultural boundary could exist in an infinite region.
We now consider a finite region, an island say, and ask whether it can support two
cultures.

Assuming that the terrain is homogeneous in NS for x from −L to L, can the
boundary survive? We show that a solution exists for the boundary at x = 0, but
that this boundary is unstable with respect to small displacements.

We start again with Eq. (43),

dn

dx
=

√
A + n2(1 − n)2.

If we assume impermeable boundaries so that dn
dx (±L) = 0, then the constant of

integration is A = −n(±L)2(1 − n(±L))2 which implies either a uniform solution,
n(−L) = n(L), or a cultural boundary, n(−L) = 1− n(L). Assuming the existence
of a stable cultural boundary, the symmetry of the boundary condition on dn/dx,
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and the antisymmetry about n = 1
2 of the boundary condition on n itself, imply

that the cultural boundary is at x = 0 where n = 1
2 .

Using n(0) = 1/2 and integrating Eq. (43) gives

x =
∫ n(x)

1/2

dy√
A + y2(1 − y)2

. (51)

Following the analysis of Sec. 4.1 for stability against small perturbations δn,
we start from

dδn

dt
=

d2

dx2
δn + [6(n − n2) − 1]δn.

Fourier transforming again produces the eigenvalue equation,

d2ν

dx2
+ [6(n − n2) − 1]ν = ων.

We already know the solution for the infinite case, Eq. (35), and its neutrally
stable eigenfunction,

n∞ = [1 + exp(−x)]−1; ν∞ = cosh−2(x/2); ω∞ = 0.

For large L, we assume the solution is a small perturbation to this

n = n∞ + ∆n; ν = ν∞ + ∆ν; ω = ω∞ + ∆ω = ∆ω.

The eigenvalue equation becomes, to first-order,

d2ν

dx2
+ [6n∞(1 − n∞) − 1]ν + [6(1 − 2n∞)∆n]ν = ων.

The perturbing operator in the eigenequation is [6(1 − 2n∞)∆n], from which
the perturbation for ω is given by

ω = ∆ω =
∫

ν2∞6(1 − 2n∞)(n − n∞)dx∫
ν2∞dx

. (52)

To determine whether the boundary is stable, we are interested in the sign of
∆ω. ν2

∞ is obviously positive. By comparing Eq. (43) for n(x) for x > 0 with
the corresponding equation with A = 0 for n∞(x), and making the analogous
comparison for x < 0, we find that for

x < 0,
1
2

> n > n−∞; while for x > 0,
1
2

< n < n∞.

It follows that (n − n∞) and (1 − 2n∞) have the same sign so that the integrand
is positive, as is ω. Thus the perturbation grows exponentially in time, and the
cultural boundary is unstable in finite terrain with respect to movement into the
minority population.
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4.4. Small finite terrain

For large finite terrain, we found a solution as a small perturbation around the
infinite system. If the terrain is narrower (i.e. of order the width of the wave-
front,

√
D/λ), then the perturbation approach may not apply. Starting again with

Eq. (51) with

A = −n(L)2(1 − n(L))2,

we can complete the square and rewrite Eq. (51) as

x =
∫ n

1
2

dy√
[y(1 − y) +

√
A][y(1 − y) −√

A]
.

At a critical width, the difference in populations even at the edges of the terrain
may not be large, and the divergent term dominates the integrand, so that we can
approximate y in the first term by n(L),

x ≈ 1√
2n(L)(1 − n(L))

∫ n

1
2

dy√
y(1 − y) −√

A
.

After some algebra, we find

n(x) =
1
2

+
[
n(L) − 1

2

]
sin

√
2A− 1

4 x,

which at x = L gives,

1 = sin
√

2A− 1
4 L,

from which we find,

n(L) =
1
2

+

√
1
4
− π2

8L2
.

As n(L) must be real, the above result implies that a stationary cultural bound-
ary cannot exist when L < π

√
D/2λ (after reintroducing the units). This corre-

sponds to a small terrain where individuals can retain their culture while diffusing
throughout the entire populated area. For larger regions where L > π

√
D/2λ, there

is a wave-like solution, but it is unstable with respect to the motion of the wave.
For the parameters used in ASSC, the limit of terrain size within which a bound-
ary can exist (let along persist) is about 100km. Thus on medium-sized islands, it
is impossible to have two separate cultures, unless movement is severely curtailed
(e.g. by mountains or national borders) or assimilation is very fast.

4.5. Stationary cultural boundary in the full model

Our solutions are based on a linearization of the ASSC model, and it is instructive to
check with numerical methods whether they are valid for the full nonlinear model.
Using code developed in Ref. 1 for the full model, the simulations of a stationary
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cultural boundary were done for a variety of strengths of D/λ on a homogeneous
background (Ns = 1), including the density dependence of τ . The full model has a
weak n dependence on the time τ , and the position of the boundary depends weakly
on λ. Of course, one cannot simulate an infinite domain, so one was used which
was large relative to the boundary width. The proper vanishing-current boundary
conditions used in Sec. 4.3 were replaced by fixing n at 0 and 1 at opposite ends and
increasing system size until the results were unaffected. This stabilized the cultural
boundary at the cost of exponentially-small population flows at the ends. As can be
seen in Fig. 3, the analytic results for an infinite terrain and the numerical results
are in excellent agreement. This shows that the assumptions of linearization and
an n and Ns-independent τ which were required to make analytical progress are
reasonable.

4.6. Transition from moving to stationary cultural boundary

In our simulation of the advance of farming into Europe, Fig. 1, we observed the
formation of a stable cultural boundary running across the interior of the continent
from southwest to northeast. The analysis done thus far allows us to identify two
interacting effects which can underlie such transitions. One is a local reduction
of fertility for farming relative to hunting which reduces r (and possibly γ and
λ) and increases τF . The other is a local reduction in ease of human movement
through the terrain, e.g. through a mountain range where D is reduced as well as
fertility. We have already pointed out in Sec. 3.3 that a global reduction of r leads
to a transition from demic flow of agriculture to technology flow. A local fertility
reduction of sufficient amplitude and width does the same as long as the time for
the incoming wave to traverse the region of reduced fertility is long enough for the
converts to initiate their more rapid growth. Similarly, a reduction in D conjoined
with an increase in τF reduces the wave speed of the advancing F, v = 2

√
D/τF ,

thus allowing the rapid initial kinetics of the growth of X to take over. We illustrate
this effect in Fig. 5 with a simulation based on the full ASSC model which shows
how a reduction of NS caused by a mountain in an otherwise homogeneous one-
dimensional terrain initiates the formation of a stable, stationary cultural boundary
just past the mountain. The early time shows the advance of F and the retreat of
H, around t = 400 nX , reaches 0.5 for the first time at both a wave of advance
and a cultural boundary. Soon after, the X population takes on the technology. We
have a boundary of two cultures with equivalent technology which moves back until
pinned by the mountain range.

4.7. Locally advantageous culture; cultural refugia

Finally, we mention an important stabilizing feature of a cultural boundary, that
of a locally advantageous culture. For example, a culture built around growing a
particular crop or hunting a certain animal will be unable to spread into regions
where that resource does not exist. Thus in addition to the weak geographic effect
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Fig. 5. (Color online) ASSC model in terrain with a substantial hill (Brown shape at left indicates
position of hill with reduced fertility (as defined with the σ parameter [1]) going from 17.5 at the
bottom to 5.0 at the top. Lines show positions where populations have n = 0.5, a surrogate for
the position of the wavefront. Green is the wave of retreat of the H. Red is the wave of advance
of the F. Blue are the wavefronts of the X. the wave velocity is constant, but we use a log time
scale to show the fast wave of advance and the slow-moving cultural boundary.

of pinning a cultural boundary, other human cultural boundaries can be entirely
due to biogeographical effects. This can be incorporated into the ASSC model with
the land fertility (Ns) having different spatial variation for different populations.
For example, in previous work with farming in southern Africa [1], an H-culture
without the mediterranean-adapted crops had NH

s = 0 south of a certain latitude,
and NH

s = NF
s = NX

s north of it. Another example is the coexistence of hunt-
ing/gathering cultures with neighboring farming cultures in cultural refugia within
woodlands or jungles unsuitable for the latter. One speculates that the Basque
country might have been such a cultural refugium causing its apparent bypassing
by the wave of advance of neolithic farming.

5. Demic Movement

5.1. Random movement

5.1.1. The Brownian motion analogy

The demic flow term in the FKPP equation is modeled after the corresponding
term in the diffusion equation, thus drawing in the AC model an analogy between
the movement of humans and the random displacements of particles undergoing
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Brownian motion. In this analogy, the probability distribution p(r, t) of the dis-
placement r of a person through an area over a time t as a consequence of such
random movement is

p(r, t) =
exp(−r2/4Dt)

4πDt
. (53)

The diffusion constant D is one fourth the mean-square displacement per unit time.
The latter grows linearly with time and is short-ranged at small times.

5.1.2. Long-range movement

Recently, Brown et al. [6] considered the possibility that the random component
of early human motion was not Brownian motion (narrowly distributed random
distance in a random direction) but a Levy flight (broadly distributed random
distance in a random direction). This follows previous suggestions that Levy flights
are optimal foraging methods for ants, bees, deer, albatrosses and even ballistic
particles [2, 6, 10, 23, 29]. The difficulty with Levy flights is their divergent mean-
square random displacement, and Edwards et al. [10] have disputed the fit of Levy
statistics to the data [10].

The equivalent to the Fisher equation for Levy flights involves fractional
derivatives

∂n

∂t
= Dα

∂αn

∂|x|α +
1
τ
n(1 − n), (54)

where α lies between 0 and 2.
The characteristic function for Brownian motion in one dimension is the Fourier

transform of the one-dimensional version p(x, t) of p(r, t) in Eq. (53),

g(k, t) = exp(−Dk2t),

whereas for Eq. (54) it is gα(k, t) = exp(−Dα|k|αt).
The singularity in gα(k, t) at k = 0 forces the asymptotic behavior to be

pα(x, t) ∼ |x|−1−α, (55)

so that the second moment of all Levy flights diverges. This long-tail behavior of
the distribution of Levy flights is inconsistent with plausible human behavior: one
cannot travel an infinite mean-square distance over a lifetime! The observations
which led to suggestions of Levy flights are for much shorter movements, so the
challenge is to retain this behavior for short-range motion while preserving a finite
mean-square displacement. A solution has been advanced by Sokolov et al. [28].
They replace the diffusion equation for the probability distribution by

∂p

∂t
− C

∂

∂t

∂2−αp

∂|x|2−α
= D

∂2p

∂x2
. (56)
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The Fourier transform of a noninteger derivative with respect to |x| is,

F.T.

(
∂2−αP

∂|x|2−α

)
= −|k|2−αg, (57)

which leads directly to

g(k, t) = exp
( −Dk2t

1 + C|k|2−α

)
. (58)

For large |k| � k0 = C
1

2−α , g(k, t) takes the Levy form so that the central
region of p for x � 1/k0 takes on the Levy form as well. However, for small k, the
lowest order singular term at k = 0 is DC|k|4−α so that the asymptotic form of p

is proportional to

p ∼ αDCt

|x|5−α
, (59)

i.e. power law tails with an exponent 5 − α. For this distribution, the mean square
displacement is

x2 = − d2q

dk2

∣∣∣∣
k=0

= 2Dt, (60)

just as for ordinary Brownian motion. So it seems that Eq. (56) may be a better
mathematical description of human movement than Levy flights when including the
long-range displacements which can give rise to so-called “leap-frog” effects.

5.2. Demic flow from random movement

The flow term in the FKPP equation is the divergence of a diffusion current density
jD. In terms of the population density N , it is

∂N

∂t
= −∇ · (−D∇n) = −∇ · jD. (61)

This net current arises from the random movements of many individuals in the
population, with more people moving from a denser region to a less-dense one than
the reverse. Equation (56) can be rewritten to show a closer resemblance to the
diffusion equation.

∂N(x, t)
∂t

=
∂

∂x

[
D

∫
dx′K(x, x′)

∂N(x′, t)
∂x′

]
, (62)

with

K(x, x′) =
1
2π

∫
dk[1 + C|k|2−α]eik(x−x′).
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In Eq. (62), the flow term on the rhs also takes the form of a divergence of a
current jD which has a linear relation relation to the density gradient but is now
non-local,

jD(x, t) = −D

∫
dx′K(x, x′)

∂N(x′, t)
∂x′ . (63)

Again random movements within the populace give rise to a diffusion current,
but now contributions to the current density at x can arise from distant points x′

as K(x, x′) is asymptotically proportional to |x − x′|−(3−α).

5.3. Purposeful movement

5.3.1. Demic self-diffusion versus purposeful flow

Nevertheless, as already considered by Cohen [8], treating humans as random
walkers ignores their purposeful behavior. jD can be interpreted, in part, as a
purposeful response to population pressure. This suggests separating out two con-
tributions to jD, a purposeful one jP in response to some pressure, and a random
one jR. We write. . .

jD = jP + jR; D = DP + DR, (64)

jP = −DP∇N ; jR = −DR∇N. (65)

Thus while net flow jD may vanish at saturation, random motion continues at a
level measured by DR: people continue to move between equally desirable locations
for marriage, trade etc. How to partition D into DP and DR depends on the con-
ditions, but it is not unreasonable to assume that rational people will not move
in the absence of expected gain, so DP should be greater that DR and perhaps
much greater. Random relocation within a saturated population density, demic
self-diffusion, could wipe out over time the genetic gradients introduced by the for-
mation a cultural boundary. That genetic gradients traceable to the introduction
of agriculture into Europe have persisted over the millenia since suggests that DR

is indeed very small.

5.3.2. Movement in the presence of others

The prescriptions for the movement of a subpopulation thus far assumes that it
is unaffected by the presence of other subpopulations. An alternative and perhaps
more plausible assumption is that people will migrate more slowly into occupied
land than into unoccupied. The limiting case here is when people migrate only into
areas offering better food-growing opportunities, which can be expressed mathe-
matically as a current:

Ji = −N i
sDi∇


∑

j

nij


. (66)

1150004-26

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
12

.1
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
E

D
IN

B
U

R
G

H
 o

n 
12

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 6, 2012 14:5 WSPC/S0219-5259 169-ACS 1150004

Boundaries Between Ancient Cultures: Origins and Persistence

The attractiveness of the new region is now diminished by anyone already there,
but the reductive effect of the hunters is limited to the amount of land they can
defend, not the land they occupy. This form of the current still gives a migration of
farmers into hunting grounds, but not between farming populations. The associated
diffusion term is then

∂ni/∂t = −(1/N i
s)∇J = (1/N i

s)∇

D · N i

s∇

∑

j

nij





, (67)

i.e. incomers consider how difficult it is to access the region (D), how fertile the
land is for them (N i

s) and the total number of people present, rather than solely
the incremental amount of food they could grow. Interestingly, this model gives a
completely sharp cultural boundary, since flow and hence the boundary width go
to zero when the population on either side is saturated. This flow model implies no
gene exchange across the boundary.

The above discussion of the purposeful versus random motion implies that in
Sec. 4, D should be replaced by DR, which may be significantly smaller. In practice,
when we are considering the wave of advance of farming, the relevant diffusion
constant will be DP + DR. However, when we are considering the FX cultural
boundary, only the smaller DR will apply. This will have the effect of making the
cultural boundary much sharper and its motion where unstable much slower.

Insert the value of D = 7 km2/yr from Ammermann and Cavalli Sforza into
Eq. (53). Taking t = 6000yr, this would imply a present variance of position of
around 400km. Thus even with this high value of D, we can expect that the genetic
signal of an ancient cultural boundary will still be present. This conclusion still
holds when we introduce for jP the more sophisticated flow model of Eq. (66) while
retaining for jR the Brownian motion model. The width of the cultural boundary
across which the gene flow occurs is then DR/λ.

6. Assimilation and Conquest

The λ term describes people of one culture becoming members of another. In the
ASSC formulation, people lose their previous cultural identity at a rate propor-
tional to the contact opportunities between people of different cultures and to the
size difference of the populations. In testing Renfrew’s model of linguistic bound-
aries, this is a reasonable assumption: assimilated people are likely to adopt the
local language. By contrast, genetic markers may be preserved on assimilation, cor-
responding to λ = 0. In this case, the only stable boundary would have infinite
width (see Fig. 4). In practice this means that any genetic boundary in space is
only temporary and vanishes over time.

We note that it would be possible to have a fixed genetic boundary if people of
mixed genetic background were less successful in reproduction, the width of such a
boundary depending on details of the advantage.
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It is also possible that the cultures are at war, killing one another, in which case
the λ term for n in Eqs. (5a) and (5c) would be replaced with −λnF nXH(nF −nX),
where the step-function H(x < 0) = 0; H(x > 0) = x. We have not analyzed this
in detail; however, simulations show a continual flow of people into the boundary
region, where the population is depleted by war. This population loss at the cul-
tural boundary simulates the cost of an unresolved struggle for territory, and a more
accurate description of the process would require modfication of the flow equations
to introduce sensitivity to the gradients of other populations. A genetic boundary is
also stabilized there, though a further complication arises if only males interact by
killing while females are assimilated. This would lead to a distinct genetic bound-
ary of Y chromosome markers, but not in the mitochondrial DNA. Such gender
differences in heritage are not unusual [7, 17].

Thus many different hypotheses for cultural boundaries can be investigated by
adjusting the forms of the interaction term controlled by λ and of the flow terms
to describe the model properly.

7. Discussion and Conclusions

We have analyzed further the cultural boundaries discovered in recent simulations
of the Neolithic transition using the ASSC model [1]. With simplifying assumptions,
we showed that the cultural boundary is stable, exponential-tailed and confined to
a region of width 2

√
D/λ. Simulations with full population dependence (Fig. 1)

have only trivially different properties. Although the model has been discussed in
the context of the Neolithic transition to farming, the family of models is much
more general, and cultural boundaries are a general feature of a wave of advance.

Perhaps the most significant conclusion is that although the ASSC model is
derived from fundamental considerations of food production, the additional compli-
cation in τ(n) does not affect the outcome in any significant way. The FKKP equa-
tion, with renormalized parameters, remains a reasonable approximation despite
all these embellishments. This is similar to our numerical experiment with time-
delayed birth: including this gave measurable consequences equivalent to using a
different value of τ .

We have further proved a number of mathematical facts about the cultural
boundaries described by ASSC. Below a certain terrain size, no boundary of fixed
shape can persist. Above this, a cultural boundary can form, but it is unstable
in homogeneous terrain moving slowly to allow the larger population to expand.
Even in the case where the minority population occupies the more fertile land, no
stable boundary can form, one population or the other gains ascendancy. A stable
boundary can only exist and persist if pinned by some low-fertility inhomogeneity
in the terrain.

Using the Neolithic transition parameters [2, 3, 1], the width of the cultural
boundary would be hundreds of kilometres. This would allow for considerable gene
transfer even as the cultural differences were lost. By contrast, the more recent
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arrival of Mediterranean farming into Southern Africa is associated with modern
transportation and a much faster diffusion (large D), such that despite the strong
competition between European invaders and African farmers, the eventual bound-
ary spans the continent such that it falls below the threshold for a boundary even to
form and the populations overlap. With modern communications, forming cultural
boundaries may now be history, but the gene flow process is ongoing.

More generally, we have shown that the entire family of models we have con-
sidered, single-population for the spread of mesolithic H, two-population for the
emergence of farming, and three-population for the spread of an advantageous
technology, farming, into occupied territory provides a flexible simulation tool for
the testing of hypotheses about the movement of peoples and technologies during
human prehistory and history.
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