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Brief Communications

PGC-1� Negatively Regulates Extrasynaptic NMDAR Activity
and Excitotoxicity

Clare Puddifoot,1 Marc-Andre Martel,1 Francesc X. Soriano,1 Alberto Camacho,2 Antonio Vidal-Puig,2

David J. A. Wyllie,1 and Giles E. Hardingham1

1Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom, and 2University of Cambridge Metabolic Research
Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom

Underexpression of the transcriptional coactivator PGC-1� is causally linked to certain neurodegenerative disorders, including Hun-
tington’s Disease (HD). HD pathoprogression is also associated with aberrant NMDAR activity, in particular an imbalance between
synaptic versus extrasynaptic (NMDAR EX) activity. Here we show that PGC-1� controls NMDAR EX activity in neurons and that its
suppression contributes to mutant Huntingtin (mHtt)-induced increases in NMDAR EX activity and vulnerability to excitotoxic insults.

We found that knock-down of endogenous PGC-1� increased NMDAR EX activity and vulnerability to excitotoxic insults in rat cortical
neurons. In contrast, exogenous expression of PGC-1� resulted in a neuroprotective reduction of NMDAR EX currents without affecting
synaptic NMDAR activity. Since HD models are associated with mHtt-mediated suppression of PGC-1� expression, as well as increased
NMDAR EX activity, we investigated whether these two events were linked. Expression of mHtt (148Q) resulted in a selective increase in
NMDAR EX activity, compared with wild-type Htt (18Q), and increased vulnerability to NMDA excitotoxicity. Importantly, we observed
that the effects of mHtt and PGC-1� knockdown on NMDAR EX activity and vulnerability to excitotoxicity were nonadditive and occluded
each other, consistent with a common mechanism. Moreover, exogenous expression of PGC-1� reversed mtHtt-mediated increases in
NMDAR EX activity and protected neurons against excitotoxic cell death. The link between mHtt, PGC-1�, and NMDAR activity was also
confirmed in rat striatal neurons. Thus, targeting levels of PGC-1� expression may help reduce aberrant NMDAR EX activity in disorders
where PGC-1� is underexpressed.

Introduction
The transcriptional coactivator peroxisome proliferator-
activated receptor-� coactivator 1a (PGC-1�) controls impor-
tant physiological processes in many tissues, including glucose
metabolism, energy homeostasis, adaptive thermogenesis, and
mitochondrial biogenesis (Handschin, 2009). In neurons,
PGC-1� regulates mitochondrial density and antioxidant de-
fenses (St-Pierre et al., 2006; Wareski et al., 2009). Moreover,
exogenous PGC-1� expression has demonstrable protective/
ameliorating effects in models of Huntington’s, Parkinson’s, and
Alzheimer’s diseases (HD, PD, and AD, respectively), as well as in
ALS and following ischemic/excitotoxic insults (Cui et al., 2006;
Luo et al., 2009; Okamoto et al., 2009; Qin et al., 2009; Chen et al.,
2010; Shin et al., 2011; Soriano et al., 2011; Zhao et al., 2011;
Mudò et al., 2012).

Importantly, underexpression of PGC-1� has been causally
linked to disease progression in models of HD and PD, as well as

being associated with AD (Cui et al., 2006; Weydt et al., 2006;
Okamoto et al., 2009; Qin et al., 2009; Shin et al., 2011). In HD,
PGC-1� underexpression is attributable to mutant Huntingtin
(mHtt)-mediated transcriptional repression of the PGC-1� pro-
moter (Cui et al., 2006; Weydt et al., 2006). HD is a disorder
linked to aberrant NMDAR activity and excitotoxicity, associated
with neuronal loss in the cortex and striatum (Fan and Raymond,
2007). Recent studies showed that in an HD mouse model, early
elevation of extrasynaptic NMDAR (NMDAR EX) activity in the
cortex and striatum contributes to phenotype onset (Milner-
wood et al., 2010), although the mechanism is unclear. Excessive
activation of NMDAR EXs is known to trigger several prodeath
pathways, in contrast to the neuroprotective effects of the trans-
synaptic activation of synaptic NMDARs (NMDAR SYNs) (Hard-
ingham and Bading, 2010). In HD, the synaptic/extrasynaptic
NMDAR balance plays a key role in regulating mHtt toxicity in
cortical and striatal neurons (Okamoto et al., 2009). Further-
more, selective blockade of NMDAR EX activity, achieved by low
doses of memantine (Xia et al., 2010), ameliorates HD symptoms
(Okamoto et al., 2009; Milnerwood et al., 2010).

Here we report that PGC-1� is a negative regulator of
NMDAR EX activity, offering an explanation for the potent anti-
excitotoxic effects of PGC-1�. We also provide evidence that
links mHtt’s suppression of PGC-1� expression to the deleteri-
ous increase in NMDAR EX activity. Together with previous stud-
ies (Okamoto et al., 2009; Milnerwood et al., 2010), our study
suggests a model whereby mtHtt toxicity, NMDAR EX activity,
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and PGC-1� repression all positively feed back on each other to
promote neuronal dysfunction.

Materials and Methods
Neuronal culture, transfection, luciferase assays, immunofluorescence. Cor-
tical and striatal neurons from E21 Sprague Dawley rats of either sex were
cultured as described previously (Papadia et al., 2008); experiments were
performed at DIV10. Neurons were transfected in trophic transfection
medium with plasmids (2 �g/ml total) and/or siRNA (100 nM) using
Lipofectamine 2000. Experiments were performed 48 h posttransfection.
For luciferase assays, firefly PGC-1�-Luc was transfected plus pTK-RL
renilla control and plasmid of interest (e.g., mHtt) with a ratio of 2:1:2.
Assays were performed using the Dual-Glo assay kit (Promega). Immu-
nofluorescence was performed as described previously (Papadia et al.,
2008). Antibodies used were DARPP-32 (1:100; Abcam) and PGC-1�
(1:50; Millipore).

Plasmids. pcDNA-PGC-1� was a gift from P. Puigserver (Dana Farber
Cancer Institute, Boston, MA). pEF-PGC-1� was made by excising the
ORF from the pcDNA vector from EcoRI/AgeI sites, blunting and insert-
ing to the EvorV site of pEF/V5-His A vector. Myc-wtHtt-N63-18Q
(wtHtt(18Q)) and Myc-mtHtt-N63-148Q (mtHtt-(148Q)) were a gift
from Chris Ross (John Hopkins Medical School, Baltimore, MD). PGC-

1�-luc was a gift from A. Fukamizu (University of Tsukuba, Tsukuba,
Japan).

Electrophysiological recording and analysis. NMDA-evoked whole-cell
steady-state currents (normalized to cell capacitance) were measured 48 h
after transfection, as described previously (Papadia et al., 2008). NMDA (100
�M) was applied for 30 s, repeated twice for each cell. Data were filtered at 1
kHz and digitized at 5 kHz for subsequent off-line analysis. Miniature EPSCs
(mEPSC) recordings were performed and analyzed as described previously
(Baxter and Wyllie, 2006). Recordings of NMDAREX currents were per-
formed 48 h posttransfection. Neurons were placed in Mg2�-free aCSF sup-
plemented with picrotoxin (50 �M), TTX (300 nM), and MK-801 (10 �M).
Under these conditions, spontaneous presynaptic release of single quanta of
glutamate activate NMDARSYNs, which are then blocked by MK-801 (Pa-
padia et al., 2008). After 10 min incubation (sufficient to block
NMDARSYNs, Fig. 1A), neurons were washed with MK-801-free aCSF and
placed in a recording chamber. Steady-state NMDAR currents were then
measured from three to four cells per coverslip and the mean current density
was calculated and treated as a single replicate. To measure both whole-cell
and NMDAREX currents in the same cell, NMDA-evoked currents were
measured before and after NMDARSYN blockade via the aforementioned 10
min incubation with TTX/MK-801-supplemented Mg2�-free aCSF (Papa-
dia et al., 2008).

Figure 1. PGC-1� regulates NMDAR EX activity in cortical neurons. A, Time course of the quantal block of NMDAR SYNs by MK-801, leaving NMDAR EXs unblocked. Neurons were exposed to
Mg 2�-free aCSF (� MK-801 � TTX) for the indicated times. NMDA (100 �M)-induced currents were recorded, normalized to capacitance, and expressed relative to total NMDAR currents with no
synaptic blockade. Incubation for 10 min was sufficient for maximal blockade of NMDAR SYNs; the remaining current represents the extrasynaptic pool (20 cells analyzed). B, Neurons transfected as
indicated, plus eGFP marker. NMDAR EX currents were recorded 48 h posttransfection, normalized to capacitance, and expressed as a percentage relative to control (con) here and throughout. *p �
0.05; n � 5, 7, 7 independent experiments. Each replicate (i.e., n) represents the mean of three to five cells analyzed here and throughout the manuscript. Scale bars, 200 pA,10 s. C, NMDAR EX

currents measured in �-globin versus PGC-1�-expressing cortical neurons (normalized to �-globin control). *p � 0.05; n � 5, 4. D, Effect of PGC-1� siRNA and PGC-1� expression on total
whole-cell NMDAR currents was measured and expressed as a percentage change compared with control. This percentage change was compared with the percentage change observed in NMDAR EX

currents.*p � 0.05; n � 4 –5. E, Total and NMDAR EX currents were sequentially measured in neurons expressing �-globin (Con) or PGC-1�. NMDAR SYN currents were calculated as total-
extrasynaptic currents. *p�0.05, n�11 (Con); n�5 (PGC-1�). Inset shows example traces; scale bar, 2 s, 100 pA. F, Vulnerability of neurons transfected with the indicated siRNAs to 10 �M NMDA
exposure (1 h). Cell death assessed at 24 h here and throughout (see Materials and Methods). *p � 0.05; 150 –300 cells analyzed per condition here and in all cell death experiments (n � 3; scale
bar, 20 �m). Pre-, Pretransfection; Post-, posttransfection; Si, siRNA. G, Vulnerability of neurons transfected with the indicated plasmids to 20 �M NMDA exposure. *p � 0.05; n � 3.
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Following the fate of transfected neurons following excitotoxic insult. This
procedure was performed as described previously (Papadia et al., 2008;
Soriano et al., 2011). Neurons were transfected with the plasmid of in-
terest plus eGFP marker, and pictures taken using a Leica AF6000LX
system (DFC350 FX camera) before 10 –20 �M NMDA treatment for 1 h,
after which 10 �M MK-801 was added. Using cell-finder software, images
of the same neurons were taken 24 h postinsult. Cell death was deter-
mined by counting the number of surviving GFP-expressing cells post-
insult. Death was indentified by the absence of healthy GFP-expressing
neurons: in �90% of cases, fluorescent cell debris and fragmented nuclei
was observed. For each condition, the fate of 200 –300 neurons was mon-
itored over three or four experiments done on independent cultures.

Statistical analysis and controls. Mean � SEM is shown. All experi-
ments were performed on three to five independent culture batches. In
all cases, treatments/interventions were compared with their respective
controls within that culture batch (and recorded/measured on the same
day), i.e., PGC1�, PGC1� siRNA, and mHtt-expressing/treated neurons
were always paired with their respective controls (�-globin, control
siRNA, and wild-type Htt (wHtt), respectively) within each culture
batch. Statistical testing involved a two-tailed paired or unpaired t test.
For studies using multiple testing (e.g., the use of two pairs of siRNA), a
one-way ANOVA was used. For studies involving two variables (e.g.,
siRNAs � mHtt/wHtt), a two-way ANOVA was used. ANOVAs were
followed by Fisher’s least squares difference post hoc test.

Results
PGC-1� controls NMDAR EX activity and excitotoxicity
Exogenous PGC-1� expression protects neurons against excito-
toxic insults (Luo et al., 2009; Chen et al., 2010; Soriano et al.,
2011). Because excessive activation of NMDAR EXs is an impor-
tant mediator of excitotoxicity, we investigated the influence of
PGC-1� on NMDAR EX currents.

To measure NMDAR EX currents, we used the established
quantal block technique of blocking NMDAR SYNs by incubating
neurons with the open-channel blocker MK-801, plus TTX in
Mg 2�-free aCSF (Papadia et al., 2008). Under these conditions,
spontaneous presynaptic release of single quanta of glutamate
give rise to mEPSCs that activate NMDAR SYNs, which are then
immediately/irreversibly blocked by MK-801. Subsequent to this
open-channel blockade of NMDAR SYNs, NMDA-evoked cur-
rents are recorded under voltage clamp, and are now only medi-
ated by NMDAR EXs that were not activated during the quantal
block protocol. Time course experiments revealed that 10 min of
MK-801/TTX/zero Mg 2� treatment is sufficient to achieve
blockade of NMDAR SYNs; longer treatments have no further ef-
fect (Fig. 1A).

We studied the effect of knocking down PGC-1� in cortical
neurons using two previously validated siRNA sequences (So-
riano et al., 2011). We first confirmed that PGC-1� knockdown
did not affect the frequency or amplitude of mEPSCs (p � 0.76 or
0.60, respectively; one-way ANOVA, n � 5– 6), which (if differ-
ent) could have affected the rate of MK-801-mediated
NMDAR SYN blockade. We also confirmed that 10 min of MK-
801/TTX/zero Mg 2� treatment was sufficient for NMDA-
induced currents to bottom out in PGC-1� siRNA-transfected
neurons (data not shown), reassuring us that the remaining cur-
rents were mediated by NMDAR EXs, out of reach of presynapti-
cally released quanta of glutamate. PGC-1� knockdown led to a
large increase in NMDAR EX currents (�100%; Fig. 1B). Total
whole-cell currents were also increased but by a far lower propor-
tion (�40%; Fig. 1D). Assessment of NMDAR currents before
and after NMDAR SYN blockade revealed that NMDAR EX cur-
rents represent 34.1 � 6.5% of whole-cell currents (n � 6). Thus,
the PGC-1� siRNA-mediated increase in whole-cell currents is
largely attributable to the increase in NMDAR EX currents.

In contrast to knock-down, exogenous PGC-1� expression
reduced NMDAR EX currents (Fig. 1C). Again, the effect was pro-
portionally greater than the effect on total whole-cell currents,
indicative of a selective effect on NMDAR EXs (Fig, 1D). To test
this selectivity directly, we recorded (in control vs PGC-1�-
expressing neurons) total NMDAR currents and NMDAR EX cur-
rents in the same cell (see Materials and Methods, above), and
from this, calculated the NMDAR SYN current (i.e., total NMDAR
current minus NMDAR EX current). We found that, while (as
expected) PGC-1� expression reduced NMDAR EX currents, it
had no effect on NMDAR SYN currents (Fig. 1E), confirming the
selectivity of PGC-1�’s influence.

Consistent with a role for NMDAR EX in excitotoxicity (Hard-
ingham and Bading, 2010), we found that PGC-1� siRNA exac-
erbated neuronal death in response to a modest (10 �M) dose of
NMDA (Fig. 1F), while exogenous expression protected neurons
against a higher, more toxic dose (20 �M; Fig. 1G).

mHtt-mediated control of NMDAR EX activity via PGC-1�
repression
PGC-1� is underexpressed in HD patients, HD mouse models,
and mHtt-expressing cells due to mHtt-mediated repression of
the PGC-1� promoter (Cui et al., 2006; Weydt et al., 2006; Oka-
moto et al., 2009; Chaturvedi et al., 2010; McConoughey et al.,
2010), which we confirmed by studying a PGC-1� reporter and
endogenous protein expression (Fig. 2A). Increased cortical/stri-
atal NMDAR EX activity is observed in the YAC128 HD mouse,
which contributes to phenotype onset (Milnerwood et al., 2010).
Given our observations in Figure 1, we investigated the possibility
that HD mouse model-associated increases in NMDAR EX activ-
ity could be due at least in part to the suppression of PGC-1� by
mHtt.

We first investigated whether acute expression of N-terminal
mHtt exon 1 (148Q) had any effect on whole-cell or NMDAR EX

currents compared with N-terminal wHtt (18Q) control. Our
studies focused initially on cortical neurons (Fig. 2) and subse-
quently striatal neurons (Fig. 3), both of which are affected in
HD. As with PGC-1� knockdown experiments, we confirmed
that mEPSC frequencies and amplitudes were unaffected (mHtt
vs wHtt; p � 0.26 vs 0.31; t test, n � 6). Following the quantal
block protocol (described earlier), we verified that 10 min of
MK-801/TTX/zero Mg 2� treatment was sufficient for NMDA-
induced currents to bottom-out (data not shown). MHtt expres-
sion led to a striking increase in NMDAR EX currents compared
with wHtt (Fig. 2B), consistent with the YAC128 mouse findings
(Milnerwood et al., 2010). Moreover, the mHtt-induced effect on
extrasynaptic currents was far more pronounced than its effect on
total currents, again indicative of a preferential effect on
NMDAR EXs over NMDAR SYNs (Fig. 2C). In line with previous
studies, and consistent with an upregulation of NMDAR EX cur-
rents, mHtt (but not wHtt) increased neuronal vulnerability to
low doses of NMDA (Fig. 2D).

We next investigated the possibility that the effects of mHtt on
NMDAR EX currents could be due to repression of PGC-1� ex-
pression. We tested two predictions of this model: (1) the effects
of PGC-1� knockdown and mHtt expression should be nonad-
ditive and occlude each other, and (2) exogenous PGC-1� ex-
pression should rescue the effects of mHtt. We studied the effects
of combinations of wHtt or mHtt with control or PGC-1�-
directed siRNA on NMDAR EX currents and vulnerability to ex-
citotoxicity. In neurons transfected with PGC-1� siRNA, mHtt
had no additional effect on NMDAR EX activity compared with
wHtt (Fig. 2E, left). Similarly, in neurons expressing mHtt,
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PGC-1� siRNA had no additional effect on NMDAR EX activity
compared with control siRNA (Fig. 2E, left). Moreover the exac-
erbating effects of PGC-1� siRNA and mHtt on NMDA excito-
toxicity were similarly nonadditive and occluded each other (Fig.
2E, right). These observations support the hypothesis that mHtt
triggers increases in NMDAR EX activity (at least in part) via re-
pression of PGC-1�.

We next performed rescue experiments by driving exogenous
PGC-1� expression in mHtt-expressing neurons. This com-
pletely reversed the effect of mHtt on NMDAR EX activity: against
a background of PGC-1� overexpression, mHtt had no effect on
NMDAR EX currents (Fig. 2F, left). Exogenous PGC-1� also pro-
tected neurons against mHtt-induced vulnerability to excitotox-
icity (Fig. 2F, right), confirming results from other laboratories.
Collectively, these data support a model whereby mHtt sup-
presses PGC-1� expression, leading to enhanced NMDAR EX

currents, and rescue of mHtt-mediated vulnerability against ex-
citotoxicity can be achieved by restoring PGC-1� expression.

The electrophysiological assessment of synaptic versus extra-
synaptic NMDAR currents in striatal cultures is problematic
since glutamatergic inputs onto striatal neurons originate from
outside the striatum. Our quantal block method could not be
used as there would be little spontaneous release of glutamate in

such cultures. Nevertheless, we wanted to determine whether
mHtt expression and PGC-1� knockdown has nonadditive ef-
fects on NMDAR currents and vulnerability to excitotoxicity in
striatal cultures (Fig. 3A). As with cortical neurons, both PGC-1�
knockdown and mHtt expression increased vulnerability to sub-
toxic NMDA doses, and the effect of either intervention was just
as strong as that of both combined (Fig. 3B). Analysis of NMDAR
currents was restricted to total whole-cell currents (i.e., mediated
by both NMDAR SYN and NMDAR EX) and revealed that the ef-
fects of PGC-1� knockdown and mHtt expression mirrored
those observed in cortical neurons (i.e., increasing currents in a
nonadditive manner; Fig. 3C,D). Furthermore, exogenous ex-
pression of PGC-1� lowered NMDAR currents, prevented mHtt-
mediated increases in NMDAR currents (Fig. 3E), and protected
striatal neurons against excitotoxic NMDA exposure (Fig. 3F).
These data support the notion that the link between mHtt, PGC-
1�, and NMDAR currents applies to both striatal and cortical
neurons, the major sites of neurodegeneration in HD.

Discussion
This study reveals an unexpected role for PGC-1� in regulating
NMDAR EX activity and, together with recent studies, illuminates

Figure 2. Mutant Huntingtin-mediated increases in NMDAR EXs activity via PGC-1� repression. A, Left, Assay of a luciferase-based reporter of the PGC-1� promoter (Daitoku et al., 2003) in
cortical neurons cotransfected with N-terminal wHtt or mHtt. *p � 0.05; n � 5. Right, Transfection of mHtt lowers levels of endogenous PGC-1�, confirming earlier studies (eGFP marker identifies
transfected cells; scale bar, 20 �m). B, NMDAR EX currents recorded in wHtt- and mHtt-expressing neurons, normalized to wHtt level. *p�0.05; n�4. Scale bar, 300 pA, 5 s. C, Total NMDAR currents
were measured in mHtt(148Q)-expressing neurons and expressed as a percentage change compared with wHtt(18Q)-expressing neurons. This percentage change was then compared with the
percentage change observed in NMDAR EX currents. *p � 0.05; n � 4 – 6. D, Vulnerability of neurons transfected with the indicated expression constructs [control (Con; �-globin), wHtt, or mHtt],
to 10 �M NMDA exposure. *p � 0.05; n � 4 – 6. E, Left, NMDAR EX currents were measured in neurons transfected with control versus PGC-1� siRNA, plus either wHtt or mHtt, normalized to
control/wHtt condition *p �0.05; n �4. (Right, Vulnerability of neurons transfected as indicated to 10 �M NMDA exposure. *p �0.05; n �3. F, Left, NMDAR EX currents were measured in neurons
transfected with control (�-globin) versis PGC-1�-expressing vectors, plus either wHtt or mHtt, normalized to control/wHtt condition. *p � 0.05; n � 4 –7. Right, Vulnerability of neurons
transfected as indicated to 20 �M NMDA exposure. *p � 0.05; n � 4 – 6.
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the complex interdependence of PGC-1�, synaptic/extrasynaptic
NMDAR activity, and mHtt toxicity.

Reciprocal links between NMDAR EX activity, mHtt,
and PGC-1�
Recent work from Okamoto and coworkers (2009) showed that
the balance between NMDAR SYN and NMDAR EX activity con-
trols mHtt toxicity. NMDAR SYN activity, by inducing expression
of the chaperonin subunit TCP-1, suppresses mHtt toxicity by
promoting the formation of nontoxic inclusions (Okamoto et al.,
2009). In contrast, NMDAR EX activity promotes disaggregation
of mHtt, enhancing its toxicity associated with Rhes expression,
which mediates mHtt sumoylation, disaggregation, and toxicity
(Subramaniam et al., 2009). Our study and that of Milnerwood et
al. (2010) demonstrates that there is also a reciprocal link: mHtt
itself upsets the NMDAR balance in favor of NMDAR EX activity.

Another known effect of mHtt is suppression of PGC-1� ex-
pression, both directly and by increasing NMDAR EX activity
(Cui et al., 2006; Weydt et al., 2006; Okamoto et al., 2009; Chatur-
vedi et al., 2010; McConoughey et al., 2010). PGC-1� is a CREB
target gene, and enhanced NMDAR EX activity is known to trigger
CREB shut-off by dephosphorylation (Hardingham et al., 2002),
something observed in the HD mouse model and rescued by
antagonizing NMDAR EXs with low-dose memantine (Milner-
wood et al., 2010). Our study shows that the reciprocal relation-
ship also exists: PGC-1� itself controls NMDAR EX activity and
that mHtt-induced changes in NMDAR EX activity are due, at
least in part, to its effect on PGC-1� expression.

The consequence of these interdependencies may be a series of
positive feedback loops promoting pathoprogression. Any in-
crease in mHtt levels, NMDAR EX activity, or PGC-1� promoter
repression may become amplified because all three events have
the capacity to positively reinforce the other two. For example,

aberrant NMDAR EX activity is known to
suppress CREB-dependent PGC-1� ex-
pression and enhance mHtt toxicity.
MHtt in turn leads to PGC-1� repression
even further, and underexpression of
PGC-1� leads to further enhancement of
NMDAR EX activity, and so on. A predic-
tion of this model would be that therapies
aimed at supporting PGC-1� expression
(McConoughey et al., 2010) could break
the cycle of pathoprogression.

Mechanistically, how PGC-1� low-
ers NMDAR EX expression is unclear.
Indeed, mechanisms that control the
NMDAR SYN:NMDAR EX balance in gen-
eral are poorly understood. One potential
influence is GluN2 subunit composition:
GluN2A may be enriched at synaptic lo-
cations, and GluN2B at extrasynaptic
locations, although this is controversial
(Hardingham and Bading, 2010). How-
ever, we found that the sensitivity of
NMDAR whole-cell currents to the
GluN2B-specific antagonist was not af-
fected by PGC-1� overexpression (C.
Puddifoot, G. Hardingham, unpub-
lished observations), ruling out changes
in GluN2 subunit composition as a
mechanism. Since PGC-1� can control
metabolic pathways, energy homeosta-

sis, mitochondrial biogenesis, and antioxidant defenses
(St-Pierre et al., 2006; Handschin, 2009; Wareski et al., 2009),
it could be that perturbation to these processes leads to redis-
tribution of NMDARs; for example, through alterations to
Ca 2� levels, energy levels, or redox status. These issues await
further investigation.

PGC-1� repression in other neurodegenerative disorders
The effects of PGC-1� underexpression are not limited to HD,
since PGC-1� repression is observed in AD (Qin et al., 2009) and
PD (Shin et al., 2011). In AD, PGC-1� expression was found to be
negatively correlated with dementia (Qin et al., 2009). Moreover,
overexpression of PGC-1� in Tg2576 AD mouse neurons sup-
pressed amyloidogenic processing of A�, promoting �-secretase
nonamyloidogenic processing (Qin et al., 2009). Of note, the
NMDAR SYN:NMDAR EX balance also influences A� production:
NMDAR SYN activity promotes �-secretase nonamyloidogenic
processing and downregulates APP expression, while NMDAR EX

activity fails to do this and in fact promotes expression of amy-
loidogenic isoforms of APP (Hoey et al., 2009; Bordji et al., 2010).
Our study suggests the possibility of PGC-1�–NMDAR feedback
loops controlling APP processing.

Our study does not question the importance of non-
NMDAR-dependent effects of PGC-1� underexpression in neu-
ronal degeneration/dysfunction in neurodegenerative disease. As
a regulator of mitochondrial biogenesis and antioxidant defenses,
the effects of PGC-1� underexpression are likely to be many. For
example, in a recent landmark paper, PGC-1� repression by
Parkin-interacting substrate was identified as a causal factor in
dopaminergic neuronal loss in models of PD (Shin et al., 2011), a
disorder not generally associated with excitotoxicity or aberrant
NMDAR EX activity. That notwithstanding, the effects of PGC-1�
on NMDAR currents, and particularly NMDAR EXs, may con-

Figure 3. Link between NMDAR currents, mHtt, and PGC-1� in striatal neurons. A, Darpp-32 immunofluorescence of striatal
cultures; scale bar, 20 �m. B, Vulnerability of striatal neurons transfected as indicated to 10 �M NMDA exposure. *p � 0.05; n �
3. C, Total whole-cell NMDAR currents were measured in striatal neurons transfected with control (con) versus PGC-1� siRNA, plus
either wHtt or mHtt, normalized to control/wHtt condition *p � 0.05; n � 6 – 8. D, As in C but in cortical neurons. *p � 0.05; n �
18 –29. E, Total whole-cell NMDAR currents were measured in striatal neurons transfected with control versus PGC-1�, plus either
wHtt or mHtt, normalized to control/wHtt condition. *p � 0.05; n � 5–7. F, Vulnerability of neurons transfected as indicated to
20 �M NMDA exposure. *p � 0.05; n � 3.
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tribute to the consequences of PGC-1� underexpression in neu-
rological disorders.
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