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Supported membranes on chemically structured and rough surfaces

Peter S. Swain
Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10021
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School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,
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We present a general linear response description of membrane adhesion at rough or chemically structured
surfaces. Our method accounts for nonlocal Van der Waals effects and contains the more approximate~and
local! Deryagin approach in a simple limit. Specializing to supported membranes we consider the effects of
substrate structure on the membrane adhesion energy and configuration. Adhesion is usually less favorable for
rough substrates and the membrane shape tends to follow that of the surface contours. Chemical patterning
~described by a spatially varying Van der Waals force!, however, favors adhesion with the membrane configu-
ration being out of phase with the surface structure. Finally, considering a surface indented with ‘‘V’’-shaped
trenches, we show that our approach is in good agreement with an exact numerical solution.

DOI: 10.1103/PhysRevE.63.051911 PACS number~s!: 87.16.Dg, 68.15.1e, 67.70.1n

I. INTRODUCTION

Supported membranes strongly adhere to substrates and
lie typically at separation distances of between 10 and 40 Å
@1#. Such small values have lead to their adoption by the
biotechnology industry@2# and, in particular, given them an
important role in the development of biosensors. Supported
membranes enable one to biofunctionalize an inorganic sur-
face and can provide an ultrathin, highly electrically resistant
layer on top of a conducting substrate. They provide a means
of immobilizing proteins with a well-defined orientation and
in a nondenaturing environment@3#. If these proteins are
receptors then one can use electrical or optical means to de-
tect or ‘‘sense’’ the binding of ligands to the receptors@4#.

Supported membranes can be formed by the spreading of
a bilayer over a substrate, vesicle fusion taking place at a
substrate or by lipid monolayer transfer using a Langmuir-
Blodgett technique@1#. However, in nearly all applications
the substrates used are not simply planar and homogeneous
but are patterned, either chemically@4,5# or geometrically
@6,7#. The theory of membrane adhesion has typically con-
centrated on adhesion at ideal planar surfaces@8#. In a recent
paper@9#, we have provided a simple description of the ad-
hesive properties of membranes at rough surfaces. In this
article, we would like to present a more general approach to
membrane adhesion which includes the possibilities of
chemical patterning and surface roughness. Both cases are
modeled making use of a position dependent Van der Waals
force.

We begin with a summary of the basic assumptions of our
model and of the intermolecular interactions involved. In
Sec. III, a planar, homogeneous substrate is considered as the
starting point for the linear response theory that follows. We
show in Secs. IV and V how the simpler approach of Ref.@9#
is included in the present work and then proceed to consider
several illustrative examples in Sec. VI. Finally in Sec. VII,
our analytical description is compared and contrasted with a
complete numerical solution. Throughout, we emphasize the

effect of substrate roughness and chemical heterogeneities on
the adhesive properties of the supported membrane.

II. THE FREE ENERGY

To begin we consider a membrane supported at a sub-
strate that can be either geometrically structured~nonplanar!,
Fig. 1~a!, or chemically structured~patterned with different
chemical compounds!, Figs. 1~b! and 1~c!. For example, a
surface can be chemically structured by depositing different
chemical layers, see Fig. 1~b!, or adjoining different chemi-
cal surfaces together to make a columnar structure, Fig. 1~c!.
Both of these can be described by a spatially variant Van der
Waals force and it is this particular chemical structure which
we specialize to. For a membrane adhering to such a surface
this patterning will greatly influence the membrane configu-
ration and adhesion energy. Inspired by advances in the
theory of wetting@10#, we adopt a general mean-field ap-
proach in which the configuration taken up by the membrane
is one that minimizes the free energy. In order to find this
optimum configuration we first discuss the form of the free
energy functional.

If the membrane has an elastic modulusk and tensions,

FIG. 1. Supported membranes on structured surfaces. In~a!, the
membrane is adhering to a rough but otherwise homogeneous sur-
face. The referencer plane is shown as a dashed line. The height of
the lower membrane lipid leaflet and the surface, measured from
this plane, are denoted byh(r) andzs(r), respectively. Layered and
columnar chemical structure are sketched in~b! and ~c!, respec-
tively.
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then its bending energy can be described by the functional
@11#

E dSAgFs1
1

2
k~2H !2G , ~2.1!

where the integral is over the membrane surface,g is the
determinant of the metric,H5(c11c2)/2 the mean curva-
ture, andc1 and c2 the two principal curvatures. We have
ignored here the Gaussian curvature contribution as only a
membrane with a fixed topology~flat on large length scales
and of infinite size! is considered@12#. Throughout the paper
we choose to work in the Monge representation. Letting
r5(x,y) be a two-dimensional planar vector, the heights of
the surface and membrane above some referencer plane are
zs(r) andh(r), respectively~see Fig. 1!.

To account for the interaction of the membrane with the
substrate, we include a potential termV(h;zs,e) in the free
energy. As already mentioned,zs(r) accounts for the sub-
strate’s geometrical structure and describes its surface con-
figuration, while e(r ) denotes any chemical inhomogene-
ities. The potential can have a number of different
components@13,14#. For our case, the most important of
these is the Van der Waals contribution, which is given by

Vvdw~h;zs,e!52@W~h;zs,e!2W~h1d;zs,e!#, ~2.2!

whered is the membrane thickness and is typically around
40 Å . Due to the bilayer nature of the membrane, two terms
involving the Van der Waals potentialW(h;zs,e) are neces-
sary; in particular for supported membranes whered'h.

For a thin fluid film of thicknessh(r) resting on an inho-
mogeneous solid, one can sum over all possible pair interac-
tions between the molecules in the upper half space, capped
from below by the membrane surfacez5h(r), and those in
the lower half space, capped from above byz5zs(r), to
show thatW(h;zs) satisfies@10#

W~h;zs,e!5E
h(r)

`

dzE d2r8E
2`

zs(r8)
dz8w0~r2r 8!@11e~r 8!#

~2.3!

with

w0~r !5
A0

p2 S 1

r 6D . ~2.4!

The latter models nonretarded Van der Waals interactions.
Equation~2.3! contains a position dependent Hamaker con-
stant

A~r !5A0@11e~r !# ~2.5!

with A0 the average value

A05

E d2r A~r !

E d2r
~2.6!

ande the ~small! deviation around this average

e~r !5
A~r !2A0

A0
. ~2.7!

We emphasize thatW(h;zs,e) is a functional of bothzs(r)
ande(r ).

If h(r) is set to a constant value, sayh0, and bothzs and
e vanish, then Eq.~2.3! becomes the familiar

W~h0 ;0,0![W0~h0!5
A0

12p
•

1

h0
2

~2.8!

~see Ref.@14#!, which is just the Van der Waals potential
between two planar semi-infinite bodies held a distanceh0
apart.

Equation~2.3! provides an attractive interaction and, for
the case of a supported membrane, this is chiefly balanced by
hydration forces. The hydration potential obeys

Vhyd~h;zs!5be2a(h2zs), ~2.9!

where b has units of surface tension anda is an inverse
length of typical sizea21.2 –3 Å. Due to the very short
range nature of the hydration interaction, we include the de-
pendence on the substrate structure with a simple local ap-
proximation and soVhyd is just a function of the local height
h(r)2zs(r). The origin of hydration forces is still under
debate@14# but they are generally believed to have some
steric contribution. Consequently, whileb in general is posi-
tion dependent we believe that this is a relatively minor ef-
fect and so choose to keep the simple form of Eq.~2.9!.

The total potential is then

V~h;zs,e!5Vvdw~h;zs,e!1Vhyd~h;zs! ~2.10!

though one could consider more complicated scenarios in-
volving, for example, electrostatic forces. Summing all these
contributions we can write the total free energy as

F@h#5E d2rH A11~¹h!2 Fs1
k

2 S ¹W •
¹W h

A11~¹h!2D 2G
1V~h;zs,e!J , ~2.11!

where we have explicitly written out the curvature and ten-
sion terms in the Monge representation.

One of the most relevant quantities in experiments is the
membrane adhesion energy. Within our general mean-field
approach, the optimal height of the membrane is that which
minimizes Eq.~2.11! and the value of the free energy when
the membrane takes up this optimum configurationFmin
leads to a natural definition of the adhesion energy per unit
area

U[2S Fmin

S0
2s D . ~2.12!
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Here,S0 is the total area of the projected referencer-plane,
S05*d2r and we have subtracted off a membrane tension
term. Doing so conveniently defines the adhesion energy so
that a completely flat membrane does not have a tension
dependent contribution; for a membrane infinitely far from
the surfaceU will then vanish. Notice that Eq.~2.12! implies
that an attractive surface will have a positive adhesion en-
ergy.

III. PLANAR AND HOMOGENEOUS SUBSTRATES

Our results are obtained by analytically expanding the
free energy around its value taken for a planar, chemically
homogeneous substrate. Therefore, we briefly review the re-
sults for such an ideal surface.

For this case,e5zs50, and the Van der Waals interaction
~2.3! simplifies to Eq.~2.8!, and so

Vvdw~h;0,0!52@W0~h!2W0~h1d!#, ~3.1!

where throughout we use the subscript zero to denote adhe-
sion at both chemically homogeneous and flat substrates.
Here,a is a fundamental length scale in our problem

a5S A0

2ps D 1/2

~3.2!

and is provided by the ratio of the Hamaker constant, see Eq.
~2.8!, and the membrane tension@15#.

We find that the membrane adopts a flat configuration
h(r)5h0, which obeys

]V

]h
5Vvdw8 ~h0!2abe2ah050 ~3.3!

from Eq. ~2.9!. The adhesion energy in this case is simply
given as the negative of the interaction potential. From Eq.
~2.11!, Fmin5S0@s1V(h0 ;0,0)# and so Eq.~2.12! implies
that

U052V~h0 ;0,0!52@Vvdw~h0!1be2ah0#. ~3.4!

By definition, U0 is positive for all sufficiently attractive
potentials,V. Equations~3.3! and ~3.4! provide the funda-
mental quantities upon which our perturbation theory will be
built.

In order to allow~semiquantitative! comparison with ex-
periment and to give some idea of the magnitude of the
quantities involved, we would now like to specialize to a
particular choice of our model parameters~we opt again for
those chosen in Ref.@9#!, see Table I. Typical experimental
values ofs and k are 1.731025 J m22 and 35T, respec-

tively @16#. We set the Boltzmann constant to unity and
so at room temperatureT54.1310221 J. Choosing A0
52.6310221 J.0.63T @16#, implies that the length scale
a.49.3 Å and, from Eq.~3.3!, h0.0.61a.30 Å in agree-
ment with measured values using specular reflection of neu-
trons @17#. The two parameters used here to specify the hy-
dration force, see Eq.~2.9!, are

b50.93 J m22; a2152.2 Å ~3.5!

which are in accordance with those measured in Ref.@18#.
The potential experienced by the membrane, Eq.~2.10!, is

sketched in Fig. 2. From Eq.~3.4!, one can see that

U0.0.298s55.0731026 J m22. ~3.6!

At this point, it is also worth discussing the other length
scales which will appear in our treatment. Definingv as the
second derivative of the potential calculated at the minimum
h5h0

v5
]2

]h2
V~h;0,0!U

h5h0

5Vvdw9 ~h0 ;0,0!1Vhyd9 ~h0!

~3.7!

several correlation lengths can be extracted,

js
25s/v, jk

45k/v ~3.8!

TABLE I. The various parameters chosen and calculated for a supported membrane. For definitions, see
text.

k535T s51.731025 J m22 d538 Å T54.1310221 J
A052.6310221 J b50.93 J m22 a2152.2 Å
a.49.3 Å h0.0.61a.30 Å U0.0.298s v.22.85a22s
js.0.21a jk.1.97a j.18.62a V'1.30

FIG. 2. A plot of the various interactions described in Sec. III,
with parameter values given in Table I. Here all potentials are mea-
sured in units of the membrane tension,s51.731025J m22, and
lengths in terms ofa.49.3 Å. The total potential has a minimum at
h0.0.6a.
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together with

j25k/s5jk
4js

22 ~3.9!

which describes the crossover between the tension and the
rigidity dominated regimes. Their values for the experimen-
tal scenario described above are given in Table I~which also
lists all the other model parameters!.

IV. LINEAR RESPONSE THEORY

To carry out a perturbation theory for rough and hetero-
geneous substrates, we assume thatzs andh2h0 are small,
i.e., zs;h2h0!h0, and that any of their products and de-
rivatives are also small. A~functional! Taylor expansion is
then performed which is a fairly standard, if long, calcula-
tion.

To simplify our presentation and ease the algebra, we will
assume that the chemical structure is such thate can be
factorized, i.e.,

e~r !5f~r!g~z! ~4.1!

for some functionsf andg and the substrate surface is given
by zs50. Such a factorization while including the layered
~constantf) and columnar~constantg) structures shown in
Fig. 1 does prevent us from considering surfaces which are
both rough and chemically inhomogeneous. Consequently
from this point on, we will specialize to either rough or
chemically patterned substrates.

A few more definitions are in order; first of all, we notice
that v, given by Eq.~3.7!, can also be shown to obey

v5Vhyd9 ~h0!2E d2r8$w0~r8,h0!2w0~r8,h01d!%

~4.2!

using Eqs.~2.2! and ~2.3!. The kernel functions~this choice
of nomenclature will become clear later!

K~r!52
1

v
@w0~r,h0!2w0~r,h01d!# ~4.3!

and

G~r!52
1

vEh0

h01d
dz g~h02z!w0~r,z! ~4.4!

will also prove useful.
Then, expandingF @h# in Eq. ~2.11! to second order and

taking advantage of Eq.~3.3!, we find

1

s
F '

1

s
F01

1

2js
2E d2rH js

2~¹h!21jk
4~¹2h!21~h2h0!2

22~h2h0!FVzs1E d2r8K~r8!zs~r1r8!G1zs
2~r!J

~4.5!

for rough surfaces and

1

s
F '

1

s
F01

1

2js
2E d2rH js

2~¹h!21jk
4~¹2h!21~h2h0!2

22~h2h0!F E d2r8G~r8!f~r1r8!G J ~4.6!

for chemical patterning, whereF0[F @h0# is the
h-independent term in the expansion,

F05sF12
1

s
U0GS0 . ~4.7!

In the case of chemical patterning,F0 contains an additional
term

E
2`

0

dzVvdw8 ~h02z!E d2re~r,z! ~4.8!

which vanishes if

E d2rf~r!50 ~4.9!

~an assumption we adopt for algebraic simplicity in some
of the later formulas but certainly not a necessity!. For
rough substrates ther plane can be chosen so that^zs&
5*d2r zs50. Here,V is given by

V5
Vhyd9 ~h0!

v
. ~4.10!

To find the optimum profile, we need to minimize Eq.
~4.5! or ~4.6! with respect toh(r), i.e., dF/dh50. The re-
sulting Euler-Lagrange equation is nonlocal inr but linear in
h,

@jk
4¹42js

2¹211#~h~r!2h0!

5H E d2r8@K~r82r!zs~r8!#1Vzs~r!, rough,

E d2r8@G~r82r!f~r8!#, chemical,

~4.11!

where the role thatK andG play as kernel functions becomes
clear. Equation~4.11! is the starting point for our linear re-
sponse profiles. It is a fourth order nonhomogeneous linear
differential equation where the heterogeneity of the substrate
enters in the nonhomogeneous term. Due to its linear nature,
the solution can be written down in Fourier space. Defining
for any functionf (r) its Fourier transform

f̃ ~q!5E d2rf ~r!e2 iq.r ~4.12!

we find, via the convolution theorem, thatdh(r)
5h(r)2h0 obeys
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dh̃~q!55
@K̃~q!1V# z̃s~q!

11js
2q21jk

4q4
, rough,

G̃~q!f̃~q!

11js
2q21jk

4q4
, chemical.

~4.13!

The Fourier transformK̃(q) of the kernel functionK(r)
can be calculated using the result

E d2r
e2 iq•r

~r21h2!m11
52pS q

2hD m Km~qh!

G~m11!
, ~4.14!

whereKm(x) is the modified Bessel function of the second
kind of orderm. Nonretarded Van der Waals interactions are
obtained by settingm52 in the above equation@from Eq.
~2.4!#. Then the kernel becomes

K̃~q!5K̃~q!52
js

2q2a2

2 FK2~qh0!

h0
2

2
K2~qh01qd!

~h01d!2 G .

~4.15!

Notice that in the limit of q tending to zero,
limq→0 q2K2(q)52, which implies that

K̃~0!52js
2a2S 1

h0
4

2
1

~h01d!4D 512V ~4.16!

from Eqs.~3.7! and ~4.10!.
Similarly, G̃(q) satisfies

G̃~q!5G̃~q!52
js

2a2q2

2 E
h0

h01d
dz

g~h02z!

z2
K2~qz!

~4.17!

which then implies that

G̃~0!52js
2a2E

h0

h01d
dz

g~h02z!

z4
. ~4.18!

For the case wheng(z)[1 ~a columnar solid!

G̃~0!52
js

2a2

3 S 1

h0
3

2
1

~h01d!3D ,0 ~4.19!

which will be needed in Sec. VI.
We can also calculate the adhesion energy in Fourier

space by Fourier transforming Eq.~4.5!. Using the solution
of the Euler-Lagrange equation~4.13! and the definition of
the adhesion energy, Eq.~2.12!, then gives,

U

s
55

U0

s
2

1

2S0
E d2q

~2pjs!2 S uz̃s~q!u22
u~K̃~q!1V!z̃s~q!u2

11q2js
21q4jk

4 D , rough

U0

s
1

1

2S0
E d2q

~2pjs!2 S uG̃~q!f̃~q!u2

11q2js
21q4jk

4D , chemical.

~4.20!

V. THE DERYAGIN APPROXIMATION

In a previous paper@9#, we looked quite extensively at the adsorption of membranes on rough substrates and throughout
used a Deryagin-like local approximation@19#. In this section we would like to show how this is included in our present, more
general, linear response approach.

The Van der Waals potential~2.2! due to its functional~nonlocal! dependence on the inhomogeneities, provides most of the
difficulties in any analytical method. These complications are neatly circumvented by the Deryagin approximation. Equation
~2.3! can, by a simple change of variable, be rewritten as

W~h;zs,e!55 Eh(r)

`

dzE d2r8E
2`

zs(r1r8)
dz8w0~r8,z2z8!, rough,

E
h(r)

`

dzE d2r8E
2`

0

dz8w0~r8,z2z8!@11f~r1r8!g~z8!#, chemical,

~5.1!

where we have adopted Eq.~4.1!. The Deryagin method
amounts to replacing

zs~r1r8!→zs~r!, rough,
~5.2!

f~r1r8!→f~r!, chemical,

which removes the functional character of Eq.~5.1! and so
neglects almost all nonlocal effects@we still retain the inte-
gral over g(z8)]. Once Eq.~5.2! has been performed, one
can~Taylor! expand the free energy in powers ofh2h0 and
zs as before.

However, such an approach turns out to be equivalent to
replacing the kernel functions~4.3! and ~4.4!, in the linear
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response theory by Dirac delta functions

K~r2r8!→K̃~0!d~r2r8!,
~5.3!

G~r2r8!→G̃~0!d~r2r8!

which transparently shows the local character of the Derya-
gin technique. Equation~5.3! implies that the Fourier trans-
forms of the kernel functions are now simply constants.

Consequently, the Euler-Lagrange equation~4.11! be-
comes

~jk
4¹42js

2¹211!dh~r!5H zs~r!, rough

G̃~0!f~r!, chemical,
~5.4!

where we have used Eq.~4.16!. In Fourier space the solution
is

dh̃~q!55
z̃s~q!

11js
2q21jk

4q4
, rough

G̃~0!f̃~q!

11js
2q21jk

4q4
, chemical,

~5.5!

with an adhesion energy given by Eq.~4.20! with the substi-
tution ~5.3!,

U

s
55

U0

s
2

1

2S0
E d2q

~2pjs!2 S ~q2js
21q4jk

4!uz̃s~q!u2

11q2js
21q4jk

4 D , rough

U0

s
1

1

2S0
E d2q

~2pjs!2 S uG̃~0!f̃~q!u2

11q2js
21q4jk

4D , chemical.

~5.6!

For the case of roughness, these are exactly the results ob-
tained in our previous paper@9#. We note that there is a
difference in sign between the two cases; whiledU[U2
U0,0 for the rough case,dU.0 for chemically patterned
surfaces. This is one of our main observations and will be
discussed in Sec. VI C.

It is also possible to indicate the regime where the Derya-
gin approximation can be expected to be valid. Using the
observation that this approximation is recovered in the zero
wave number limit@see~5.3!# and assuming that the struc-
ture, be it chemical or geometrical, is dominated by one long
wavelength mode such thatqa!1, then comparing the ze-
roth and second order terms in an expansion of Eq.~4.13! to
order (qa)2 implies that

q2js
2a2

4 S 1

h0
2

2
1

~h01d!2D !1 ~5.7!

for rough surfaces and

q2

4 E
h0

h01d g~h2z!

z2
dz! E

h0

h01d g~h2z!

z4
dz ~5.8!

for chemical inhomogeneities, which becomes

q2

4 F 1

h0
2

1

h01dG ! F 1

h0
3

2
1

~h01d!3G ~5.9!

when g(z)[1. If these conditions are violated~providing
qa!1) then a Deryagin approach will fail though we stress
that Eqs.~5.7! and ~5.8! while necessary for the validity of
the Deryagin approximation are certainly not sufficient.

Shifting our interest momentarily away from supported
membranes, if we allowh0@d, then Eq.~5.7! and~5.8! sim-
plify considerably and becomejs!h0 and h0!a, respec-
tively.

VI. PREDICTIONS OF THE LINEAR RESPONSE
METHOD

The nonlocal perturbation method is embodied by Eqs.
~4.11! and ~4.20!. In this section we compare and contrast
this approach with the simpler local Deryagin approxima-
tion. As both methods are based on perturbation theory, we
have the caveat that

dU

U0
!1 ~6.1!

for the method to be valid, i.e., that the perturbation correc-
tion is much smaller than the term it improves on. The fun-
damental difference between the approaches is in the treat-
ment of the Van der Waals potential; in the Deryagin
approximation there is only a purely local attraction while
the linear response includes non-local collective effects. The
Euler-Lagrange equations~4.11! and~5.4! most clearly illus-
trate this.

A. Chemically structured surfaces

For the types of structure considered, Eq.~4.5! gives the
general linear response free energy. One can define a bend-
ing ~BE! and potential energy~PE! contribution to this by
simply letting the bending energy be that part which vanishes
when s and k are set to zero and the potential energy that
part that remains. Then, using the solution~4.13!, we find
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PEchem52E d2q

~2p!2

112Q

~11Q!2
uG̃~q!f̃~q!u2 ~6.2!

and

BEchem5E d2q

~2p!2

Q

~11Q!2
uG̃~q!f̃~q!u2 ~6.3!

with Q5js
2q21jk

4q4 @a constant contribution,V(h0 ;0,0),
has been ignored in the potential energy term#. Here and
throughout the rest of the paper, we fixg(z)[1 for clarity
and so consider only columnar solids. The reader interested
in layered solids should consult Ref.@10# whose results can
be simply extended to membranes.

Using the fact that

0.G̃~q!>G̃~0! ~6.4!

for all q, and remembering that the Deryagin approximation
is recovered when the kernel functionG̃(q) is set to its value
at q50, one can see almost by inspection that the membrane
potential energy will be higher than in the Deryagin case
while the bending energy will be lower. In fact, the incre-
ment in the potential energy will be greater than the bending
energy decrement and we can therefore expect the surface to
appear less attractive, due to nonlocal effects, with a corre-
spondingly lowerU.

A sinusoidally patterned surface, translationally invariant
in the y direction, is the simplest choice with which to illus-
trate this behavior. Setting

f~r!5Lc sin~pcx! ~6.5!

with Lc being the amplitude of the Hamaker coefficient os-
cillations and 2p/pc their period, Eq.~4.13! then implies

h~r!5h01
LcG̃~pc!sin~pcx!

11js
2pc

21jk
4pc

4
, ~6.6!

whereG̃(pc),0 from Eq.~6.4!. The adhesion energy is also
easily calculated

U

s
5

U0

s
1

1

4js
2

Lc
2uG̃~pc!u2

11pc
2js

21pc
4jk

4
. ~6.7!

In Fig. 3~a!, this adhesion energy is plotted against wave
numberpc . One can see that there is good agreement be-
tween the Deryagin and linear response approaches. As the
period of the sinusoidal variation increases the membrane is
less and less able to respond to the structural variations and
for high pc the adhesion energy takes its planar value once
more. Any chemical structure has been effectively washed
away.

B. Rough surfaces

In this case, the two contributions to the adhesion energy
are

PErough5E d2q

~2p!2
uz̃s~q!u2H 12uK̃~q!1Vu2

112Q

~11Q!2J
~6.8!

and

BErough5E d2q

~2p!2

Q

~11Q!2
u@K̃~q!1V# z̃s~q!u2.

~6.9!

As

K̃~q!1V> K̃~0!1V51 ~6.10!

for all q, the complete opposite behavior results with the
bending energy increased by the nonlocal contributions and
the potential energy decreased below the decrement to the
bending energy. The surface becomes more attractive and the
adhesion energy increases above the Deryagin result.

Looking at a chemically homogeneous but geometrically
corrugated surface we choose

zs~r!5Lssin~psx! ~6.11!

so that the surface corrugations have an amplitude ofLs and
a period of 2p/ps. Equation~4.13! gives

FIG. 3. Membrane adhesion
energy for a substrate which~a! is
flat and has a sinusoidally varying
Hamaker constant (Lc510.0) and
~b! has a sinusoidal surface con-
figuration (Ls52.0a) plotted
against wave number. The Derya-
gin solution is also shown with a
dashed line.
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h~r!5h01
Ls@K̃~ps!1V#sin~psx!

11js
2ps

21jk
4ps

4
~6.12!

with K̃(ps).0 from Eq.~6.10!, while U obeys

U

s
5

U0

s
2

Ls
2

4js
2 F12

uK̃~ps!1Vu2

11ps
2js

21ps
4jk

4G . ~6.13!

This latter result is plotted in Fig. 3~b! and deviates sub-
stantially from the Deryagin prediction asps increases. Non-
local effects are important and can strongly decrease the
membrane potential energy. In particular, notice that for
small ps the adhesion energy isincreasedabove the value
taken for the planar situation. This can never occur in the
Deryagin approximation@see Eq.~5.6! and Ref. @9##. The
additional Van der Waals contribution accounted for sub-
stantially raises the membrane potential energy. For largeps,
positive nonlocal effects ‘‘saturate,’’ i.e.,K̃(ps) plateaus,
andU starts to decrease for greaterps values, see Eq.~6.13!.
In general, the membrane finds it more difficult to adhere to
the rough surface and the adhesion energy will asymptoti-
cally ~large ps) tend to a constant value less than unity
~though for the high value ofLs chosen our perturbation
theory is not sufficiently accurate to capture this!. The mem-
brane potential energy eventually becomes positive while its
bending energy vanishes asps→`.

Again, it is important to reiterate that our approach is
strictly only valid when Eq.~6.1! holds.

C. Comparison between chemically structured
and rough surfaces

Consider once more Eq.~4.13!, with Q5js
2q21jk

4q4,

dh̃~q!55
@K̃~q!1V# z̃s~q!

11Q
, rough

G̃~q!f̃~q!

11Q
, chemical.

~6.14!

Two points are worth making.~i! From Eqs.~6.4! and
~6.10! it can be seen that the membrane amplitude is in-
creased and decreased by nonlocal effects for roughness and
chemical structure, respectively. This is reflected in a corre-
sponding change in the bending energy~compared to the
Deryagin results!. ~ii ! Due to the different signs ofK̃1V and
G̃, see Eqs.~6.4! and ~6.10! again, the membrane profile is
always in phase with the surface contour of a rough substrate
but is exactly out of phase with surface structure arising due
to chemical variation. A membrane adhering to a rough sur-
face will, in order to maximize its potential energy, try and
follow that surface as best it can~limited only by the result-
ing bending energy cost!. Similarly, the membrane will fol-
low the hills and valleys of a substrate potential generated by
chemical patterning. In this case, however, a local increase or
decrease in the Hamaker constantA makes that region of the
surface more or less attractive and so shifts the membrane in

or out. Note that the membrane would be in phase with the
substrate for a repulsive Van der Waals potential@20#.

By using the Deryagin approximation, simple arguments
describing an effective potential energy highlight the differ-
ent adhesive properties of the two surfaces. In Fig. 4, a sur-
face ~translationally invariant in they direction! patterned
with a square wave profile and a similar on/off chemical
patchwork is schematically shown. For the former case, a
definition for an effective potential energy is given by

Veff 5

E dxV~h2zs!

E dx

~6.15!

which just equalsV(h0) for the planar scenariozs50. When
the substrate is square corrugated this approximately be-
comes

Veff '
1

2
$V~h01dh2c!1V~h02dh1c!%

5V~h0!1
1

2
~dh2c!2V9~h0!1O@~dh2c!4#

.V~h0! ~6.16!

asV9(h0) is positive (h0 being a minimum ofV). Thus even
in this crude argument, one can see that surface roughness
acts~at least if the roughness does not get too large when our
perturbation expansion breaks down! to increase the mem-
brane potential energy—a result verified by the Deryagin
version of Eq. ~6.8!. Equation ~6.16! shows that surface
roughness is reminiscent of Gaussian thermal fluctuations
and similarly to these acts to drive the membrane out of its
potential minimum.

FIG. 4. A membrane adhering to~a! a substrate with a square
wave surface configuration and~b! to a flat substrate periodically
striped with two different chemical compounds.
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When the wall is patterned with a periodic array of alter-
nating chemical patches as in Fig. 4, one can use similar
arguments to those given above to estimate the effective po-
tential energy. Let the Hamaker constantA obey

A5H A0~11f!, dark patch

A0~12f!, light patch,
~6.17!

for constant and positiveA0 andf, then the potential energy
is, see Eqs.~2.5! and ~2.10!,

V~h!5Vvdw~h!e~x!1Vhyd~h! ~6.18!

with e(x)516f on the dark and light patches. Therefore,

Veff 5

E dxV~h!

E dx

5
1

2
$Vvdw~h02dh!~11f!1Vhyd~h02dh!

1Vvdw~h01dh!~12f!1Vhyd~h01dh!%

5V~h0!1
1

2
dh2V9~h0!2fdhVvdw8 ~h0!1O~dh3!.

~6.19!

Notice here that the membrane’s position is exactly out of
phase with the surface structure. This leads to a negative
contribution in Eq.~6.19! and one can see that the new mem-
brane configuration, as the negative term is of orderdh and
positive is of orderdh2, is likely to result in a net attractive
contribution to the potential energy. Indeed, this can be veri-
fied by summing Eqs.~6.2! and~6.3! which, as already men-
tioned, is always negative.

In summary, a membrane generally adheres less favorably
~relative to the planar and homogeneous surface! to a rough
substrate and adopts a configuration that is in phase with the
surface contours. A chemically structured substrate has a
higher adhesion energy~more favorable! and leads to a
membrane configuration exactly out of phase with the sur-
face structure.

VII. COMPARISON BETWEEN EXACT
AND APPROXIMATE SOLUTIONS

From these examples and those given in Ref.@9#, it is
clear that the Deryagin approximation is certainly the most
versatile if one wishes to obtain analytical results. However,
it is also apparent that in some situations nonlocal effects can
become important and in this section we compare the Derya-
gin result with an exact numerical solution.

The scenario we choose to specialize to involves solely
geometric inhomogeneities. We consider a chemically pure
substrate made up of a regular array~in the x direction! of
‘‘V’’ shaped trenches. These could be formed, for example,
by etching silicon wafers@21#. In the other spatial dimension,
i.e., they direction, the system is translationally invariant.

For simplicity, the trenches are assumed to be symmetric
about their lowest point and have a maximum width ofd and
a depth ofld. See Fig. 5 for an example.

A. The Deryagin solution

To find the Deryagin solution it is most easy to consider
Eq. ~5.4! directly, which reduces to a one-dimensional dif-
ferential equation. This is

S jk
4 d4

dx4
2js

2 d2

dx2
11D dh~x!5zs~x! ~7.1!

with

zs~x!52l (
n52`

`

$r x@u~x1nd!2u~x1nd2d/2!#

1~d2r x!@u~x1nd2d/2!2u~x1nd2d!#%,

~7.2!

whereu(x) is the Heaviside function andr x5x modd, i.e.,
the remainder ofx on division byd. Assuming that the mem-
brane has the same symmetry as the substrate, the boundary
conditions are

h8~nd!5h-~nd!50,
~7.3!

h8~nd1d/2!5h-~nd1d/2!50

for all integersn.
Due to the periodicity ofzs(x), we need only solve Eq.

~7.1! for 0,x,d/2, where zs(x)52lx, and then reflect
and/or translate this solution to obtain the full membrane
configuration. We find in this region that forr5(x,y),

h~r!5h012lx2
2lh1

2 h2
2

h1
2 2h2

2 @c1~x!2c2~x!# ~7.4!

with

c6~x!5
sinh@~ 1

4 d2x!h6#

h6
3 cosh~ 1

4 h6d!
. ~7.5!

FIG. 5. A typical membrane configuration predicted by the
Deryagin approximation for adsorption above a homogeneous sub-
strate sculptured with ‘‘V’’-shaped trenches. The parameters for a
single trench ared510a and l50.05, which implies a width of
around 500 Å and depth of approximately 25 Å. The adhesion en-
ergy isU'0.43U0.
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The h6 come from the factorization of the operator in Eq.
~7.1!, see Ref.@9#, and are

h65j21F16A124~j/jk!4

2 G1/2

, ~7.6!

wherej is given by Eq.~3.9!. The height profile of the mem-
brane,h(x) is plotted in Fig. 5 using Eq.~7.4!.

The adhesion energy is obtained from the definition
~2.12!. Equation~4.5! with Eq. ~5.3! implies

U

s
5

U0

s
2

1

dE0

d/2

dx$h821j2h921js
22~h2h022lx!2%.

~7.7!

Using Eq.~7.4!, the above integral can be calculated analyti-
cally yielding

U

s
5

U0

s
24l2H 1

2
1

I ~dh1 ,dh2!1I ~dh2 ,dh1!

d4~h1
2 2h2

2 !2 J
~7.8!

with

I ~u,v !5
2u~j/jk!4

~j/d!2 H 4

11eu/2
2

2@112~j/jk!2#

~j/d!2~u22v2!

1
~j/d!2v2~2u22v2!

~j/jk!4u2
tanh~ 1

4 u!J . ~7.9!

Figure 6~dashed lines! illustrates Eq.~7.8! and compares it
with the exact numerical solution detailed below.

B. The exact numerical solution

In this subsection we present a numerical solution which
accounts for the full Van der Waals interaction~2.2! and the
bending energy term in Eq.~2.11!. One can functionally
minimize Eq.~2.11! but the resulting Euler-Lagrange equa-
tion is nonlinear and very complicated. Given that Eq.~7.2!
implies the boundary conditions~7.3!, the resulting problem
is extremely awkward to tackle even numerically if one tries
to solve the equation directly. Instead, we choose first to
discretize Eq.~2.11! and then minimize the free energy func-

tional with respect to all of the discrete variables. This has
the advantage that the boundary conditions~7.3! can be eas-
ily incorporated.

For one-dimensional structures, such as the trench geom-
etry, ~2.11! becomes

F @h#5E dxH sA11h821
k

2

h92

~11h82!5/2
1V~h;zs,0!J .

~7.10!

Due to the symmetry of Eq.~7.2!, we only need consider a
solution for 0,x,d/2 and adopt a standard discretization
process by dividing the interval, i.e.,

h8~xk!↔
hk112hk

D
, h9~xk!↔

hk1222hk111hk

D2
,

~7.11!

where xk5kD, k51, . . . ,N and D5d/2N. Here, N is the
number of points making up the one-dimensional lattice and
typically was chosen somewhere between 100 and 400. For
the simple surface~7.2!, Eq. ~2.3! can be broken into a~con-
vergent! infinite sum of integrals each of which can then be
evaluated analytically.

Carrying out this procedure we find Figs. 6 and 7. From
the adhesion energies plotted in Fig. 6, there is a region of
good agreement between the Deryagin and exact solution.
This agreement occurs for lowd and l where Eq.~6.1!
holds. As the Deryagin approximation underestimates the at-
tractive potential in this case, the adhesion energy is always
less than the exact result and it is also reassuring that the
exactU does not vanish for highd or l. This prediction of
the Deryagin approach is clearly an artifact of going beyond
the limits of perturbation theory. Generally, we see that the
adhesion energy decreases with greater values of the rough-
ness, i.e., largel or d ~for smalld any structure is effectively
‘‘washed out’’ and not seen by the membrane!.

The degree of penetration of the membrane into the ‘‘V’’-
shaped trenches is shown in Fig. 7 where the membrane
height above the middle of the trench,dh(0)5h(0)2h0, is
plotted. One can see that the membrane always lies further
away from the substrate than if the latter were entirely planar
and so there is no penetration into the surface indentations.
However, this could be encouraged by having flat regions

FIG. 6. A comparison of the
Deryagin predictions ~dashed
lines! and an exact numerical so-
lution ~heavy lines! for the adhe-
sion energyU above a substrate
patterned with ‘‘V’’ shaped
trenches. In~a! U/U0 is plotted as
a function of d/a with l50.1,
while for ~b!, it is shown as a
function of l and d52a. For
small d/a or l the Deryagin
method provides a good approxi-
mation to the numerical result.
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separating each trench~see Ref.@9# for a similar example!.
As the surface becomes rougher, it also becomes more repul-
sive (U decreases! and so the membrane moves outwards. It
is perhaps surprising to see that the exact solution lies fur-
thest away from the substrate despite having a higher adhe-
sion energy. This is likely to be a consequence of higher
order bending energy terms in Eq.~7.10! reducing the am-
plitude of the membrane configuration and so increasing its
height at the center of a trench.

VIII. CONCLUSIONS

A significant experimental question is whether or not,
compared to a planar, homogeneous surface, substrate struc-
ture encourages membrane adhesion. An important conclu-
sion of our study is that columnar chemical structure@see
Fig. 1~c!#, which obeys Eq.~4.9!, always increases a sub-
strate’s attractiveness; the membrane potential energy~6.2! is
clearly negative and also greater than the bending energy
~6.3!. Consequently, the adhesion energy increases. Rough
surfaces are unfortunately more ambiguous as Eq.~6.8! is
not of a definite sign. However, if the Deryagin approxima-
tion is invoked @K̃(q)1V'1#, then the potential energy
contribution is always positive. Therefore, we would expect
roughness to usually decrease a substrate’s attractiveness and
lead to a drop in the adhesion energy. We should emphasize
that for surfaces for which nonlocal effects are important this
may no longer be the case.

Some comments on the validity of our approach are also
worth mentioning. Both analytical methods breakdown when
the amplitude of the structure, be it geometrical or chemical,
becomes large. This is to be expected as our analysis is fun-
damentally a perturbation method and can only be confi-
dently followed when Eq.~6.1! holds. The linear response
technique is an improvement over Deryagin and is particu-

larly appropriate for rough surfaces where the additional
nonlocal effects lead to an increase in the amplitude of an
adhering membrane. For smoothly varying surfaces these ef-
fects can even lead to the surface becoming attractive—a
result that is not predicted by the local Deryagin approxima-
tion. Unfortunately, it is difficult to identify the particular
geometries for which nonlocal Van der Waals contributions
are important but for those surfaces of biotechnological in-
terest, i.e., with trenches or indentations etched into them,
they do not seem to lead to radically different behavior. To
conclude, if one wishes an analytical guide to how a certain
substrate structure will influence membrane adhesion and if
that structure can be conveniently described in Fourier space
then the linear response description is the method of choice.
Failing this the Deryagin approximation is quick and easy to
apply if only normally adequate for small amplitude effects.

Throughout this paper we have looked only at generic
chemical patterning described by a position dependent Ha-
maker constant. In the future, it will be of interest to extend
this work to include particular chemical patterns and specific
interactions between the membrane and the surface, such as a
receptor ligand or an antigen antibody@22–24#.
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