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Abstract

It was shown recently using experimental data that it is possible under certain conditions to determine whether a person
with known genotypes at a number of markers was part of a sample from which only allele frequencies are known. Using
population genetic and statistical theory, we show that the power of such identification is, approximately, proportional to
the number of independent SNPs divided by the size of the sample from which the allele frequencies are available. We
quantify the limits of identification and propose likelihood and regression analysis methods for the analysis of data. We
show that these methods have similar statistical properties and have more desirable properties, in terms of type-I error rate
and statistical power, than test statistics suggested in the literature.
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Introduction

Homer et al. [1] showed that it was possible in some

circumstances to identify whether a person with observed

genotypes at multiple loci was part of a sample from which only

estimated allele frequencies were known. Such identification

would be particularly useful in forensic science if the presence or

absence of a person’s DNA in a mixture of DNA could be

established. The authors also discussed the relevance of their

findings when summary statistics such as allele frequencies were

available in the public domain as part of genotype-phenotype

studies, because it possibly could be established that individuals, or

their close relatives, were part of a particular study. As a result of

the publication of Homer et al., NIH and the Wellcome Trust

added more restrictions to the access of such data to avoid

potential identifiability (http://grants.nih.gov/grants/gwas/

data_sharing_policy_modifications_20080828.pdf).

The approach taken by Homer et al. was to have two samples

with estimated allele frequencies, here called the ‘‘test’’ and

‘‘reference’’ sample, and to ask whether an individual was ‘close to’

either of these samples, using a statistic that measured a distance to

the sample. The properties of the test statistic were not investigated

theoretically (although simulation studies were performed), and the

difference between ‘‘sample’’ and ‘‘population’’ was not always

clear.

In this note we take a best-case idealised setting in which there is

a single population from which there is a test sample with allele

frequencies at a number of loci and from which there is a single

individual, called the proband, with full genotypes. The question is

whether the person was part of this test sample from which allele

frequencies are available. We use both likelihood and linear

regression theory, which illustrate different approaches to the

problem, to draw inference about the hypothesis that a proband

was part of the test sample. We show that the power of

identification of a proband as part of a test sample is,

approximately, proportional to the number of independent SNPs

divided by the size of the sample from which the allele frequencies

are available. The power is reduced by a predictable magnitude if

the frequencies in the population are themselves estimated

imprecisely. Properties of likelihood-ratios and regression test

statistics and a comparison with the statistic used by Homer et al.

were verified by simulation.

Methods

Notation and assumptions
There are m independent SNP markers with a population

frequency of pi for allele B at the ith SNP. We assume Hardy-

Weinberg equilibrium in the population, so that the genotype

proportions for the ith SNP are (12pi)
2, 2pi(12pi) and pi

2 for

genotypes AA, AB and BB, respectively. We have estimated allele

frequencies p̂pi based upon a test sample of N unrelated individuals.

In the test sample of 2N alleles, ni is the number of B alleles at locus

i. In this study we assume that N is known and individuals are

equally represented in computing p̂pi. Note that these conditions

are unlikely to be fully met in forensic applications when the test

sample may be a DNA pool and we consider the implications later.

The genotype for proband X at the ith SNP is gi, which can take

values of 0, 1 and 2 for genotypes AA, AB and BB, and the

expectation of yi = Kgi is the population frequency pi, i.e.

E[Kgi] = pi.

To simplify derivations, we shall first assume the population

frequencies pi, are known. More generally, we assume we have

prior unbiased estimates of the allele frequencies from the same
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population from a different finite sample (the ‘‘reference sample’’)

of size N*, in which there are n*i B alleles at locus i. As both the test

and reference samples are drawn independently from the

population, the best estimate of the frequency in the population

is given by the pooled value, p̂p�i ~ nizn�i
� �

= 2Nz2N�ð Þ It is

explained subsequently why this estimate, rather than say n*i/2N*,

the estimate of the allele frequency from the reference sample, is

used in the statistical analysis.

Likelihood
Population frequencies known. If, under the assumptions

described above, the numbers of individuals in the test sample and

population frequencies are known, then we can compute the

relative likelihood of sampling the observed genotypes under the

two alternative hypotheses: the proband X is or is not in the test

sample.

If X is not a member of this sample, then ni , Binomial(2N, pi)

and gi is independently distributed Binomial(2, pi). Hence the joint

probability of sample and proband is

P(out)~
2N

ni

� �
pi

ni (1{p)2N{ni
2

gi

� �
pi

gi (1{pi)
2{gi

If X is a member of the sample, ni has the same distribution, but gi

is sampled from the 2N without replacement and has the

hypergeometric distribution:

P(in)~
2N

ni

� �
pi

ni (1{p)2N{ni
ni

gi

� �
2N{ni

2{gi

� �
=

2N

2

� �

Alternatively P(in) can be viewed as ni2gi , Binomial(2N22, pi)

and gi , Binomial(2, pi) independently, giving the same formula.

Hence the likelihood ratio for X in vs not in (out) the test sample

reduces to a simple equation, but in view of the varying length of

the factorial expressions, it is clearer to write three separate ones:

LR(in=out,AA)~(2N{ni)(2N{ni{1)=½2N(2N{1)(1{pi)
2�

LR(in=out,AB)~ni(2N{ni)=½2N(2N{1)pi(1{pi)�

LR(in=out,BB)~ni(ni{1)=½2N(2N{1)pi
2�

For example, if allele B is at low frequency in the population (pi

small) and the proband is BB, then if the number in the sample,

ni,2, LR(BB) = 0, as it should; but as ni increases LR(BB) becomes

high. If the test sample is quite large, the correction for non-

replacement sampling becomes less important, and the formulae

simplify to, for example, LR(in/out, BB) = (ni/2N)2/pi
2, i.e. a simple

comparison of whether the genotype frequencies correspond more

closely to those in the sample than in the population.

For m independent loci, the log likelihood ratio (logLR) is

log LR(in=out)~{m½log (2N)z log (2N{1)�

z
X

0

½log (2N{ni)z log (2N{ni{1)�

z
X

1

½log (ni)z log (2N{ni)�

z
X

2

½log (ni)z log (ni{1)�

{
X

0

½2 log (1{pi)�{
X

1

½log (pi)z log (1{pi)�

{
X

2

½2 log (pi)�

where 0, 1, 2 represent AA, AB and BB individuals at the

respective loci. If the non-replacement sampling is ignored, this

simplifies to a likelihood comparison of allele frequencies in an

individual to one of two different populations

logLR(in=out)~
X

i

(2gi0zgi1)½log(1{ni=2N){log(1{pi)�

z
X

i

(gi1z2gi2)½log(ni=2N){log(pi)�

where gi0 etc. refer to counts over the corresponding genotypes.

Population frequencies estimated. If the marker

frequencies are estimated from a reference sample of the

population of size N*, then the allele frequencies pi in the above

equations have to be replaced in the analysis by an estimate of

population frequency. Although it would be possible just to use the

frequencies n*i/2N* in the reference sample, this should not be

done as it leads to increased expectations of logLR and, if

unadjusted, to bias in assignment of the proband to the test

sample. More appropriately, providing the reference and test

samples are independent, the pooled estimate of the population

frequency p̂p�i ~ nizn�i
� �

= 2Nz2N�ð Þ should be used instead of pi

in the above formulae.

Properties. The likelihood ratio (or its logarithm) contains all

of the information and reflects the relative probabilities of the two

hypotheses (in/out) given the data.

We consider expectations of logLR under the different

hypotheses. Standard statistical differentiation was employed,

taking a Taylor series expansion of terms such as log(ni) about

log(2Npi), ignoring higher order terms, and taking expectations

over the sampling distributions of the observed frequencies under

each hypothesis (see Text S1 for more details). The following

formulae have also been verified by simulation.

1. If the population frequencies are known, then for a proband in

the test sample, E(logLR|in)<Km/N, and for a proband not in

the test sample E(logLR|out)<2Km/N. Therefore the ability

to find whether the proband is in or not in the sample is

proportional to the number of independent markers and

inversely proportional to the size of the test sample.

2. The variance of logLR is approximately the same whether the

proband is or is not present, and is close to m/N = 2E(logLR|in).

One measure of discriminating power is the difference in

expected log-likelihoods for the two hypotheses, scaled by the

variance of that difference, analogous to the non-centrality

parameter of a test statistic: [E(logLR|in)2E(logLR|out)]2/

[var(logLR|in)+var(logLR|out)]<Km/N. Hypothesis tests are

Author Summary

It was shown recently by Homer and colleagues that it may
be possible to determine whether a person with known
genotypes at a number of markers was part of a pool of
DNA from which only frequencies of alleles at the markers
are known. In this study, we quantify how well such
identification can work in practice. The larger the size of
the sample from which the allele frequencies are available,
the more independent genetic markers are required to
allow individual identification.

Individual Identification from a Sample
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discussed further in the subsequent section on the regression

analysis, but note that the two hypothesis (in/out) are not nested.

The variance under the in hypothesis is twice its expectation as

for a chi-square with 1 degree of freedom so the proportion of LR

exceeding some threshold can be predicted.

3. The allele frequencies have little influence on the distribution of

the likelihoods. Unless the frequencies are very extreme, or the

test sample very small, the expected likelihood ratios are little

affected by whether the non-replacement sampling is accounted

for, providing they are computable. With very small numbers of

a homozygous class expected under the out hypothesis, then

exclusions can occur with some probability. In such a case, if

genotype results are correct, then presence of the proband in the

test sample has to be excluded. This can occur even with

relatively large test sample sizes. The joint probability of the

proband having genotype AB and the test sample being

homozygous AA and thereby excluded is 2p(12p)2N+1<2pe22Np

for small p, and for example is 0.0027 for p = 0.01 and N = 100.

4. If the population frequencies are estimated as p̂p�i , the expectations

of the likelihoods and their variances and hence discriminating

ability are all reduced by a proportion of approximately N*/

(N+N*), e.g. E(logLR|in) = [N*/(N+N*)](Km/N). For example, the

reduction is by one-half if the frequency is estimated using a

reference sample of the same size as the test sample, and

essentially to zero if there are no such other data.

5. If there is linkage disequilibrium amongst the loci, but the data

are analysed as if they are independent, the expectation of

logLR is the same as if all were unlinked. The sampling

variances are, however, increased. If the population frequencies

are known without error, it can be shown that for any pair of

loci, regardless of their frequency, var(logLR|in)<var(logL-

R|out)<2(1+r2)/N, approximately, where r2 is the squared

correlation of gene frequencies between these loci [2]. Hence,

for m loci, the discriminating ability is approximately
1=2m= N 1z(m{1)r2

h in o
and, as the number of loci increases,

asymptotes to 1=2 Nr2
h i

, where r2 is the mean of r2 over all pairs

of loci. If this quantity can not be calculated directly it can be

predicted from population parameters.

Linear regression
We show that the main results for the regression approach are

based upon the expectation that the regression of the proband

frequency, yi = Kgi, on p̂pi, each expressed as deviations from

population frequencies, is distributed about unity for all loci if the

proband was part of the test sample, and about zero otherwise.

Population frequencies known. Considering this case

first for simplicity, the regression coefficient is estimated

as b~
P

i(yi{pi,p̂pi{pi)=
P

i(p̂pi{pi)
2

� �
. If the proband is in

the test sample, yi and p̂pi are correlated, so

cov(yi{pi,p̂pi{pi)jin~1=2pi(1{pi)�=N, and if it is not in the

test sample, cov(yi{pi,p̂pi{pi)jout~0. In both cases,

var(p̂pi{pi)jin~var(p̂pi{pi)jout~1=2pi(1{pi)=N:

Hence, assuming many loci such that the ratio of expectations

approximates the expectation of the ratios,

E(bjin)~E
X

i
cov(yi{pi,p̂pi{pi)jinf g

h i
=
X

i
var(p̂pi{pi)joutf g

h i
~1

and

E(bjout)~0

Therefore the regression of the proband’s allele frequency on the

estimated allele frequency in the test sample, both expressed as a

deviation from the population frequency, is expected to be zero if

the proband was not in the test sample and one if the probands

was in the test sample. The corresponding sampling variances are,

respectively, assuming large m,

var(bjin)~(N{1)=m and var(b=jout)~N=m;

i.e., the variance is slightly smaller if the proband is in the sample.

These results correspond closely to the expectations of

the conditional log-likelihood analysis, and show how they are

related.

Population frequencies estimated. There are two

approaches to estimating the population frequency and testing:

comparison of the proband with either the reference sample of N*

alone, or comparison of the proband with the estimate p̂p�i from the

combined sample of size N+N*. Whilst it might seem

counterintuitive to use the latter which includes the test data in

the estimate, it provides simpler results, notably expected

regression coefficients of 0 (out) and 1 (in); hence we use it here.

The estimate of the regression coefficient is b~P
i(yi { p̂p�

i
,p̂pi { p̂p�i ) =

P
i(p̂pi { p̂p�i )2

� �
.

Now var (p̂pi { p�i ) ~1=2pi (1 { pi) 1=N {1=(N zN�)½ �. This is

also cov(yi{p̂p�i ,p̂pi{p̂p�i jin), whereas cov(yi{p̂p�i ,p̂pi{p̂p�i jout)~0.

Hence, if the proband is in the test sample,

E(bjin)~1, and var(bjin)~ (N{1)=m½ � (NzN�)=N�½ �:

If the proband is not in the test sample,

E(bjout)~0, and var(bjout)~ N=m½ � (NzN�)=N�½ �;

where terms of 1 relative to N+N* are ignored. Hence the test

statistics are simply N*/(N+N*) of those where the population

frequencies are known (i.e., N*R‘).

Hypothesis testing. The null hypothesis is out, E(b) = 0: the

proband was not part of the test sample. The alternative

hypothesis (in, E(b).0) is that the proband (or a close relative)

was part of the test sample.

If hypothesis out is true, a test statistic for the null hypothesis that

the proband is part of the sample is t = [b21]2/var (b|out). Again,

t,x2
(1) if this hypothesis is true. If it is false, i.e. the proband is not

part of the sample, then t has a non-central chi-square distribution

t,x29
(1),l with non-centrality l<(m/N)[N*/(N+N*)]. For large N,

inferences from testing whether the proband is in or whether the

proband is out of the test sample are identical, as in the likelihood

approach: the probability of rejecting the null hypothesis that the

proband is not part of the sample when that is false is the same as

the probability of rejecting the null hypothesis that the proband is

in the sample when that is false.

For a type-I error rate of a and power of 12b, with

corresponding normal deviates of za and z12b, the required ratio

of m/N = l= (za+z12b)2, assuming a very large reference sample

(N*&N). For a type-I error rate of 0.05 and a power of 80%, the

required m/N ratio is therefore approximately 6, and for a= 1026

and 12b= 99%, the ratio is approximately 50. If, for example, the

reference sample were the same size as the test sample, the number

of loci would have to be doubled to give the same power.

Results

Simulations
Population allele frequencies on m markers were drawn from a

uniform distribution with lower bound 0.05 and upper bound 0.95

Individual Identification from a Sample

PLoS Genetics | www.plosgenetics.org 3 October 2009 | Volume 5 | Issue 10 | e1000628



(i.e., minor allele frequency (MAF).0.05). For the ith SNP, a

genotype score (yi) of a proband was simulated from a binomial

distribution with probability pi and sample size 2. Allele

frequencies in the reference and test samples were simulated from

a binomial distribution with probability pi and sample size 2N* and

2N, respectively. If the proband was part of the test sample then

the test sample was simulated on N21 individuals and the allele

count from the proband was added to that from this sample to

create a sample from N individuals. Linear regression was

performed as described previously, for a type-I error rate of

0.05, and the Homer et al. [1] test statistic (see Text S2) was also

implemented. 1000 simulations were performed for combinations

of N = 100, 1000, 10000, N* = 100, 1000, 10000 and ‘ and

m = 50,000, when the proband was either part or not part of the

test sample.

The results are shown in Table 1. The regression type-I error

rates are well controlled when the hypotheses tested are true. As

predicted (Text S2), the type-I error rates for the Homer et al. test

statistic are not well controlled. In many cases the probability of

rejecting the null hypothesis when it is true is close to zero. Power

to determine whether the proband is part of the test sample is good

for test samples of 1000 if the reference sample size is large.

Inference from the regression and likelihood-ratio approach is

similar, as expected (Table S1).

Discussion

Simple methods were proposed to test the hypothesis of whether

a proband was part of a test sample. The expected likelihood ratio

or the power to reject the null hypothesis when it is false were

derived and shown to be a simple function of m/N, the ratio of the

number of markers and test sample size. If allele frequencies in the

population are well-estimated then there is good power to

determine if a proband is part of a sample of ,1000 individuals

when using a whole genome scan of ,50,000 independent

markers.

There is a strong relationship between the logLR statistic and

regression test statistics. The difference in the two regression test

statistics, in or out of the test sample, is approximately equal to

twice the logLR statistic. Hence, twice the logLR statistic is very

similar to a test statistic from regression that also tests for the in vs

out hypothesis (Table S1).

Could any inference be drawn in the case where there are no

prior estimates of allele frequencies? The analyses indicate that,

Table 1. Simulation results (m = 50,000 SNPs; type-I error rate = 0.05; 1000 simulations).

Linear regression Homer et al.

Proband in
test? N* N b P(b.0) P(b,1)} P(D.0) P(D,0)

Type-I error Power Type-I error Power

NO ‘ 100 0.000 0.055 1.000 0.000 1.000

NO ‘ 1000 0.002 0.064 1.000 0.002 0.486

NO ‘ 10000 0.000 0.056 0.731 0.016 0.133

NO 100 100 0.001 0.061 1.000 0.057 0.039

NO 100 1000 0.005 0.065 0.678 0.994 0.000

NO 100 10000 0.041 0.052 0.079 0.999 0.000

NO 1000 100 20.000 0.047 1.000 0.000 0.997

NO 1000 1000 0.014 0.069 0.999 0.060 0.047

NO 1000 10000 0.002 0.057 0.185 0.404 0.000

NO 10000 100 0.002 0.067 1.000 0.000 0.999

NO 10000 1000 0.001 0.065 1.000 0.001 0.408

NO 10000 10000 20.002 0.053 0.472 0.048 0.051

Power Type-I error Power Type-I error

YES ‘ 100 0.999 1.000 0.048 1.000 0.000

YES ‘ 1000 1.003 1.000 0.051 0.996 0.000

YES ‘ 10000 0.997 0.709 0.053 0.396 0.000

YES 100 100 1.004 1.000 0.064 1.000 0.000

YES 100 1000 0.999 0.686 0.060 1.000 0.000

YES 100 10000 0.974 0.078 0.063 0.998 0.000

YES 1000 100 0.999 1.000 0.058 1.000 0.000

YES 1000 1000 1.002 1.000 0.063 0.992 0.000

YES 1000 10000 1.015 0.190 0.053 0.625 0.000

YES 10000 100 1.000 1.000 0.063 1.000 0.000

YES 10000 1000 0.999 1.000 0.059 0.993 0.000

YES 10000 10000 0.998 0.475 0.067 0.375 0.000

D refers to the Homer et al. test statistic.
doi:10.1371/journal.pgen.1000628.t001

Individual Identification from a Sample
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even with many marker loci, there is little power as N* appro-

aches 0 unless the sample size N is also very small, and no larger

than N*.

The parameter m was defined as the number of independent

SNPs. When many SNPs are used, e.g. all common SNPs on a

chip, then there is correlation (linkage disequilibrium) among the

SNPs. Consequently, the y variables (allele numbers in the

proband) are correlated and not taking this into account will

inflate the test statistic because the true variance of the estimated

regression coefficient is larger than appears from the total number

of SNPs. Similarly, the variance of the likelihood statistic is

increased if allele frequencies across SNPs are correlated. There

are a number of ways to deal with this correlation structure. (i)

Restrict the analyses to SNPs that are in linkage equilibrium. This

seems wasteful because information is discarded. (ii) Take the

correlated nature of y into account by fitting the covariance

structure of y into the regression or likelihood analysis. The effect

of LD on the variance of the log likelihoods is shown earlier, and

appropriate corrections using the mean r2 given. In view of the

correspondence of the likelihood and regression approaches, the

same correction can be applied to the latter. The relevant quantity

may be obtained from a separate data set (e.g. HapMap). (iii)

Perform a theoretical adjustment on the test statistic, by calibrating

the variance of the test statistic on the equivalent number of

independent markers. According to population genetics theory,

the number of independent loci (‘segments’) in a random

population with effective size Ne and genome length L (Morgan)

is approximately 2NeL/log(4NeL) [3]. For human populations, with

Ne = 10,000 and L = 35, this implies a total of ,50,000 SNPs. This

number can also be estimated using a simulation approach,

conditioning on the observed LD structure in a sample where

individual-level genotype data are available. Such an application

resulted in ,55,000 independent SNPs for one genome-wide

association study [4].

Population differences
In our derivations we have assumed that all samples (proband,

reference and test) are from the same population and that within

the population there is random mating. What if these assumptions

are violated?

If all samples are from the same population but there is

deviation from HWE then the tests are somewhat biased because

HWE is assumed in computing the likelihood and the variance of

sample allele frequencies. Population differences are more serious

and can lead to the wrong inference. There are a large number of

possibilities because, in principle, the proband, reference and test

samples can all come from different populations. However,

population differences between the reference and test sample

can be tested explicitly using standard tests for differences in gene

frequency. There seems little point in testing whether a proband

was part of a specific test sample when there is no reference sample

from the same population. Nevertheless, what can we predict if the

reference population is not actually from the same population, but

is used as if it is? Then both the likelihood statistics for the

hypothesis ‘in’ and ‘out’ are inflated, by essentially the same

amount, so the problem is not the divergence between the two

populations, but bias in the test statistic. If population frequencies

are inappropriately or approximately estimated, the sample is

more likely to be assigned as ‘in’ when it should not be. The

reference sample is of little value if the divergence between the

populations, expressed as Wright’s FST, approaches 1/(2N).

Can we quantify the limits of identification in practical

situations? This is hard, because there are (at least) three difficulties

in addition to the theoretical sample m/N criterion:

1) The size of reference sample used to estimate the population

frequency - in effect a sort of ‘outgroup’ as N gets very large.

So if the test sample is much larger than the reference sample

(N&N*) the latter provides the limit.

2) The degree to which the test N and the reference N*

individuals are samples from the same population.

3) Linkage disequilibrium, which generates a limit regardless of

numbers of loci.

For these reasons we cannot set a simple limit to identification

without reference to other parameters (or speculation).

Relatives
In the analysis we have not considered the possibility that the

proband is not in the test sample, but is related to one or more

persons who is. For example if a relative with relationship R (e.g.

R = K for full sibs) is in the test sample, then the expectation of the

regression coefficient is E(b) = R rather than 0 or 1. Similar

calculations can be done if, for example, there are several relatives

in the test or reference samples. If many markers are used, a value

of b of approximately one-half would raise suspicions that in fact a

full sib, parent or child is in the test sample. Lower, but non-zero

values could be consequences of sampling or relationship. The

simulation results in Table 1 illustrate how sensitive the methods

can be, and hence there seems a real possibility of identifying not

just the proband but also his/her relatives.

Forensic applications
A problem frequently met in forensic applications is whether a

particular individual’s DNA appears in a mixture obtained at a

crime scene, for example. In this case, it is usually unknown how

many individuals’ DNA is present in the sample (i.e., N is

unknown), equal representation cannot be assumed, and there

may be allelic drop out in the sample, although Homer et al. [1]

showed empirically that probands could be detected even if their

contribution to the DNA pool was small. We do not therefore

consider the present results to be relevant for probabilistic

inference in a forensic setting. However, exclusion of a proband

from a pooled DNA sample is possible if many markers are used,

the actual N is small and frequencies of alleles from the pool are

estimated accurately. The likelihood framework is sensitive to

genotyping errors in that false exclusions could occur, but the

analysis could be adapted to model genotype counts with specified

probability of errors or by assuming replacement sampling in

computing P(in). The linear regression approach is likely to be

robust to genotyping error.

Genome-wide association studies
In contrast to forensic applications, in the situation considered

by Homer et al. in which the test sample is a database constructed

using a specified number of individuals each with individual

genotypes, and with the gene frequencies estimated as their

average, our results support their conclusions. Probands that were

part of a test sample could be identified even for samples sizes of

1000. If, for example, there are both diseased case and healthy

control samples in the association test, each assumed to be

sampled from the same population, then it is possible to test

whether an individual is present in either the case or control group

using the analysis we have described, but using each sample in

turn as the test sample.

Current genome-wide association studies (and meta-analyses

based upon multiple studies) are conducted on large samples, often

of the order of 10,000 or so, and in this case our results show that
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the power to identify a proband who was part of such a large

sample when the reference sample is of similar size is only about

one-half (Table 1) assuming 50,000 independent loci, even under

the ideal circumstances considered in this study.
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