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Pituitary adenylate cyclase-activating peptide (PACAP) is a
neuropeptide first isolated from the hypothalamus as an
activator of cAMP production in pituitary cells (Miyata et al.
1989). It exists in 27 and 38-amino acid forms and binds to
three G-protein coupled receptors [PACAP-specific receptor
(PAC1) and VIP/PACAP receptor subtypes 1 and 2] which
are predominantly coupled to Gas that promote cAMP
production through the activation of adenylate cyclase (AC)
(Dickson and Finlayson 2009). PACAP and its receptors are
expressed widely in the CNS, where one of their key
functions is neuroprotection. PACAP promotes the protection
of cerebellar granule neurons against apoptotic and oxidative
insults including ceramide, ethanol and H2O2 (Vaudry et al.
2009). PACAP also protects cortical and hippocampal
neurons against excitotoxic and apoptotic insults (Shioda
et al. 1998; Vaudry et al. 2009). In vivo, administration of
PACAP reduces neuronal loss and neurological deficits in

models of stroke and traumatic brain injury (Reglodi et al.
2002; Chen et al. 2006; Tamas et al. 2006b; Vaudry et al.
2009), excitotoxic striatal lesions (Tamas et al. 2006a) and
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Abstract

Pituitary adenylate cyclase-activating peptide (PACAP) is a

neuroprotective peptide which exerts its effects mainly

through the cAMP-protein kinase A (PKA) pathway. Here, we

show that in cortical neurons, PACAP-induced PKA signaling

exerts a major part of its neuroprotective effects indirectly, by

triggering action potential (AP) firing. Treatment of cortical

neurons with PACAP induces a rapid and sustained PKA-

dependent increase in AP firing and associated intracellular

Ca2+ transients, which are essential for the anti-apoptotic

actions of PACAP. Transient exposure to PACAP induces

long-lasting neuroprotection in the face of apoptotic insults

which is reliant on AP firing and the activation of cAMP

response element (CRE) binding protein (CREB)-mediated

gene expression. Although direct, activity-independent PKA

signaling is sufficient to trigger phosphorylation on CREB’s

activating serine-133 site, this is insufficient for activation of

CREB-mediated gene expression. Full activation is dependent

on CREB-regulated transcription co-activator 1 (CRTC1),

whose PACAP-induced nuclear import is dependent on firing

activity-dependent calcineurin signaling. Over-expression of

CRTC1 is sufficient to rescue PACAP-induced CRE-mediated

gene expression in the face of activity-blockade, while domi-

nant negative CRTC1 interferes with PACAP-induced, CREB-

mediated neuroprotection. Thus, the enhancement of AP firing

may play a significant role in the neuroprotective actions of

PACAP and other adenylate cyclase-coupled ligands.

Keywords: Ca2+ signaling, CREB, gene regulation, neuro-

protective signalling, neurotoxicity, transcription factors.
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Parkinson’s disease (Reglodi et al. 2004, 2006). Given this,
PACAP has received considerable attention as a potential
therapeutic neuroprotective drug (Somogyvari-Vigh and
Reglodi 2004; Shioda et al. 2006; Brenneman 2007; Ohtaki
et al. 2008; Vaudry et al. 2009).

PACAP promotes neuroprotection by acting directly on
neuronal PACAP receptors (Vaudry et al. 2009). The molec-
ular mechanisms that underlie this neuroprotection centre on
activation of the cAMP-dependent protein kinase A (PKA), a
major effector of intracellular cAMP (Botia et al. 2007;
Vaudry et al. 2009). Activation of de novo gene expression
has been implicated in PACAP-mediated neuroprotection,
including c-Fos, brain-derived neurotrophic factor, Bcl-2 and
PACAP itself (Frechilla et al. 2001; Falluel-Morel et al.
2004; Shintani et al. 2005; Aubert et al. 2006; Dejda et al.
2008). Of note, these genes are all regulated by the cAMP
response element (CRE) binding protein (CREB) family of
transcription factors, a group of factors that are important for
the survival of central and peripheral neurons both pre- and
postnatally (Walton et al. 1999; Lonze et al. 2002; Manta-
madiotis et al. 2002) and whose activation contribute to the
neuroprotective effects of neurotrophins and synaptic activity
(Bonni et al. 1999; Riccio et al. 1999; Lee et al. 2005;
Papadia et al. 2005). PACAP is known to promote CREB
activation under conditions where it is neuroprotective (Racz
et al. 2006; Falktoft et al. 2009), however, a causal link has
up until now not been tested.

It is generally assumed that PACAP-mediated PKA signal-
ing in neurons triggers neuroprotective gene expression and
signal pathways by direct modulation of upstream effectors of
these processes. However, we have considered an alternative
explanation: that PACAP-induced PKA signaling exerts at
least some of its neuroprotective effects indirectly though the
enhancement of electrical activity. G-protein coupled receptors
that activate cAMP/PKA signals in neurons, such as type I
mGluRs and D1-type dopamine receptors, can potentiate
synaptic strength and neuronal excitability, and modulate ion
channel properties (Nguyen and Woo 2003). PACAP admin-
istration has been recently reported to enhance AMPAR
currents as well as synaptic NMDAR currents (MacDonald
et al. 2007; Costa et al. 2009) and to suppress the Apamin-
insensitive slow after-hyperpolarization (IsAHP) current (Hu
et al. 2011), which can control neuronal excitability.

Physiological patterns of action potential (AP) bursting are
known to be strongly neuroprotective (Bell and Hardingham
2011), activating multiple pathways including CREB-med-
iated gene expression, antioxidant gene expression and the
suppression of apoptotic genes (Hardingham 2006; Hetman
and Kharebava 2006; Al-Mubarak et al. 2009; Hardingham
and Bading 2010; Soriano et al. 2011; Zhang et al. 2011).
An episode of burst activity can confer neuroprotection long
after that episode has ceased, via a mechanism involving the
activation of nuclear Ca2+- and CREB-dependent gene
expression (Papadia et al. 2005; Hardingham 2009; Zhang

et al. 2009). Thus, we have studied the effect of PACAP on
levels of electrical activity in cortical neurons, and the role
this plays in neuroprotection. We find that PACAP-induced
PKA signaling triggers sustained increases in AP firing and
that this firing activity is essential for PACAP-mediated
neuroprotection. Specifically, PACAP-induced AP firing is
required in order to trigger nuclear translocation of CREB-
regulated transcription co-activator 1 (CRTC1, previously
referred to as TORC1: Transducer Of Regulated CREB
activity 1) in order to activate CREB-mediated gene
expression and subsequent neuroprotection.

Materials and methods

Neuronal cultures and chemicals used
Cortical neurons from E21 Sprague–Dawley rats were cultured as

described (Bading and Greenberg 1991; McKenzie et al. 2005)

except that growth medium was comprised of Neurobasal A medium

with B27 (Invitrogen, Carlsbad, CA, USA), 1% rat serum (Harlan

Inc., Indianapolis, IN, USA), 1 mM glutamine. Experiments were

performed after a culture period of 9–10 days during which neurons

developed a rich network of processes, expressed functional NMDA-

type and a-amino-3-hydroxy-5-methylisoxazole-4-propionate

(AMPA)/kainate-type glutamate receptors, and formed synaptic

contacts (Hardingham et al. 2001, 2002). PKA RIIb wild-type and

knockout mice (Brandon et al. 1998; Watson et al. 2006) were

cultured as above from E17 animals. PACAP-27 was purchased from

NeoMPS (Strasbourg, France). PACAP-27 and PACAP-38 are both

found in the brain, and PACAP-27 was chosen since it represents the

core functional region for activating PACAP receptors (Vaudry et al.
2009). Since we were concerned with events downstream of PACAP

receptor activation, PACAP-27 was deemed sufficient for this

purpose. MK801, KN-62 and forskolin from Tocris Cookson,

Ballwin, MO, USA, bicuculline from Sigma, St Louis, MO, USA,

PD-98059 from Ascent Scientific (Bristol, UK), H-89 from LC

Laboratories (Woburn, MA, USA), staurosporine, tetrodotoxin

(TTX) and 4-aminopyridine from Calbiochem, San Diego, CA, USA.

Models of neuronal apoptosis, PACAP-induced protection

Trophic deprivation
Neurons were transferred from growth medium to a trophically-

deprived medium containing 10% minimal essential medium

(Invitrogen), 90% Salt-Glucose-Glycine (SGG) medium (Papadia

et al. 2005) (SGG: 114 mM NaCl, 0.219% NaHCO3, 5.292 mM

KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM HEPES, 1 mM glycine,

30 mM glucose, 0.5 mM sodium pyruvate, 0.1% Phenol Red;

osmolarity 325 mOsm/L). When placed in this trophically-deprived

medium, neurons exhibit significant levels of caspase-dependent

apoptosis after 72 h (Papadia et al. 2005; Leveille et al. 2010). To
assess neuroprotective signaling by continuous PACAP exposure,

PACAP-27 (10 nM, NeoMPS) was administered at the point of

trophic deprivation and left throughout the course of the experiment

(72 h). The importance of PACAP-induced firing activity for

neuroprotection was assessed by administering PACAP in the

presence or absence of tetrodotoxin (1 lM). To assess the long-

lasting neuroprotective effect of PACAP exposure (and its
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dependence on firing activity), PACAP ± TTX was administered at

the point of trophic deprivation for 24 h, after which the medium

was replaced with PACAP-free, TTX-containing medium. Cell

death was quantified after a total of 72 h trophic deprivation.

Staurosporine-induced apoptosis
To induce rapid apoptotic cell death, and assess PACAP-induced

protection, staurosporine treatment was employed as described

(Papadia et al. 2005; Leveille et al. 2010). Briefly, neurons were

placed in trophically deprived medium ± PACAP for 23 h, at which

point the PACAP-treated neurons were given a second dose of

PACAP. After a further 1 h, neurons were treated with 100 nM

staurosporine, and death was assessed after a further 24 h. We have

previously established that 100 nM staurosporine induced caspase-

dependent apoptosis over this time period (Papadia et al. 2005;

Leveille et al. 2010).

Assessment of cell death
To quantify cell death, neurons were fixed and subjected to DAPI

(Vector Laboratories, Burlingame, CA, USA) staining and cell death

quantified by counting (blind) the number of apoptotic nuclei as a

percentage of the total. Approximately 1500 cells were counted per

treatment, across at least four independent experiments (performed

on different cultures). Morphologically, staurosporine-treated and

trophically deprived neurons show typical signs of apoptotic-like

cell death (shrunken cell body and large round chromatin clumps).

Images were taken using a Leica AF6000 LX imaging system

(Milton Keynes, UK), with a DFC350 FX digital camera.

Calcium imaging and analysis of imaging data
For pre-conditioning experiments, neurons were treated as indicated

for 2 h, then transferred to aCSF (150 mM NaCl, 3 mM KCl,

10 mM HEPES, 2 mM CaCl2, 1 mM MgCl2, 1 mM glucose) Ca2+

imaging was performed as described (Hardingham et al. 1997;

Soriano et al. 2008b). Briefly, cells were loaded with 11 lM Fluo-3

AM [from a stock solution of 2.2 mM Fluo-3 dissolved in

anhydrous dimethylsulfoxide containing 20% (w/v) Pluronic deter-

gent] for 30 min at 37�C. Fluo-3 fluorescence images (excitation

488 nm, emission ‡ 515 nm) were taken at one frame per second.

To calibrate images, Fluo-3 was saturated by adding 50 lM
ionomycin to the perfusion chamber (to obtain Fmax) and quenched

with 10 mM MnCl2 + 50 lM ionomycin to levels corresponding to

100 nM Ca2+ (Minta et al. 1989), which was in turn used to

calculate Fmin. Free Ca2+ concentrations were calculated from

fluorescence signal (F) according to the equation [Ca2+] = Kd(F –

Fmin)/(Fmax – F), and expressed as a multiple of the Kd of Fluo-3

(which is approximately 315 nM). In order to quantitate the effect of

PACAP on firing activity-induced Ca2+ influx, the mean [Ca2+] 30 s

before and 30 s after TTX treatment was calculated in either control

neurons or neurons treated with PACAP ± H-89. For each cell, the

degree of TTX-sensitive Ca2+ changes was calculated as the

difference between mean [Ca2+] before and after TTX treatment.

For each treatment, 60 cells were analysed within six independent

experiments.

Electrophysiological recording and analysis
Coverslips containing cortical neurons were transferred to a

recording chamber and perfused (at a flow rate of approximately

5 mL/min) with an external recording solution composed of

150 mM NaCl, 2.8 mM KCl, 10 mM HEPES, 2 mM CaCl2,

1 mM MgCl2, 50 lM glycine, 2 lM strychnine and 10 mM

glucose, pH 7.3 (320–330 mOsm). Patch-pipettes were made from

thick-walled borosilicate glass (Harvard Apparatus, Kent, UK) and

filled with a K-gluconate-based internal solution containing (in

mM): 155 K-gluconate, 2 MgCl2, 10 Na-HEPES, 10 Na-PiCreatine,

2 Mg2-ATP and 0.3 Na3-GTP, pH 7.3 (300 mOsm). Electrode tips

were fire-polished for a final resistance ranging between 5 and

10 MW. Currents were recorded at room temperature (21 ± 2�C)
using an Axopatch-1C amplifier (Molecular Device, Union City,

CA, USA) and stored on digital audio tape. Data were subsequently

digitized and analyzed using WinEDR v6.1 software (John

Dempster, University of Strathclyde, UK). Neurons were voltage-

clamped at )70 mV, and recordings were rejected if the holding

current was greater than )100 pA or if the series resistance

drifted by more than 20% of its initial value (< 35 MW). Neurons

were treated ± PACAP (10 nM) for 1–2 h prior to spontaneous

excitatory post-synaptic currents being recorded in voltage-clamp

for 5 min. Recordings were studied to determine whether they

showed evidence of burst-like activity, defined as long periods of

activity (> 1 s), peaking at > 50 pA.

Western blotting
In order to minimize the chance of post-translational modifications

during the harvesting process, neurons were lysed immediately in

1.5· sample buffer (1.5 M Tris pH 6.8; Glycerol 15%; sodium

dodecyl sulfate 3%; b-mercaptoethanol 7.5%; bromophenol blue

0.0375%) and boiled at 100�C for 5 min. Approximately 30 lg of

protein was loaded onto a gel and subjected to gel electrophoresis

and western blotting were performed using the Xcell Surelock

system (Invitrogen) with precast gradient gels (4–20%) according to

the manufacturer’s instructions. The gels were blotted onto

polyvinylidene difluoride membranes, which were blocked for 1 h

at 21 ± 2�C with 5% (w/v) non-fat dried milk in Tris-buffered saline

with 0.1% Tween 20. The membranes were incubated at 4�C
overnight with the primary antibodies diluted in blocking solution:

Anti-phospho-CREB serine-133 (1 : 500, Upstate Biotechnology,

Lake Placid, NY, USA) and CREB (1 : 500, Upstate). For

visualisation of western blots, horseradish peroxidase-based sec-

ondary antibodies were used followed by chemiluminescent

detection on X-Omat film (Kodak, Hemel Hempstead, UK). Western

blots were analyzed by digitally scanning the blots, followed by

densitometric analysis (ImageJ, National Institutes of Health,

Washington DC, USA). All analysis involved normalizing to CREB

expression as a loading control.

Transfection and luciferase assays
Neurons were transfected at DIV8 using Lipofectamine 2000 as

described (McKenzie et al. 2006) using a total of 0.6–0.7 lg cDNA/
well and 2.33 lL/well of Lipofectamine 2000 (1 lg/mL, from

Invitrogen). Under these conditions transfection efficiency is

approximately 2–5%, with > 99% of transfected cells NeuN-

positive, and < 1% glial fibrillary acidic protein-positive (Papadia

et al. 2008; Soriano et al. 2008a) confirming their neuronal identity.

For CRE-reporter assays, neurons were transfected with 0.5 lg of

CRE-Firefly Luciferase + 0.1 lg of pTK-Renilla (Promega, Madi-

son, WI, USA); or 0.2 lg CRE-Luc, 0.1 lg Renilla and 0.4 lg of

� 2011 The Authors
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either b-globin control vector, or vectors encoding inducible cAMP

early repressor 1 (ICER1) [a gift from Dr. Paulo Sassone-Corsi

(Stehle et al. 1993)], CRTC1 (TORC1) or Dominant negative

CRTC1 [CRTC1-DN (TORC1-N44), a gift from Dr Yang Zhou

(Zhou et al. 2006)]. Stimulations were performed 24 h post-

transfection. Neurons were treated with 10 nM PACAP or 5 lM
Forskolin for 4 h, or with 50 lM bicuculline and 250 lM
4-aminopyridine for 8 h, with inhibitors added 1 h before. Assays

were performed using the Dual Glo assay kit (Promega) and were

performed on a FLUOstar OPTIMA (BMG Labtech, Aylesbury,

UK). Firefly luciferase activity was normalized to the Renilla

control in all cases and each experiment was performed at least four

times.

Following the fate of transfected cells
The overall method to do this is as described (Papadia et al. 2008)
with some modifications to the timing. Neurons were transfected

with 0.5 lg of vectors expressing b-globin or ICER1 or CRTC1-DN

plus 0.1 lg of a plasmid encoding enhanced green fluorescent

protein (GFP) as a transfection marker. At 24 h post-transfection,

neurons were placed in trophically-deprived medium and treated

± 10 nM PACAP. After a further 24 h, images were taken of GFP-

expressing neurons using a Leica AF6000 LX imaging system, with

a DFC350 FX digital camera, prior to the transfer of cell to PACAP-

free, TTX-containing medium to block AP firing. Using mark-and-

find software, the fate of the photographed neurons was followed at

24 h and 48 h after TTX treatment. 250–500 cells were analysed per

treatment within 3–5 independent experiments.

CRTC1-localisation
For CRTC1-localisation studies, neurons were transfected with

0.6 lg GFP tagged CRTC1 [peGFP-C2/TORC1 a gift from Dr

Dong-Yan Jin, Department of Biochemistry, University of Hong

Kong, Hong Kong China (Siu et al. 2006)]. At 24 h post-

transfection, neurons were treated with 20 ng/mL Leptomycin B

(LC Laboratories) for 30 min in order to visualise CRTC1 import

more clearly (Kovacs et al. 2007) and then 10 nM PACAP for a

further 30 min in the presence of 1 lM TTX, 10 lM H-89 or

10 lM FK-506 (added 1 h before). Neurons were then fixed and

stained for anti-GFP (1 : 750, Invitrogen) and visualised using

biotinylated secondary antibody/cy3-conjugated streptavidin. Nuclei

were counter-stained with DAPI. Subcellular distribution of CRTC1

was scored as being nuclear if levels were higher in the nucleus than

in the surrounding perinuclear cytoplasm. 400–800 cells were

analysed per treatment across 4–8 independent experiments.

Statistical analysis
Statistical testing involved a 2-tailed paired Student’s T-test. For
studies employing multiple testing, we used a one-way ANOVA

followed by Fisher’s least significant difference post-hoc test.

Results

PACAP triggers sustained increases in AP firing in cortical
neurons
PACAP is known to promote PKA-dependent neuroprotec-
tion in a variety of systems in vitro and in vivo (see above).

However, PKA activation is also capable of altering neuronal
network activity through the control of intrinsic excitability
and synaptic strength (Nguyen and Woo 2003). To investi-
gate the effect of PACAP on levels of electrical activity we
performed Ca2+ imaging experiments on cortical neurons
pre-treated with PACAP. This pre-treatment resulted in
enhanced AP firing as evidenced by strong oscillatory
intracellular Ca2+ transients that were blocked by the Na+

channel antagonist TTX (Fig. 1a, quantitation in Fig. 1d). In
contrast, control neurons exhibited far smaller TTX-sensitive
Ca2+ transients (Fig. 1b and d). Pre-treatment of neurons
with the PKA inhibitor H-89 prevented any PACAP-induced
changes in Ca2+ oscillations (Fig. 1c and d). We also
performed whole-cell voltage-clamp recordings of neurons
pre-treated with PACAP which corroborated the Ca2+

imaging data: nine out of nine PACAP-treated neurons
exhibited incoming excitatory post-synaptic currents consis-
tent with burst-like activity (> 1 s in duration, > 50 pA at
peak), compared to zero out of eight control neurons
(Fig. 1e). Further Ca2+ imaging experiments revealed that
acute administration of PACAP also had a similar effect,
indicating that the potentiating effect of PACAP on AP firing
is fast-acting as well as long-lasting (Fig. 1f). Thus, PACAP-
induced PKA signaling in cortical neurons induces long-
lasting increases in AP firing and associated Ca2+ transients.

Enhanced AP firing is essential for PACAP-induced
neuroprotection
It is known that elevated electrical activity can promote
neuroprotection in cortical neurons (Mennerick and Zorum-
ski 2000; Bell and Hardingham 2011), raising the possibility
that PACAP-induced AP firing contributes to its neuropro-
tective effect. We studied the capacity of PACAP to protect
neurons against two different apoptotic insults, and studied
the effect of blocking AP firing by TTX treatment. We first
used staurosporine which induces caspase-dependent apop-
tosis of cortical neurons (Papadia et al. 2005). Pre-treatment
of cortical neurons with PACAP before exposure to stauro-
sporine for 24 h reduced levels of apoptosis (Fig. 2a and b).
TTX treatment alone enhanced basal levels of neuronal
apoptosis, however, staurosporine treatment caused addi-
tional neuronal loss. Importantly, we found that PACAP
treatment failed to protect neurons against apoptosis in the
presence of TTX.

We next employed a model of prolonged trophic depriva-
tion (72 h) that also induces progressive caspase-dependent
apoptosis (Papadia et al. 2005; Leveille et al. 2010). Once
again, PACAP treatment protected neurons against apoptosis
in control, although overall levels of apoptosis were not high
[Fig. 2c, treatment (1)]. An episode of AP firing can promote
neuroprotection that lasts well beyond the point at which that
activity ends (Papadia et al. 2005). We hypothesised that
PACAP-induced AP firing would similarly be able to exert
long-lasting neuroprotection. Neurons subjected to trophic
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deprivation were treated with or without PACAP for 24 h,
after which all neurons were placed in PACAP-free, TTX-
containing medium. Levels of apoptosis were then assessed
after a further 48 h [Fig. 2c, treatment (3)]. PACAP treatment
was found to confer significant neuroprotection [Fig. 2c,
treatment (3)] and this was dependent on PACAP-induced
AP firing, since no protection was observed if PACAP was
administered in the presence of TTX [Fig. 2c, treatment (2)].
Thus, PACAP-induced AP firing confers long-lasting neuro-
protection. We conclude from these experiments that
PACAP-induced enhancement of AP firing is important for
its neuroprotective effects in these models of cortical
neuronal apoptosis. This suggests that activation of PKA
signaling is insufficient to directly activate certain neuropro-
tective pathways, and that it activates them indirectly by
inducing AP firing which in turn triggers Ca2+-dependent
signaling pathways that induce pro-survival events.

Induction of CREB-mediated gene expression contributes
to PACAP-mediated neuroprotection
We next investigated the mechanism by which PACAP-
induced AP firing leads to long-lasting neuroprotection. The
CREB family controls the expression of a number of pro-
survival genes containing CRE promoter elements and is a
target for activation by both cAMP/PKA signals as well as
activity-dependent Ca2+ signaling (Lonze and Ginty 2002).
CREB itself is the predominant member in forebrain neurons
(Papadia et al. 2005) and so is likely to be responsible for the
majority of CRE-mediated gene expression. PACAP treat-
ment resulted in the strong activation of a CRE-reporter
(which was blocked by a PACAP receptor antagonist,
Fig. 3a, lower), raising the possibility that CREB activation
contributes to PACAP-mediated neuroprotection. We studied
the effect of blocking CRE-dependent gene expression by
transfecting neurons with a vector encoding ICER1, which is

Fig. 1 PACAP enhances AP firing in cortical neurons. (a–d) Pre-

treatment with PACAP (10 nM PACAP-27 here and throughout the

study) causes an increase in AP firing-dependent Ca2+ transients.

Neurons were treated where indicated with PACAP ± H-89 (10 lM).

After 2 h, the neurons were subjected to Fluo-3 Ca2+ imaging studies

(see Methods for details) to monitor the size of Ca2+ transients in the

different stimulation conditions. TTX (1 lM) was added where indi-

cated to determine the extent to which the observed Ca2+ transients

were because of action potential firing. Example traces are shown:

black line indicates the mean Ca2+ concentration within a field of cells,

and the grey shaded region indicates ± SEM of the Ca2+ concentration

within that field. Free Ca2+ concentrations were calculated from fluo-

rescence signal (F) according to the equation [Ca2+] = Kd(F – Fmin)/

(Fmax – F), and expressed as a multiple of the Kd of Fluo-3 (which is

approximately 315 nM). (d) shows quantification of data shown in (a–

c), that is, quantification of the difference in mean amplitude of [Ca2+]

before and after 1 lM TTX treatment. In order to quantitate the effect

of PACAP on firing activity-induced [Ca2+] influx, the mean [Ca2+] 30 s

before and 30 s after TTX treatment was calculated in either control

neurons or neurons treated with PACAP ± H-89. For each cell, the

degree of TTX-sensitive Ca2+ changes was calculated as the differ-

ence between mean [Ca2+] before and after TTX treatment. For each

condition, 60 cells were analysed within six independent experiments

(*p < 0.05). (e) Example trace of a whole-cell voltage-clamp recording

of a control and PACAP-treated cortical neurons. PACAP causes an

increase in burst-like activity, consistent with the Ca2+ imaging data. (f)

Ca2+ imaging of acute PACAP treatment, a typical example trace is

shown representative of six independent experiments.
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an inhibitory isoform of the CREB family (De Cesare and
Sassone-Corsi 2000). We confirmed the efficacy of ICER1:
expression of ICER1 blocked PACAP-induction of a CRE-
reporter gene (Fig. 3a, upper).

To assess the importance of CREB in PACAP-induced
long-lasting protection, neurons were transfected with vec-
tors expressing either b-globin (control) or ICER1 plus a
peGFP transfection marker. At 24 h post-transfection, neu-
rons were placed in trophically-deprived medium and treated
± PACAP. After a further 24 h, images were taken of GFP-
expressing neurons, prior to the transfer of the neurons to
PACAP-free, TTX-containing medium to block AP firing.
The fate of the transfected neurons was followed at 24 h and
48 h after TTX treatment (see Fig. 3b, schematic). We found
that the transfection procedure caused slightly higher rates of
neuronal death than in untransfected cells. However, in
control-transfected neurons, PACAP treatment promoted
significant protection both 24 h and 48 h after the removal
of PACAP (Fig. 3b). Importantly, PACAP treatment was not
significantly neuroprotective in ICER1-expressing neurons
(Fig. 3b), indicating a role for CRE/CREB-dependent gene
expression in PACAP-mediated long-lasting neuroprotection.

AP firing underlies PACAP-induced CREB activation
The fact that PACAP-induced neuroprotection is not
observed when neurons are co-treated with TTX suggested
that activation of CRE-dependent gene expression could be
dependent on AP firing. Indeed, we found this to be the case:
TTX treatment alone had little effect on basal activity of a
CRE- reporter, but inhibited PACAP-mediated activation by
around 80% (Fig. 3c). PKA inhibition by H-89 treatment
completely blocked the induction of the CRE reporter by
PACAP, including the small TTX-insensitive component.
Taken together, these data show that direct signaling by PKA
is able to support weak activation of CRE-dependent gene
expression, but that AP firing is needed for strong CRE-
induction and resultant neuroprotection.

To further confirm the role of PKA in both activity-
dependent and -independent activation of CREB by PACAP,
we studied activation of a CRE reporter in neurons cultured
from a mouse deficient in the RIIb subunit of PKA. In the
RIIb)/) mouse, levels of cAMP-inducible PKA activity
within the cortex are lower than wild-type, while basal PKA
activity is similar (Brandon et al. 1998). We found that both
TTX-sensitive and -insensitive components of PACAP-
induced CRE-mediated gene expression were lower in
RIIb-null neurons (Fig. 3d). The level of reduction in
PACAP-induced CRE-activation in the RIIb-null neurons
was comparable to that seen in the context of the adenylate
cyclase activator forskolin (Fig. 3d), confirming that PKA is
central to both AP-dependent and -independent components
of CREB activation by PACAP.

Given that activity-dependent Ca2+ influx can activate
Ca2+-dependent adenylate cyclases, it was theoretically

Fig. 2 PACAP promotes resistance to apoptotic stimuli which is

dependent on AP firing. (a,b) PACAP protects against staurosporine-

induced cell death, but not in the presence of TTX. Neurons were

treated with PACAP in the presence or absence of TTX 24 h and 1 h

before treatment with 100 nM staurosporine. After a further 24 h, the

cells were then fixed and DAPI stained and death was measured by

counting pyknotic and non-pyknotic nuclei (*p < 0.05, n = 4); (b)

shows example pictures. (c) PACAP-induced AP firing protects

against trophic deprivation and promotes long lasting neuroprotection.

At t = 0, the neurons were placed in trophically-deprived medium and

given one of the three treatment regimes outlined in the upper sche-

matic (1–3). At t = 72 h, cells were fixed, DAPI stained and levels of

neuronal death analysed (*p < 0.05, n = 3).
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possible that PKA could play a role in CREB activation
downstream of AP firing. However, it has been shown that
strong firing activity does not cause global levels of cAMP to
rise sufficiently high to support PKA signaling to CREB in
the nucleus (Pokorska et al. 2003). Nevertheless, to inves-
tigate this directly we studied the activation of CRE-mediated
gene expression by AP firing induced via a PKA-indepen-
dent mechanism: network disinhibition by the GABAA

receptor blocker bicuculline plus the K+ channel blocker 4-
aminopyridine [to enhance burst frequency (Hardingham
et al. 2001)]. Induction of CRE-mediated gene expression by
bicuculline/4-AP-induced AP firing was not lower in RIIb-
null neurons (Fig. 3d). This indicates that cAMP/PKA
signaling is not a major mediator of CRE-dependent gene

expression downstream of AP firing, in agreement with
previous studies (Pokorska et al. 2003). Collectively these
observations support a model whereby PACAP-induced PKA
signaling weakly activates CREB directly, but triggers strong
CREB activation by promoting AP firing which in turn
activates CREB via PKA-independent pathways.

PACAP-induced CREB phosphorylation does not require AP
firing
We next investigated which CRE-activating molecular events
triggered by PACAP treatment are actually reliant on
activity-dependent Ca2+ signals, and whether any can be
triggered in an activity-independent manner by direct PKA
signaling. CREB phosphorylation on serine-133 is essential

Fig. 3 PACAP induces CRE-dependent gene expression, which is

neuroprotective, and relies on AP firing. (a) Upper-PACAP induces

CRE-mediated gene expression. Neurons were transfected with a

CRE-Firefly luciferase vector, pTK renilla transfection control and

vectors encoding either ICER1 or control (b-globin). See Methods

section for exact quantities used. At 24 h post-transfection, neurons

were treated with PACAP and luciferase expression was measured

after a further 4 h. CRE-Firefly luciferase activity was normalised to

Renilla control (*p < 0.05, n = 3). Lower-Effect of the PACAP antag-

onist (Antag, PACAP6–38, 1 lM) on PACAP induction of CRE-lucif-

erase (*p < 0.05, n = 3). (b) PACAP mediated long-lasting

neuroprotection depends on activation of CRE-mediated gene

expression. Upper panel illustrates the experimental protocol. Briefly,

neurons expressing GFP plus either ICER1 or b-globin control were

treated ± PACAP 24 h post-transfection and then all cells were placed

in TTX-containing medium after a further 24 h, at which point images

of GFP-expressing neurons were taken (t = 0 in the upper schematic).

The fate of these cells was then monitored at 24 and 48 h after this

medium change. 250–400 cells were analysed per treatment across

six cultures within three independent experiments. (*p < 0.05). (c)

PACAP induced CRE-dependent gene expression is dependent on AP

firing. Neurons were treated with PACAP where indicated for 4 h; all

other drugs were added 1 h beforehand (*p < 0.05, #p < 0.05 com-

paring H-89 with control for that particular PACAP/TTX condition,

n = 7). (d) PACAP and forskolin-induced activation of CRE-mediated

gene expression is disrupted in RIIb-deficient neurons: both AP firing-

dependent and independent components. Forskolin was used at 5 lM.

For comparison is an illustration of the RIIb-independence of CRE

activation triggered by promoting AP firing by network disinhibition

through treatment with the GABAA receptor blocker bicuculline

(50 lM) plus 250 lM 4-aminopyridine, which is a PKA-independent

way of inducing AP firing (Papadia et al. 2005) (*p < 0.05, n = 6).
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for CREB activation since it triggers the recruitment of the
co-activator CREB binding protein (CBP; Chrivia et al.
1993). CREB phosphorylation was induced by PACAP
treatment (Fig. 4a). Interestingly, TTX treatment did not
interfere with PACAP-induced CREB phosphorylation
(Fig. 4b and c), while the PKA inhibitor H-89 blocked
CREB phosphorylation (Fig. 4a and c). Serine-133 of CREB
is a good substrate for PKA (Gonzalez and Montminy 1989),
and these data indicate that PACAP-induced PKA activity is
sufficient to result in the direct phosphorylation of CREB,
and that AP firing is not needed for this particular activation
step. However, while CREB serine-133 phosphorylation is
necessary for full activation of CREB, it is not sufficient. A
key secondary activation step involves the co-activator
CRTC (CREB-regulated transcription co-activator), which
is subject to Ca2+-dependent nuclear import, where it binds to
CREB and enhances its affinity for both CBP and the basal
transcriptional machinery (Conkright et al. 2003; Screaton
et al. 2004; Zhou et al. 2006; Kovacs et al. 2007; Li et al.
2009).

PACAP-induced AP firing mediates calcineurin-dependent
CRTC1 nuclear import
We confirmed the importance of CRTC for CRE activation:
expression of a dominant negative mutant of CRTC1
(CRTC1-DN; Zhou et al. 2006) strongly inhibited PACAP-
induction of the CRE-mediated gene expression, as well as
that induced by bicuculline/4-AP treatment (Fig. 5a). We
also investigated the importance of CRTC signaling in
PACAP-mediated long-lasting neuroprotection, using an
identical protocol to that used in Fig. 3(b), except that the
ICER-encoding vector was replaced with that of CRTC1-
DN. At the 48 h timepoint (after removal of PACAP from the

medium), a very small, but statistically significant, amount of
PACAP-dependent neuroprotection was still observed at
48 h in CRTC1-DN-expressing neurons. However, levels of
neuronal death in CRTC1-DN-expressing neurons previously
exposed to PACAP were significantly higher than control-
transfected cells previously exposed to PACAP (Fig. 5b and
c). Thus, CRTC1-DN interferes with neuroprotection evoked
by transient exposure to PACAP, consistent with the role of
CREB in this process, and the importance of CRTCs in
CREB-mediated gene expression.

Nuclear translocation of CRTC is an important step in the
full activation of CREB-dependent gene expression (Scre-
aton et al. 2004). We found that PACAP treatment caused the
nuclear translocation of CRTC1 that was inhibited by TTX
(Fig. 5d and e). Activity-dependent Ca2+ influx is known to
induce CRTC1 translocation through activation of the Ca2+-
dependent phosphatase calcineurin. Calcineurin subsequently
dephosphorylates CRTC, triggering its nuclear import and
co-activation of CREB (Li et al. 2009). This mechanism is
employed in the case of PACAP signaling: inhibition of
calcineurin activity by treatment with the inhibitor FK-506
inhibited PACAP-mediated CRTC1 translocation (Fig. 5d)
and PACAP-mediated induction of CRE-mediated gene
expression (Fig. 5f). As a control, we wanted to confirm
that FK-506 was not inhibiting the induction of activity-
dependent Ca2+ transients. Using the same methodology as
for Fig. 1(d), we found that TTX-sensitive Ca2+ elevation in
PACAP + FK-506-treated neurons was 100 ± 6.4% of that
in neurons treated with PACAP alone (n = 3, 25–30 cells
analysed per treatment). Thus, the inhibitory effect of
FK-506 on PACAP-mediated CRTC1 translocation is not
because of any indirect interference in the induction of
activity-dependent Ca2+ transients.

Taken together, these observations suggest that a key
reason why TTX inhibits PACAP-activation of CRE-
mediated gene expression is that blockade of CRTC nuclear
import renders nuclear levels of CRTC too low to
efficiently co-activate CREB. We postulated that if CRTC
was indeed limiting, then if we over-expressed CRTC1,
then this might rescue the inhibitory effect of TTX on
PACAP activation of the CRE reporter. Although over-
expressed CRTC1 would be mainly cytoplasmic, we
reasoned that since a proportion of it is nuclear then this
could rescue the deficiency in nuclear levels. We found this
to be the case: over-expression of CRTC1 reversed the
inhibitory effect of TTX on PACAP-induction of CREB-
dependent gene expression (Fig. 5g). CRTC1 over-expres-
sion, however, did not further enhance PACAP activation of
CREB-mediated gene expression in the absence of TTX
(Fig. 5g), indicating that PACAP-induced firing causes
sufficient CRTC nuclear import such that levels of nuclear
CRTC are not limiting for efficient co-activation of CREB.
Thus, while PACAP activation of direct PKA signaling
is sufficient to induce CREB phosphorylation, this is

Fig. 4 PACAP-mediated induction of serine-133 CREB phosphoryla-

tion does not require AP firing. (a–c) PACAP induces phosphorylation

of CREB at serine-133 in a TTX-insensitive, PKA-dependent manner.

Neurons were pre-treated with TTX or H-89 and then treated for

15 min with PACAP. Protein was harvested and subject to western

analysis for phospho-CREB (see Methods, normalized in all cases to

total CREB, *p < 0.05, n = 4, example blots are shown). (a) and (b)

show example westerns and (c) shows quantitation of phospho-CREB

levels (normalized to total CREB).
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insufficient to activate CREB on its own. Enhancement of
AP firing is critical in order to induce calcineurin-dependent
CRTC nuclear translocation, an important step in CREB
activation and consequent neuroprotection.

Discussion

This study shows that certain PACAP-mediated anti-apopto-
tic signals in cortical neurons are not mediated by direct
cAMP/PKA-dependent activation. Instead, the primary role
of cAMP/PKA signaling is to enhance neuronal network
activity. The resulting AP-dependent Ca2+ transients are the
direct activators of neuroprotection, and induce a long-lasting
phase of protection dependent on activation of CREB-

mediated gene expression. These events are illustrated
schematically in Fig. 6.

Modulation of neuronal electrical activity by PACAP and
other AC-coupled ligands
The ability of PACAP to induce AP firing in networks of
cortical neurons is consistent with the known influence of
intracellular cAMP on neuronal excitability. Neurotransmit-
ters, neuropeptides and pharmacological compounds that
activate AC are well-known to modulate neuronal excitabil-
ity, ion channel conductance, and synaptic transmission and
plasticity, predominantly through PKA activation (Nguyen
and Woo 2003). At the synapse, pharmacological activators
of AC, and agonists of AC-coupled receptors such as the D1/
D5 dopamine receptor, or the b-adrenergic receptor, all
mimic long term potentiation (LTP) and/or enhance ex-
citatory post-synaptic potentials (Nguyen and Woo 2003).

Fig. 5 PACAP induces nuclear translocation of CRTC1, necessary for

the AP firing-dependent component of CREB activation. (a) CRTC1

dominant negative inhibits PACAP mediated activation of CREB.

Neurons were transfected with CRE-luciferase, pTK-Renilla and vec-

tors encoding either a CRTC1 dominant negative mutant or control

(b-globin). Neurons were stimulated PACAP or bicuculline plus 4-AP

(BiC) (*p < 0.05, n = 4). (b,c) PACAP mediated long-lasting neuro-

protection depends on CRTC1. The experimental protocol is the same

as that illustrated schematically in Fig. 3(b). Briefly, neurons

expressing GFP plus either CRTC1-DN (dominant negative) or

b-globin control were treated ± PACAP 24 h post-transfection and

then all cells were placed in TTX-containing medium after a further

24 h, at which point images of GFP-expressing neurons were taken.

The fate of these cells was then monitored at 24 and 48 h after this

medium change (*p < 0.05, paired T-test, n = 3; #p < 0.05, paired

T-test comparing control to PACAP within each condition/timepoint).

(c) shows example pictures. Scale bar = 20 lm. (d,e) PACAP induces

CRTC1 nuclear translocation via activity-dependent calcineurin sig-

naling. Neurons were transfected with a vector encoding GFP-tagged

CRTC1. At 24 h post-transfection, neurons were treated with 20 ng/

mL leptomycin B for 30 min to block nuclear export [to enable import to

be observed more clearly (Kovacs et al. 2007)], plus the indicated

inhibitors (1 lM TTX, 10 lM H-89 or 10 lM FK-506) and then PACAP

added for 30 min prior to fixing of the cells and analysing localisation of

GFP-CRTC1 in 400–800 cells per treatment (*p < 0.05, n = 4–8). (e)

shows example pictures. (f) PACAP-induced activation of CRE-med-

iated gene expression requires the Ca2+-dependent phosphatase

calcineurin. Where used, FK-506 was added 1 h prior to PACAP

stimulation (*p < 0.05, n = 4). (g) CRTC1 over-expression rescues the

inhibition of PACAP-mediated CRE activation by TTX. Neurons were

transfected with CRE-luciferase, pTK-Renilla and either vectors

encoding CRTC1 or b-globin control. 24 h post-transfection the neu-

rons were stimulated with PACAP ± TTX or bicuculline + 4-AP (BiC)

as indicated. Over-expression of CRTC1 does not further enhance

CRE activation by BiC or PACAP, suggesting that levels are not

limiting, however, it strongly enhances levels induced by PACAP in the

presence of TTX (*p < 0.05, n = 4).
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Mice deficient in AC1 and AC8 show deficits in LTP and
spatial memory (Nguyen and Woo 2003; Ferguson and
Storm 2004). At the molecular level, PKA-mediated GluR1
phosphorylation at serine-845 increases AMPA receptor open
probability and stabilizes synaptic location of AMPA recep-
tors trafficked to the synapse during LTP (Banke et al. 2000;
Esteban et al. 2003; Lee et al. 2003). PACAP at low doses is
known to enhance AMPAR currents via PKA activation
(Costa et al. 2009) as well as synaptic NMDAR currents
(MacDonald et al. 2007). Moreover, mice deficient in
PACAP have defective LTP at the mossy fibre synapse,
implicating endogenous PACAP signaling in synaptic poten-
tiation (Otto et al. 2001). In addition to modifying the
properties of synaptic glutamate receptors, AC-coupled PKA
signaling also can modulate neuronal excitability by con-
trolling the IsAHP. IsAHP is mediated by a Ca2+ activated
potassium current which is activated in response to bursts of
AP firing. This is a key negative regulator of neuronal
excitability, inducing a prolonged state of hyperpolarization,
and this is in turn negatively regulated by AC-coupled PKA
activity induced either pharmacologically (e.g. forskolin) or
by treatment with AC-coupled ligands (e.g. dopamine)
(Pedarzani and Storm 1995; Lancaster et al. 2006; Hu et al.
2011). PACAP treatment itself leads to inhibition of IsAHP

in cortical pyramidal neurons (Hu et al. 2011), which could
contribute to the enhanced AP firing that we observe (Fig. 1).

PACAP-induced AP firing promotes CREB-dependent
neuroprotection
The CREB family of transcription factors is known to be an
important mediator of activity-dependent gene expression
(Lonze and Ginty 2002). The potential of CREB family-
regulated gene products to promote neuronal survival was first
demonstrated in the context of neurotrophin signaling (Bonni
et al. 1999; Riccio et al. 1999) and exogenous over-expres-
sion (Walton et al. 1999). In addition, studies of mice where
CREB and/or CREB family members have been deleted also
point to a pro-survival role for CREB in vivo both pre- and
postnatally (Lonze et al. 2002; Mantamadiotis et al. 2002).
CREB-dependent gene expression is causally linked to the
long-lasting phase of activity-dependent neuroprotection
against apoptotic insults (Papadia et al. 2005) and data
presented in this study supports the idea that PACAP treatment
recruits this activity-dependent neuroprotective pathway.

Activation of CREB-mediated gene expression requires
serine-133 phosphorylation which is necessary to recruit
CBP, a transcriptional cofactor, to CREB (Chrivia et al.
1993). Several Ca2+-activated kinase cascades can mediate

Fig. 6 Schematic illustration of the role of activity-dependent Ca2+

signaling in PACAP-mediated neuroprotection. Activation of PACAP

receptors leads to activation of PKA via the classical G-protein-

adenylate cyclase (AC)-cAMP: pathway (1). PKA activation causes an

increase in synaptic strength and/or neuronal excitability leading to a

strong increase in levels of action potential firing which in turn triggers

intracellular Ca2+ influx, likely through synaptic receptors (e.g. NMDA

receptors) or voltage-gated Ca2+ channels (VGCCs): pathway (2).

Activation of long-lasting neuroprotection by PACAP requires induc-

tion of gene expression mediated by the transcription factor CREB.

CREB phosphorylation on serine-133 can be triggered directly by PKA

in an AP firing-independent manner: pathway (3). However, this is

insufficient to fully activate CREB-mediated gene expression. A

key Ca2+/activity-dependent pathway involves CRTC1 nuclear trans-

location through activation of the Ca2+-dependent phosphatase

calcineurin: pathway (4). Blue arrows and molecules indicate AP firing

activity-independent events, while red arrows and molecules highlight

the events dependent on AP firing. The pharmacological and genetic

inhibitors of the various pathways used in this study are shown in

green.
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this event, including the Ras-extracellular signal regulated
kinase 1/2 pathway and also nuclear Ca2+/calmodulin-
dependent protein kinase (CaM kinase) (Soriano and
Hardingham 2007). However, PACAP induced CREB
phosphorylation does not require these activity-dependent
pathways, since even when AP firing is blocked CREB
phosphorylation is still observed (Fig. 4). This is consistent
with the fact that PKA is also a CREB kinase and indicates
that PACAP-induced PKA activity is strong enough to
mediate this event directly.

However, direct PKA activity induced by PACAP is not
sufficient to induce subsequent activation steps, including
nuclear translocation of CRTCs. CRTCs enhance the inter-
action of CREB with the TAF(II)130 component of TFIID
following its recruitment to the promoter (Conkright et al.
2003). Calcineurin promotes nuclear translocation of CRTC2
through calcineurin-mediated dephosphorylation of serine-
171 (Screaton et al. 2004). Translocation can be enhanced/
synergized by PKA signaling with causes the inhibition of
the serine-171-kinase – salt-inducible kinase-2 (Screaton
et al. 2004). CRTC1 is the major isoform in the brain and is a
key regulator of CREB-dependent gene expression (Kovacs
et al. 2007; Li et al. 2009). Ca2+ signals promote the nuclear
translocation of CRTC1, dependent on calcineurin signaling
which directly dephosphorylates CRTC1 (Bittinger et al.
2004). Analogously with CRTC2, cAMP signals can also
trigger the translocation of CRTC1 (Bittinger et al. 2004),
most likely through the inhibition of salt-inducible kinase-
mediated phosphorylation. In neurons, calcineurin activation
is sufficient to trigger CRTC1 translocation (Li et al. 2009).
The requirement for AP firing and calcineurin signaling for
PACAP treatment to induce CRTC1 translocation strongly
indicates that PACAP-induced PKA activity is not strong
enough on its own to promote sufficient CRTC1 transloca-
tion directly, although may be playing a supporting role.

Another more recently discovered role for CRTC is in
assisting the recruitment of CREB’s co-activator CBP to
phospho(serine-133) CREB (Ravnskjaer et al. 2007). We
and others have shown previously that CBP itself is activated
by Ca2+ influx in neurons (via CaM kinase-dependent
phosphorylation) which contributes to activation of CRE-
mediated gene expression (Chawla et al. 1998; Hardingham
et al. 1999; Impey et al. 2002). Thus, CBP activation may
also contribute to the activation of CRE-mediated gene
expression by PACAP-induced firing activity. Indeed, we
observe strong activity-dependent activation of CBP’s trans-
activating potential by PACAP, which is both dependent on
firing activity and CaM kinase activity (Baxter and Hard-
ingham, unpublished observations).

PACAP prevents neuronal loss and dysfunction in vivo:
potential role of enhanced AP firing
PACAP has been reported to protect neurons against a
variety of insults including ceramide, glutamate and

hydrogen peroxide-induced death (Vaudry et al. 2009),
insults that synaptic activity also protects against (Lee et al.
2005; Papadia et al. 2005, 2008). Importantly, activation of
CREB-mediated gene expression is implicated in activity-
dependent protection against both apoptotic and excitotoxic
insults (Lee et al. 2005; Papadia et al. 2005). Based on this
study, it may be that indirect activity-dependent signaling to
CREB contributes to the neuroprotective effects of PACAP
in vitro and also begs the question as to whether any of its
in vivo effects are similarly because of enhancing neuronal
activity.

In vivo administration of PACAP reduces neuronal loss in
the substantia nigra in acute models of Parkinson’s Disease:
6-Hydroxydopamine and MPTP treatment (Reglodi et al.
2004, 2006; Wang et al. 2008). However, most neuropro-
tective studies on PACAP have centred on excitotoxic
trauma: principally stroke, traumatic brain injury (TBI) and
retinal injury. PACAP crosses the blood brain barrier and can
be administered intravenously to decrease damage in several
models of ischemia and is effective even when administered
several hours after the ischemic episode (Uchida et al. 1996;
Reglodi et al. 2000; Chen et al. 2006; Ohtaki et al. 2008).
Enhanced neuronal AP firing is known to protect neurons
against excitotoxic cell death including ischemic conditions
(Lee et al. 2005; Tauskela et al. 2008) and so the notion that
PACAP can reduce neuronal damage in part by promoting
AP firing is plausible. PACAP is also highly effective in
ameliorating damage to the retina in a variety of trauma
models, including excitotoxic and ischemic injury (Atlasz
et al. 2010). In addition, post-insult PACAP treatment also
reduces the extent of axonal damage following TBI (Farkas
et al. 2004; Tamas et al. 2006b). TBI is characterised by
brief acute hyperactivity of ionotropic glutamate receptors,
including NMDA receptors, which mediate acute excitotoxic
damage, followed by sustained loss of function (Biegon et al.
2004; Yaka et al. 2007). As such the NMDA receptor has
been proposed to rapidly switch between ‘destructive’ and
‘recovery’ roles (Biegon et al. 2004; Yaka et al. 2007). In the
immature brain, treatment with NMDAR antagonists reduces
primary excitotoxic death but exacerbates secondary apop-
tosis, resulting in increased overall death (Pohl et al. 1999).
By promoting AP firing, PACAP may boost the recovery
phase post-injury by mechanisms related to those described
in this study, as well as others more specific to the activity-
dependent protection of axons.

Of course, enhanced neuronal activity is very unlikely to
mediate all the effects of PACAP in the CNS: direct activity-
independent effects are likely to be exerted in neurons as
well. Moreover, there are well-documented neuroprotective
effects of PACAP acting indirectly via non-neuronal cells.
For example, PACAP stimulates the astrocytic release of
neuroprotective IL-6 (Ohtaki et al. 2008) and also suppresses
microglial activation, thus reducing the release of potentially
harmful cytokines that can form part of the post-ischemic
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response (Gonzalez-Rey et al. 2007; Vaudry et al. 2009).
Nevertheless, the impact of PACAP on neuronal activity
should be taken into account when assessing the mechanism
and extent of any therapeutic effect.
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