-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Combined knockout of collecting duct endothelin A and B
receptors causes hypertension and sodium retention

Citation for published version:

Ge, Y, Bagnall, A, Stricklett, PK, Webb, D, Kotelevtsev, Y & Kohan, DE 2008, 'Combined knockout of
collecting duct endothelin A and B receptors causes hypertension and sodium retention' American Journal
of Physiology-Renal Physiology, vol 295, no. 6, pp. F1635-F1640. DOI: 10.1152/ajprenal.90279.2008

Digital Object Identifier (DOI):
10.1152/ajprenal.90279.2008

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
American Journal of Physiology-Renal Physiology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN o ACCESS

Download date: 28. Apr. 2017


https://core.ac.uk/display/28967414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1152/ajprenal.90279.2008
http://www.research.ed.ac.uk/portal/en/publications/combined-knockout-of-collecting-duct-endothelin-a-and-b-receptors-causes-hypertension-and-sodium-retention(fdc03187-670e-442c-8d85-86de890a7d0c).html

Combined knockout of collecting duct endothelin A
and B receptor s causes hypertension and sodium

retention
Yugiang Ge, Alan Bagnall, Peter K. Stricklett, David Webb, Yuri Kotelevtsev and

Donald E. Kohan
Am J Physiol Renal Physiol 295:F1635-F1640, 2008. First published 10 September 2008;
doi:10.1152/ajprenal .90279.2008

Y ou might find this additional info useful...

This article cites 26 articles, 13 of which can be accessed free at:
/content/295/6/F1635.full.html#ref-list-1

This article has been cited by 9 other HighWire hosted articles, thefirst 5 are:

Endothelin-1 inhibits sodium reabsor ption by ET 5 and ETg receptorsin the mouse
cortical collecting duct

I. Jeanette Lynch, Amanda K. Welch, Donald E. Kohan, Brian D. Cain and Charles S. Wingo
Am J Physiol Renal Physiol, August 15, 2013; 305 (4): F568-F573.

[Abstract] [Full Text] [PDF]

Myocardial, Smooth M uscle, Nephron, and Collecting Duct Gene Tar geting Revealsthe
Organ Sites of Endothelin A Receptor Antagonist Fluid Retention

Deborah Stuart, Mark Chapman, Sara Rees, Stephanie Woodward and Donald E. Kohan

J Pharmacol Exp Ther, August , 2013; 346 (2): 182-189.

[Abstract] [Full Text] [PDF]

Renal Collecting Duct NOS1 Maintains Fluid—Electrolyte Homeostasis and Blood Pressure
Kelly A. Hyndman, Erikal. Boesen, Ahmed A. Elmarakby, Michael W. Brands, Paul Huang,
Donald E. Kohan, David M. Pollock and Jennifer S. Pollock

Hypertension 2013; 62 (1): 91-98.

[Abstract] [Full Text] [PDF]

Collecting duct-specific endothelin B receptor knockout increases ENaC activity
Vladislav Bugaj, Elena Mironova, Donald E. Kohan and James D. Stockand

Am J Physiol Cell Physiol, January , 2012; 302 (1): C188-C194.

[Abstract] [Full Text] [PDF]

Cooperativeroleof ET 5 and ETg receptorsin mediating the diuretic response to
intramedullary hyperosmotic NaCl infusion

Erikal. Boesen and David M. Pollock

AmJ Physiol Renal Physiol, December , 2010; 299 (6): F1424-F1432.

[Abstract] [Full Text] [PDF]

Updated information and services including high resolution figures, can be found at:
/content/295/6/F1635.full.html

Additional material and information about AJP - Renal Physiology can be found at:
http://www.the-aps.org/publications/ajprenal

Thisinformation is current as of September 5, 2013.

AJP - Renal Physiology publishes original manuscripts on a broad range of subjects relating to the kidney, urinary tract, and their
respective cells and vasculature, as well as to the control of body fluid volume and composition. It is published 12 times a year
(monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2008 by the
American Physiological Society. ISSN: 1931-857X, ESSN: 1522-1466. Visit our website at http://www.the-aps.org/.

£T0Z ‘S Jaquiadas uo wolj papeojumod



http://ajprenal.physiology.org/content/305/4/F568.abstract.html
http://ajprenal.physiology.org/content/305/4/F568.full.html
http://ajprenal.physiology.org/content/305/4/F568.full.pdf
http://jpet.aspetjournals.org/content/346/2/182.abstract.html
http://jpet.aspetjournals.org/content/346/2/182.full.html
http://jpet.aspetjournals.org/content/346/2/182.full.pdf
http://hyper.ahajournals.org/content/62/1/91.abstract.html
http://hyper.ahajournals.org/content/62/1/91.full.html
http://hyper.ahajournals.org/content/62/1/91.full.pdf
http://ajpcell.physiology.org/content/302/1/C188.abstract.html
http://ajpcell.physiology.org/content/302/1/C188.full.html
http://ajpcell.physiology.org/content/302/1/C188.full.pdf
http://ajprenal.physiology.org/content/299/6/F1424.abstract.html
http://ajprenal.physiology.org/content/299/6/F1424.full.html
http://ajprenal.physiology.org/content/299/6/F1424.full.pdf

Am J Physiol Renal Physiol 295: F1635-F1640, 2008.
First published September 10, 2008; doi:10.1152/ajprenal.90279.2008.

Combined knockout of collecting duct endothelin A and B receptors causes

hypertension and sodium retention

Yugiang Ge,! Alan Bagnall,> Peter K. Stricklett,! David Webb,?> Yuri Kotelevtsev,> and Donald E. Kohan'
'Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; and *Centre for Cardiovascular

Science, University of Edinburgh, Edinburgh, United Kingdom

Submitted 29 April 2008; accepted in final form 8 September 2008

Ge Y, Bagnall A, Stricklett PK, Webb D, Kotelevtsev Y, Kohan
DE. Combined knockout of collecting duct endothelin A and B
receptors causes hypertension and sodium retention. Am J Physiol
Renal Physiol 295: F1635-F1640, 2008. First published September
10, 2008; doi:10.1152/ajprenal.90279.2008.—The collecting duct (CD)
endothelin (ET) system regulates blood pressure (BP) and Na excre-
tion. CD-specific knockout (KO) of ET-1 causes hypertension, CD-
specific KO of the ETA receptor does not alter BP, while CD-specific
KO of the ETB receptor increases BP to a lesser extent than CD ET-1
KO. These findings suggest a paracrine role for CD-derived ET-1;
however, they do not exclude compensation for the loss of one ET
receptor by the other. To examine this, mice with CD-specific KO of
both ETA and ETB receptors were generated (CD ETA/B KO). CD
ETA/B KO mice excreted less urinary Na than controls during acute
or chronic Na loading. Urinary aldosterone excretion and plasma renin
concentration were similar during Na intake and both fell comparably
during Na loading. On a normal sodium diet, CD ETA/B KO mice had
increased BP, which increased further with high salt intake. The
degree of BP elevation during normal Na intake was similar to CD
ET-1 KO mice and higher than CD ETB KO animals. During 1 wk of
Na loading, CD ETA/B KO mice had higher BPs than CD ETB KO,
while BP was less than CD ET-1 KOs until the latter days of Na
loading. These studies suggest that /) CD ETA/B deficiency causes
salt-sensitive hypertension, 2) CD ETA/B KO-associated Na retention
is associated with failure to suppress the renin-angiotensin-aldoste-
rone system, and 3) CD ETA and ETB receptors exerts a combined
hypotensive effect that exceeds that of either receptor alone.

blood pressure; urinary sodium excretion; cell-specific gene targeting

THERE IS ABUNDANT EVIDENCE that collecting duct (CD) endothe-
lin-1 (ET-1) is a physiologic regulator of arterial blood pres-
sure (BP) and urinary Na excretion. The CD is the most
abundant source of ET-1 in the body (15) and expresses the
highest density of ET receptors of any renal cell type (16).
In vitro ET-1 inhibits the epithelial Na channel (18) and
Na-K-ATPase (25), suggesting that the peptide functions as an
autocrine inhibitor of CD Na reabsorption. Further information
about the CD ET system has been gleaned from cell-specific
gene targeting studies. CD-specific knockout (KO) of ET-1
causes hypertension on a normal Na diet (~20 mmHg systolic
BP elevation); a high Na diet is associated with a further
elevation in systolic BP (~35-40 mmHg greater than controls)
and impaired Na excretion (1). Notably, the salt-sensitive
hypertension is partially corrected by amiloride, suggesting
that the epithelial Na channel is involved. Total kidney and
medullary ET-1 production is enhanced by Na loading (1).
Taken together, these studies strongly suggest that CD-derived

ET-1 plays an important role in controlling BP and facilitating
Na excretion in response to expanded extracellular fluid vol-
ume.

ET-1 interacts with two receptors, ETA and ETB. Evidence
exists that both receptors modulate CD function. CDs have
very high ETB receptor expression (24); stimulation of the
ETB receptor in A6 cells inhibits apical Na entry (18). ETB-
deficient rats have salt-sensitive hypertension that is partially
normalized by amiloride, suggesting that the ETB receptor
regulates the CD apical Na channel in vivo (7). More direct
evidence for a role of the CD ETB receptor comes from studies
in which this receptor was selectively disrupted in CD (8). CD
ETB KO mice, like CD ET-1 KO animals, are hypertensive on
a normal Na diet and this hypertension is exacerbated by Na
loading. However, the degree of hypertension is ~50% less in
CD ETB KO compared with CD ET-1 KO mice. This suggests
that ETB receptors partially, but not completely, mediate the
natriuretic and hypotensive effects of CD-derived ET-1. CD
also expresses ETA receptors, although in appreciably lower
levels compared with ETB receptors (9). CD ETA receptors do
have functional significance in that CD ETA KO causes de-
creased water reabsorption associated with lower vasopressin-
stimulated CD cAMP accumulation (9). However, these mice
have normal BP and urinary Na excretion regardless of Na
intake. Hence, the CD ETA KO and CD ETB KO studies
suggest that CD-derived ET-1 reduces BP, in part, but not
completely, through autocrine actions. Hence, how CD-derived
ET-1 could exert its full antihypertensive and natriuretic effects
remains an open question. Several possibilities exist, including
paracrine actions on neighboring cells. Such paracrine effects
might include inhibition of renin release (21, 22), medullary
vasodilation (4, 6), and/or elaboration of natriuretic factors
such as nitric oxide (23). However, another possibility exists:
CD-specific KO of ETA and/or ETB receptors may lead to
compensatory changes in the remaining ET receptor. While
such analysis has not been done, it is conceivable that such a
scenario could exist if both ETA and ETB receptors affected a
natriuretic response. One could envision that, since ETB re-
ceptors are normally much more abundant that ETA receptors
in the CD, that ETB receptor KO could not be fully compen-
sated for by increased ETA receptor expression, while ETA
receptor KO could be compensated for by increased ETB
receptor expression. Such analysis of ETA and ETB receptor
expression is currently not possible to perform due to the
limited amounts of protein and tissue (although mRNA could
be assessed), hence an alternative means to examine this
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question would be desirable. To address this, the current study
examined BP and Na excretion in mice with CD-specific KO of
both ETA and ETB receptors. By comparing these results to
those obtained with CD-specific KO of ET-1 as well as
CD-specific deficiency of either ET receptor alone, information
on the combined effect of these receptors can be obtained.

MATERIALS AND METHODS

Transgenic mice lines. Mice with CD-specific disruption of both
ETA and ETB receptor genes were generated in a manner similar to
that previously described for each gene individually (1, 8, 9). The
floxed ETB receptor mice have loxP sites flanking exons 3 and 4 of
the ETB receptor gene, permitting selective deletion of essential
coding regions on exposure to Cre recombinase (8). Similarly, floxed
ETA receptor mice have loxP sites flanking exons 68 of the ETA
receptor gene [these exons are critical to ETA receptor gene func-
tional expression (9)]. Mice were bred to obtain homozygotes for both
floxed ETA and ETB receptors (ETA/B); these were mated with
aquaporin-2 (AQP2)-Cre mice with CD-specific expression of Cre
recombinase. AQP2-Cre mice contain a transgene with 11 kb of the
mouse AQP2 gene 5’ flanking region driving expression of Cre
recombinase. The AQP2-Cre mice are identical to those fully char-
acterized in previous publications by our group (1, 8, 9) and as used
in collaboration with other investigators (11, 26). Female AQP2-Cre
mice were mated with male floxed ETA/B receptor mice; female
offspring heterozygous for both AQP2-Cre and floxed ETA/B recep-
tors were bred with males homozygous for floxed ETA/B receptors.
Animals homozygous for floxed ETA/B receptors and heterozygous
for AQP2-Cre (CD ETA/B KO) were used in all studies. Sex-matched
littermates that were homozygous for the floxed ETA/B receptor
genes, but without Cre, were used as controls in all studies.

Genotyping. Tail DNA was prepared by standard methods and PCR
amplified for the AQP2-Cre transgene using oligonucleotide primers
AQP2CreF (5'-CCTCTGCAGGAACTGGTGCTGG-3") and AQP2CreR
(5'-GCGAACATCTTCAGGTTCTGCGG-3") which amplify the 671-bp
junction between the mouse AQP2 promoter and the Cre gene (8). The
ETA receptor gene was amplified using ETAF1 5'-CCCATGCTTA-
GACACAACCATG-3’ and ETARI 5-GATGACAACCAAGCA-
GAAGACAG-3'. These primers span the 1oxP site upstream of exon
6. The wild-type allele product is 314 bp and floxed allele is 354 bp.
ETA receptor gene recombination was detected using ETAF2 5'-
CCTGCCTCTGTTGCTGTTGT-3" and ETAR2 5'-CGTTCCGTGT-
TGTGGTTGTT-3'; these yield a product size of 112 bp in unrecom-
bined and no product in recombined DNA (9). The ETB receptor gene
was amplified using ETBF1 5-TCAGTTGTAATGAGACACA-
GAC-3" (located in intron 2, 5’ to the first loxP site), ETBRI1
5'-AGAGCATCATGAGTGCTCAAG-3’ (located within intron 2 in
the sequence that was deleted when constructing the 5’ loxP site), and
ETBR2 5'-AGCCATAAAGTCACAGCCATTC-3' (located in intron
4, 3’ to the second loxP site). Products of primers ETBF1 and ETBR1
give a product only in wild-type animals (865 bp), while ETBF1 and
ETBR2 give products of 1,092 bp in unrecombined DNA and 186 bp
after recombination (8). PCR products were visualized after electro-
phoresis through 1.5% agarose.

Chronic telemetry and metabolic balance studies. All mice were
studied around 3 mo of age. All mice had catheters inserted into the
right carotid artery, tunneled subcutaneously, and the attached radio-
transmitter was localized to the back. Continuous recording of BP and
pulse was performed using telemetry (Data Sciences International,
Arden Hills, MN). Two days after the surgery, mice were placed into
Hatteras metabolic cages (Hatteras Instruments, Cary, NC) and accli-
mated for 3 days. Mice were fed 9 ml of a gelled diet that contained
all nutrients and water as previously described (8, 9). Hemodynamic
values were not recorded during this conditioning period. After the
3-day acclimation period, metabolic balance studies were performed
for 3 consecutive days. Daily gel intake and body weights were

COLLECTING DUCT ET RECEPTORS AND HYPERTENSION

measured and urine was collected. Systolic, diastolic, and mean BPs,
as well as pulse rate, were averaged over the course of each day. At
the end of this baseline period, ~10 pl of blood were taken from the
tail vein for determination of plasma renin concentration (PRC) and
serum electrolytes (Na and K). In some studies, mice were killed and
blood was obtained by cardiac puncture for determination of creati-
nine concentration. The urine from each day was analyzed for volume,
Na and K concentration, while urine from the third day of baseline
studies was also used for determination of aldosterone and creatinine
excretion rates.

For Na-loading studies, mice were examined as described above
except that after 3 days of a normal (0.3%) Na diet, mice were placed
on a high Na diet for 7 days (higher Na concentrations in the gel make
it brittle). The high Na diet consisted of 9 ml of gelled diet containing
1% Na plus normal saline to drink. Daily weights and telemetry were
obtained, and urine was collected for determination of Na and K
concentration. At the end of the 7-day period, mice were killed and
bled for determination of PRC, and plasma Na, K, and creatinine
concentrations. Urine from day 7 of the high Na diet was also used for
determination of aldosterone and creatinine excretion rates.

Acute Na loading. After fasting for 12 h, mice were placed into
small metabolic cages that contained no food or water and given 1.5
ml normal saline intraperitoneally (ip). Subsequently, urine was col-
lected every 2 h for the next 6 h. Urine was analyzed for volume, Na,
and K. To control for the volume load, separate mice were also given
2 ml water ip and urine osmolality and volume were determined every
2 h for the next 6 h.

ETA and B receptor gene recombination in nephron segments.
Kidney sections were incubated in 1 mg/ml collagenase and 0.1%
DNAse at 37°C for 1 h. Proximal tubule, thick ascending limb, and
cortical, outer medullary, and inner medullary collecting ducts were
microdissected, and DNA was isolated. Samples were amplified using
real-time PCR (Smart Cycler, Cephid, Sunnyvale, CA). The same
primers as used for genotyping were employed.

Electrolyte and hormone analysis. Plasma and urine were analyzed
for Na and K concentration (Easy Vet analyzer, Medica, Bedford, MA)
and creatinine (Jaffe colorimetry, Sigma, St. Louis, MO). PRC was
measured as previously described (8, 9) using an indirect radioimmu-
noassay (Phoenix Pharmaceuticals, Burlingame, CA). Aldosterone
levels were determined by radioimmunoassay, after HCI hydrolysis
and ethyl acetate extraction (Coat-a-Count, Diagnostic Products, Los
Angeles, CA).

Real-time PCR of CD. Inner medullary CD (IMCD) were acutely
isolated in a manner similar to that previously described (9). Briefly,
inner medullas were minced in Kreb’s buffer with 1 mg/ml collage-
nase (Type IV, Worthington, Lakewood, NJ) and 0.1 mg/ml DNase
(Sigma) and incubated at 37°C for 30—45 min. RNA was isolated,
reverse transcribed, and real-time PCR was performed using a Smart
Cycler (Cephid). The primer sequences for ETA receptor mRNA were
EdnrA F2 5'-CCT GCC TCT GTT GCT GTT GT-3' and EdnrA R2
5'-CGT TCC GTG TTG TGG TTG TT-3" which yield a product size
of 112 bp. The primers for GAPDH were GAPDH F 5'-TGG CCT
CCA AGG AGT AAG AA-3'" and GAPDH R 5'-CTG GGA TGG
AAA TTG TGA GG-3" which yield a product size of 110 bp. The
ratio of ETRA receptor:GAPDH mRNA was calculated for each
sample.

Statistics and ethics. Comparisons of single points on a single day
between control and KO mice were analyzed by the unpaired Stu-
dent’s r-test. Comparisons of multiple points (e.g., BP and Na excre-
tion) were made using one-way ANOVA with the Bonferroni correc-
tion. P < 0.05 was taken as significant. Data are expressed as
means * SE.

All animal experiments were ethically approved by the University
of Utah Institutional Animal Care and Use Committee.
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RESULTS

Characterization of CD ETA/B KO mice. CD ETA/B KO
mice developed normally until at least 5 mo of age and had no
gross morphologic abnormalities. AQP2-Cre mice confer CD-
specific KO, as determined by principal cell-specific Cre re-
combinase activity in mice heterozygous for AQP2-Cre and the
ROSA26-YFP reporter, in situ hybridization, genomic PCR of
microdissected CD, and genomic PCR for gene recombination
in an organ panel of 15 different organs (1, 2, 8, 9). This was
further confirmed by RT-PCR of ETA and B receptor mRNA
as well as PCR of genomic DNA in microdissected CD.
Cortical, medullary, and inner medullary CDs all showed
ETA/B receptor gene recombination, while microdissected
proximal tubules and thick ascending limbs had no recombi-
nation. In addition, CD from CD ETA/B KO mice had mark-
edly reduced ETA/B receptor mRNA (20% of the levels
expressed in control CD, n = 10 tubules). It should be noted
that microdissected CD contain intercalated cells which may
express ETA/B receptors and are not targeted by AQP2-Cre.
Thus, CD ETA/B KO mice have principal cell-specific inacti-
vation of ETA and ETB receptor genes.

Renal function and BP during normal Na intake. All mice
were ration fed to match food and water intake (1, 8, 9). This
was accomplished using a gelled diet containing all food and
water as previously described. Under baseline conditions
(0.3% Na intake), CD ETA/B KO mice had elevated systolic
(18.4 = 0.8 mmHg greater than controls, n = 10, P < 0.001)
and diastolic BP (9.4 = 2.1 mmHg greater than controls, n =
10, P < 0.005; Table 1 and Fig. 1). There were no differences
in food or water intake, body weight, urine volume, urine K
concentration, plasma Na or K concentration, urine Na or K
excretion, or creatinine clearance (Table 1 and Fig. 2). PRC
and urinary aldosterone excretion were similar between CD
ETA/B KO and control mice (see Table 3).

Renal function and BP during a high Na diet. Following the
3 days of a normal Na diet, mice were placed on a high Na diet
containing 6 ml gelled 1% Na diet and normal saline to drink.
This diet caused a 15- to 20-fold increase in urinary Na
excretion. CD ETA/B KO mice had further increases in sys-
tolic and diastolic BPs of ~13 and 11 mmHg, respectively

Table 1. Metabolic balance data in control and CD ETA/B
KO mice on a normal (0.3%) sodium diet

Control CD ETA/B KO
Systolic BP, mmHg 112.5+1.0 132.2+2.0%
Diastolic BP, mmHg 87.2*+2.5 99.2+2 9%
Pulse, beats/min 588*29 624+34
Gel intake, g/day 9.0%+0.1 8.9*0.1
Weight, g 24.1+12 225+1.8
Urine volume, ml/day 2.28*+0.15 2.29+0.25
[Na] urine, meq/1 98+3 96+2
[Na] plasma, megq/1 150x2 151%2
Urine Na excretion, meq/day 0.23%+0.02 0.22+0.02
[K] urine, meq/1 114%6 111+3
[K] plasma, meq/I 5.5+0.1 5.4+0.1
Urine K excretion, meg/day 0.26+0.02 0.25+0.22
[Creatinine] urine, mg/dl 18.6*+1.9 182+1.4
[Creatinine] plasma, mg/dl 0.23%+0.02 0.24+0.02
CICr, ml/min 0.12%0.02 0.11£0.02

Data are means = SE, n = 10 each data point. CD, collecting duct; KO,
knockout; BP, blood pressure. *P < 0.005 vs. control.
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Fig. 1. Differences in systolic and diastolic blood pressure (BP) between
collecting duct (CD) ETA/B knockout (KO) and control mice on a normal or
high Na diet; n = 10 each data point. *P < 0.001 vs. control systolic BP same
day and vs. CD ETA/B KO systolic BP on normal Na diet. **P < 0.001 vs.
control systolic BP same day. &P < 0.001 vs. control systolic BP same day
and P < 0.025 vs. CD ETA/B KO systolic BP on a normal Na diet. $P < 0.01
vs. control diastolic BP same day. %P < 0.001 vs. control diastolic BP same
day and P < 0.05 vs. CD ETA/B KO diastolic BP on a normal Na diet. #P <
0.001 vs. control diastolic BP same day and P < 0.01 vs. CD ETA/B KO
diastolic BP on a normal Na diet.

(Tables 1 and 2 and Fig. 1). BP was unchanged in control mice
during a high Na diet. CD ETA/B KO mice also had enhanced
Na retention that was first evident during the second of Na
loading (Fig. 2). Importantly, Na intakes were similar between
the two groups of mice over the course of the high Na diet.

[

-=—KO *

Cumulative Na retention (meq)

--<--Control %

-3 -2 -1 1 2 3 4 5 6

Days of Na loading

Fig. 2. Cumulative Na retention in CD ETA/B KO and control (floxed) mice
on a normal or high Na diet. Data are calculated as the difference between
urinary Na excretion and Na intake; this difference is calculated for each day
and then added up from day —3 before Na loading through the day indicated
on the x-axis; n = 10 each data point. *P < 0.025 vs. control. **P < 0.05 vs.
control.
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Table 2. Metabolic balance data in control and CD ETA/B
KO mice on day 2 of a high sodium diet

Control CD ETA/B KO

Systolic BP, mmHg 115.2+0.4 144.2+1.2%
Diastolic BP, mmHg 89.4*1.6 108.6£4.0*
Pulse, beats/min 545+29 589+32
Gel intake, g/day 9.0%0.1 9.0%0.1
Saline intake, ml/day 9.3+0.7 95+1.3
Weight, g 23.8+1.9 245+1.4
[Na] plasma, meq/1 149+1 148+1
Cumulative Na retention, intake urinary

excretion, meq, starting on day 1

normal diet 1.97+0.17 2.56+0.19+
[K] plasma, meq/I 4.7+0.1 4.7+0.1
Urine K excretion, meq/day 0.28+0.04 0.24+0.03
[Creatinine] urine, mg/dl 4.5+0.8 42+04
[Creatinine] plasma, mg/dl 0.21£0.02 0.22+0.02
CICr, ml/min 0.11+0.02 0.12+0.02

Data are means = SE, n = 10 each data point. *P < 0.001 vs. control. TP <
0.05 vs. control.

Note that the data are shown as cumulative Na retention,
starting on the first day of a normal Na diet; this was done to
help show significant differences in Na balance in the face of
day-to-day variability. There were no differences in intake,
plasma Na or K concentration, or creatinine clearance between
CD ETA/B KO and control animals (Table 2 shows day 2 of
the high Na diet). Urinary aldosterone excretion decreased to
undetectable levels on a high Na diet in both groups (Table 3).
PRC fell on a high Na diet in both CD ETA/B KO and control
mice to a similar extent (Table 3).

Effect of acute Na loading. CD ETA/B KO mice had
reduced urinary Na excretion within the first 2 h after an acute
Na load (Fig. 3). Over the next 2-h period, CD ETB KO mice
had similar Na excretion compared with controls. During the 4-
to 6-h time period, CD ETA/B KO mice normalized Na
excretion so that, after 6 h, they had similar Na excretion
compared with controls. To control for a volume load effect,
urine concentration was examined for 6 h after a 2-ml acute
water load ip. Urine osmolality did not differ between CD
ETA/B KO and control mice (n = 9 each group) after 2 h
(648 = 243 mosmol/kgH,0 in CD ETA/B KO and 443 = 220
mosmol/kgH,O in control) or after 6 h (644 = 149 mosmol/
kgH,0O in CD ETA/B KO and 840 * 135 mosmol/kgH,0 in
control). Similarly, urine volume was not different after 2 h
(0.15 = 0.04 ml in CD ETA/B KO and 0.20 = 0.08 ml in
control) or 6 h cumulatively (1.06 = 0.12 ml in CD ETA/B KO
and 0.98 = 0.13 ml in control).

Table 3. Plasma and urine hormone levels in control
and CD ETA/B KO mice under varying normal and high
Na intake

Aldosterone, ng/day PRC, pg Al-pl~!-h~!

Normal Na  Control 1.23£0.15 6.13:0.54
CD ETA/B KO 1.33+0.14 6.94+0.81
High Na Control ND 1.93+0.46
CD ETA/B KO ND 1.91*+0.46

Data are means = SE, n = 5-6 each data point. Aldosterone, urinary
aldosterone excretion; Al, angiotensin I; PRC, plasma renin concentration.
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Fig. 3. Urinary Na excretion in CD ETB KO and control (floxed) mice over
6 h following intraperitoneal 1.5 ml normal saline. Data are expressed as
urinary Na excretion over the previous 2 h; n = 10 each data point. *P < 0.01
vs. control.

Comparison of BP between CD ETA/B KO mice and other
CD ET system KO mice. To evaluate the effect on BP resulting
from the combined absence of CD ETA and ETB receptors, the
systolic BP during normal and high Na diets in CD ET-1 KO,
CD ETA KO, and CD ETB KO mice was examined (Fig. 4).
The systolic BP of these latter three groups of mice was
obtained by radiotelemetry and was as previously reported (1,
8,9). CD ETA/B KO mice systolic BP was greater than that in
CD ETB KO mice during normal or high Na intakes, suggest-
ing that presence of the CD ETA receptor mitigates the degree
of hypertension seen in CD ETB KO animals. However, CD
ETA KO mice are not hypertensive. Notably, CD ETA/B KO
systolic BP was similar to that in CD ET-1 KO on a normal Na
diet, but was significantly less than CD ET-1 KO for the first
several days of high Na intake, suggesting that CD-derived
ET-1 effects on BP cannot be entirely explained by autocrine
actions.

To help assess the possibility that ETA receptors may be
altered in CD ETB KO mice, IMCD ETA receptor mRNA
expression was quantified. Notably, ETA receptor mRNA was
increased by 2.07 £ 0.24-fold (n = 3, P < 0.025) in ETB KO
mice compared with controls when normalized for GAPDH.

DISCUSSION

The current studies were undertaken to help define the role
of CD ETA and ETB receptors in the regulation of systemic BP
and urinary Na excretion. Based on previous studies wherein
CD ETA KO did not affect BP or Na excretion, and CD ETB
KO caused elevated BP and Na retention, it was expected that
CD ETA/B KO would have a similar phenotype as that seen in
CD ETB KO animals. However, this proved not to be the case:
combined KO of CD ETA and ETB receptors caused signifi-
cantly greater hypertension than did KO of CD ETB receptors
alone. Notably, CD ETA KO does not cause hypertension, yet
deficiency of this receptor in the setting of CD ETB disruption
appears to aggravate the hypertension—both during a normal
Na diet and in response to high Na intake. As discussed earlier,
quantitative assessment of ET receptor expression in CD is not
technically possible; however, mRNA levels can be deter-
mined. We found that ETA receptor mRNA is significantly
increased in CD ETB KO mice, supporting, although by no
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Fig. 4. Comparison of effects of CD-specific KO
of ETA/B with CD-specific KO of ET-1, ETA
receptor, or ETB receptor on systolic BP. Data are
shown as differences in systolic BP on normal and
high Na diets between each KO mouse and its own
floxed control [CD ET-1 KO vs. floxed ET-1 con-
trol (n = 18), CD ETA KO vs. floxed ETA control
B (n = 12),CD ETB KO vs. floxed ETB control (n =
9), CDETA/B KO vs. floxed ETA/B control (n =
10)]. *P < 0.001 vs. CD ETB KO and P < 0.001
vs. CD ETA KO. **P < 0.001 vs. CD ETA KO
and P < 0.001 vs. CD ETB KO and P < 0.025 vs.
CD ET-1 KO.
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means proving, the notion that CD ETA receptors may play a
role in mitigating the hypertension and Na retention in this
model. It is not possible to interpret changes in response to
in vivo administration of ETA- or ETB-selective antagonists
since these agents directly affect systemic BP, renal blood
flow, glomerular filtration rate, and numerous other parame-
ters. Activation of ETB receptors inhibits Na and/or CI reab-
sorptive pathways in vitro, including reduction of epithelial Na
channel activity in distal nephron cells (18), inhibition of NaCl
reabsorption in isolated perfused cortical CD (17), and reduc-
tion of chloride flux in isolated medullary thick ascending limb
(20). In contrast, the role of ETA receptors in regulating renal
tubule Na reabsorption remains uncertain. Initial data sug-
gested that nephron ETA receptors may exert antinatriuretic
effects in that high concentrations of ET-1 (10 nM) increased
epithelial Na channel activity in A6 distal nephron cells via
ETA receptor activation (18). However, in preliminary studies,
infusion of ET-1 into the renal medulla of rats genetically
deficient in ETB receptors causes a natriuresis, and this effect
is blocked by ETA antagonism (19). How then can these data
be reconciled? The answers are entirely speculative; however,
several possibilities exist. One possibility, albeit clearly un-
proven, is that CD ETA receptors can be natriuretic, but that
such effects are primarily manifest in the absence of CD ETB
receptors. ET receptor isoforms have been reported to form
homo- and heterodimers, which may differentially affect cel-
lular trafficking, ET antagonist binding, and activation of
signal transduction pathways (10, 12). If ETB receptors nor-
mally (at least in mice and rats) predominate in the CD, then
ETB receptor homodimers and ETA/B receptor heterodimers
may be the major receptor forms present. However, if ETB
receptors are absent, then ETA receptor homodimers might
form, creating a receptor structure that now could exert a
natriuretic effect. However, proof of such differential dimer-
ization in vivo is not currently possible. Another possibility is
that ETA receptors, whether homo- or heterodimers, are natri-
uretic in vivo, but that because ETB receptors predominate in

the CD, absence of CD ETA receptors does not normally have
physiologic significance. Finally, it is conceivable that changes
in ET receptor expression on neighboring intercalated cells
might play a role; however, there have been no studies in this
regard. Resolution of this question is rather problematic, but
will need addressing since it is of substantial clinical signifi-
cance. Antagonists selective for the ETA receptor cause fluid
retention and edema formation in humans; this side effect
caused halting of a diabetic nephropathy trial, may have
limited the utility of ETA antagonists in congestive heart
failure (3), and was also a significant issue in patients with
metastatic prostatic cancer treated with ETA blockers (5).

The current study found that CD ETA/B KO mice increased
BP in response to Na loading more slowly than did mice with
CD ET-1 KO. Furthermore, there was no detectable effect on
Na excretion on the first day of Na loading in CD ETA/B KO
mice. These findings suggest that CD-derived ET-1 may exert
primarily paracrine effects on the first day of Na loading, while
such paracrine effects may continue to play a role, in addition
to autocrine regulation of CD function, during subsequent days
of Na loading. Such paracrine actions could include inhibition
of thick ascending limb NaCl transport (20), dilation of med-
ullary vasa recta (6), and/or elaboration of natriuretic factors
(nitric oxide and prostaglandin E,) from medullary interstitial
cells (27).

CD ETA/B KO mice had similar PRC and urinary aldoste-
rone excretion as control animals, despite being hypertensive.
Furthermore, Na loading suppressed PRC (aldosterone became
immeasurable) to a similar degree in CD ETA/B KO and
control mice, despite CD ETA/B KO mice manifesting salt-
sensitive hypertension. Thus, in essence, CD ETA/B KO mice
do not appear to have an appropriately suppressed renin-
angiotensin-aldosterone axis. These findings are in contrast to
those in CD ETB KO mice who have markedly suppressed
PRC and urinary aldosterone excretion compared with normo-
tensive controls (8). Hence, it is possible that ET-1 interaction
with CD ETA receptors may lead, through as yet uncertain
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mechanisms, to inhibition of renin release. Notably, CD ET-1
KO mice also have failure to suppress the renin-angiotensin-
aldosterone axis (1). The initial theory was that CD-derived
ET-1 could directly inhibit renin release, so CD ET-1 KO mice
were missing this regulatory pathway (1). While the current
study does not preclude this possibility, it does suggest that
other mechanisms must be involved in potential CD ET-1
regulation of renin release.

In summary, the current study demonstrates that the CD ET
system involves complex regulation of renal tubule Na trans-
port and systemic BP. ET-1 could conceivably interact with
both ETA and ETB receptors in the CD; if such a scenario
exists, activation of either receptor could potentially exert a
natriuretic effect. CD-derived ET-1 likely exerts part of its
natriuretic and hypotensive actions through paracrine interac-
tions with neighboring cells. This system of BP regulation may
be of substantial clinical relevance in that hypertension in
animal models and in humans is associated with reduced
urinary ET-1 excretion (13, 14). In addition, further examina-
tion of this system is likely to shed light on the mechanism of
ET receptor antagonist-induced fluid retention.
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