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Differential expression of pattern recognition receptors during the development 

of foetal sheep

Abstract

Pattern recognition receptors (PRRs) play a crucial role in the initiation of the 

adaptive immune response. Immunological competence of foetal lambs occurs progressively 

throughout gestation and in order to understand the role played by PRRs in foetal 

immunological competence we quantified transcript expression, in the skin and spleen, of the 

TLRs, key C-type lectins and CARD15 during the critical second trimester. These data show 

that lambs express the same spectrum of PRRs as the adult but that the level of expression for 

most is dependent on developmental age. Key findings include: TLR1 and TLR5 are 

expressed at high levels in the foetus but are low in the adult; in contrast TLR4, CD14 and 

CARD15 increase with age. In addition, TLR9 and TLR10 are expressed by the spleen and 

not the skin while CARD15 is low in the spleen and high in the skin. 

Keywords: Pattern recognition receptors; innate immunity; TOLL-like receptors; 

foetal lambs; 
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1. Introduction

Innate defence mechanisms provide an essential first line of protection against 

infection through the recognition of conserved microbial structures by an array of germline-

encoded innate pattern recognition receptors (PRRs). PRR engagement alerts the innate 

immune system to the presence of infection and culminates in the induction of pro-

inflammatory mediators and the initiation of the adaptive immune response [1,2]. 

There are two broad groupings of PRRs. Firstly, lectins that bind pathogens through 

recognition of carbohydrate moieties and function through complement fixation (soluble 

collectins), opsonization (mannose receptors) and cell activation/opsonization (C-type 

lectins). Secondly, the Toll-like receptors (TLRs), engagement of which leads to NF-κB 

dependent gene activation and the synthesis of effector molecules. This latter definition could 

also apply to the cytosolic  NACHT-LRR proteins (NLRs) including CARD15 (NOD2) [3]. 

Each TLR has its own array of ligands [4]; however the repertoire of TLR recognition is 

expanded significantly by heterodimerization [5] or by complexing with co-receptors [6]. 

Mammalian neonates are known to have a reduced response to specific antigens and 

an increased susceptibility to bacterial infections and sepsis [7,8]. This increased 

susceptibility is more pronounced after premature birth where it causes significant morbidity 

and mortality although species differences exist in the level of immune development at birth 

[9-11]. This has been partly ascribed to neonates having reduced complement factors, poor 

phagocytic capabilities [7] and an overall underdeveloped innate immune system and naïve 

adaptive immune system [12]. Indeed, within sheep the splenic rudiment, containing myeloid 

and erythroid progenitors appears only by about day 48 [11]; B cells start to appear after day 

50 [13] with an expanding T cell population after day 77 [13,14]. The development of the 

lymphoid system is reflected in the ability of foetal lambs to generate an immune response 

[15]. However, different antigens are responded to at different time points during gestation. 

IgM anti-ΦX174 bacteriophage antibodies are produced by 53 days, IgG1 anti-ferritin is
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detected by 65 days [12,16] but anti-ovalbumin antibodies are not produced until day 125. 

Furthermore, before day 75 orthotopic skin grafts are accepted as if they were autologous, but 

are rejected after day 77 [17]. Interestingly, antibodies to some bacterial antigens, including 

toxins, are not produced until several weeks after birth [15].

This progressive responsiveness could partly be explained by the sequential 

expression of PRRs, which are responsible for the initial recognition of the antigen.

Information on mammalian PRR ontogeny is scanty; it is possible that the differential 

pulmonary expression of TLR4 may explain the ontogeny of murine responsiveness to 

lipopolysaccharide (LPS) [18], but little else is known [7]. To examine the possible 

contribution of the pattern recognition receptors to the initiation of antigen specific immune 

reactivity, PRR transcript expression levels were quantified in the spleen - an organ associated 

with systemic immunity; and the skin, an organ that is in contact with the external 

environment of the amnion. Tissues were taken from foetal lambs at the critical 60 – 90 day 

second trimester period and compared with tissues taken from 1 year old adult sheep.

2. Materials and methods

2.1. Animals and tissues                                                                                                  

Spleens and thoracic flank skin strips, taken immediately posterior to the shoulder,

were collected from foetuses carried by Greyface ewes date-mated with a Texel ram. The 

ewes were euthanized with intravenous pentobarbitone sodium and the intact gravid uterus 

removed to sample foetal tissues. The foetuses were estimated gestational age of 60 (n=5), 70

(n=5), 80 (n=5) and 90 (n=5) days (all being of second trimester pregnancy - normal ovine 

gestation 145 – 150 days). Tissues were taken immediately post-mortem, from 1 year old, 

breed-matched ewes (n=4), from exactly the same site as foetal tissues. All collected samples 

were immediately placed in five times volume of RNAlater (Ambion, Huntingdon, UK), and 

stored overnight at 4ºC; after which the RNAlater was removed and tissues stored at -80 ºC.
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Tissues for histopathology were fixed in 10% formol-saline; 4 m sections from paraffin 

wax-embedded tissue were stained with haematoxylin and eosin. Animal experiments were 

conducted under a valid Animals (Scientific Procedures) Act 1986 Project Licence.

2.2. RNA isolation, cDNA synthesis and quantitative real-time PCR.

Total RNA was isolated from tissues using the RNeasy Mini kit (Qiagen, Crawley, 

UK); tissue samples were finely chopped and homogenized in 350 μl of lysis buffer. Each 

sample was diluted with 550 μl of nuclease-free water and digested with 10 μl proteinase K at 

20 mg/ml (Sigma-Aldrich, Poole, UK) for 15 min at 55 °C. Genomic DNA was sheared using 

a 20-g needle. Homogenates were microfuged and RNA purified using Qiagen mini spin 

columns including DNAase I digestion. RNA samples from the same biopsy were pooled, 

volumes adjusted to a total volume of 100 μl in nuclease-free water, purified using Qiagen

RNA mini spin columns and eluted in 30 μl of nuclease-free water. Total RNA was quantified 

by spectrophotometry. RNA quality and integrity was confirmed using a RNA LabChip on an 

Agilent 2100 Bioanalyzer; all samples had an RNA integrity number >7. 

For cDNA synthesis, 2.5 g of total RNA from each tissue sample was mixed with 

0.5 g Oligo(dT)15 primer, 5 l of M-MuLV RT 5x reaction buffer, 1 l of dNTPs mix (10 

mM), 1 l M-MuLV RNaseH- reverse transcriptase  (Promega, Southampton, UK)  and 

nuclease free water up to 25 l. The reaction was incubated at 40 °C for 10 min, 42 C for 50 

min and inactivated at 70 °C for 15 min; an RT- control was included in all experiments and 

never produced signal  . The cDNA was diluted four-fold in nuclease free water and stored at 

-20 °C until used.

Two-step, quantitative real-time RT-PCR (qPCR) for sheep PRRs  was performed 

using a Rotor-Gene 3000 (Corbett Life Science, Sydney, Australia) exactly as described by 

Nalubamba et al. (2007) [19]. Copy numbers were determined from the Ct values of each 

sample in comparison to the copy number values assigned from a plasmid DNA standard 
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using Rotor-Gene analysis software (6.0.34). Data were normalized using  actin and 

succinate dehydrogenase (SDHA) housekeeping genes; a normalization factor, taking into 

account the geometric means of both housekeeping genes, was calculated using geNORM

[20]. Duplicate PCR reactions were performed for each sample;. Statistical analysis was 

performed on the data from individual animals. One way analysis of variance and Tukey’s 

multiple comparison tests were used for the pair-wise comparisons, of foetal samples versus 

adult samples, of the log10 transformed normalized data.

3. Results

3.1. PRR expression in foetal skin

The expression levels of PRR transcripts in sheep skin from four second trimester 

foetal time points and adults is shown in Fig. 1; which shows transcript copy number in 

relation to the two housekeeping genes,  actin and SDHA.  These data show that different 

PRRs are present at very different levels in sheep skin, varying from less than 10 copies (e.g. 

TLR9) to more than 3,000 copies (MyD88). However, foetal skin from all time points tested 

expressed the same panel of PRR transcripts as adult skin (Fig. 1). The levels of TLR2, 

TLR3, TLR8 and MyD88 were not significantly different at any time point and TLR9 and 

TLR10 transcripts were not detectable in skin by qPCR. The pattern of transcript expression 

of TLR1, TLR5 and TLR7 is similar to the levels in all foetal samples, being significantly 

greater that in adult skin (*p≥0.05 for TLR5 and TLR7; **p≥0.02 for TLR1). Expression of 

TLR1 and TLR7 were similar at all four foetal time points whereas TLR5 increased by 

approximately three fold from day 60 to day 90 with the day 70 and day 80 levels being 

intermediate. TLR4, TLR6, CARD15, CD14 and Dectin 1 also behave in a similar manner 

with relatively low levels in foetal skin and significantly greater levels in adult tissue

(*p≥0.05 for TLR6, CD14 and Dectin 1; **p≥0.02 for TLR4 and CARD15). The expression 
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levels of Dectin-2 were low (<100 copies) but showed an almost linear increase from day 60 

to adult.  

3.2. PRR expression in foetal spleen

The expression levels of PRR transcripts in spleen are shown in Fig. 2; and as with 

skin it is clear that there is great disparity in the level of expression of the different PRRs; 

which vary from <200 copies (TLR5) to >7,000 copies (TLR4). What is also clear is that the 

magnitude of PRR expression in the two tissues is different; TLR2, TLR6 and Dectin 2 are up 

to ten fold greater in the spleen than in skin, MyD88 is expressed at about the same level,

while the level of CARD15 in the spleen is about ten fold less than in the skin.

The pattern of TLR1 and TLR5 expression is similar in the two tissues, being 

relatively low at the 60 day gestational time point (p≥0.05 for TLR1 and TLR5) and at the 

adult stage (p≥0.05 for TLR1 but not significant for TLR5) and relatively high at later 

gestational time points. TLR4, TLR6, TLR7, TLR8, TLR10, CARD15 and CD14 behave in 

almost exactly the opposite way, with low levels in foetal tissue and high levels in the adult

(p≥0.05 for TLR6, TLR7, TLR8, CARD15 and CD14 for all foetal samples and adult; for 

TLR4 and TLR10 p≥0.05 for days 60 and 70 only). Transcript levels of TLR2, TLR3 and 

MyD88 in the spleen are, as in the skin, approximately the same at all five time points. The 

expression pattern of the other three PRRs is unrelated to that of the skin; adult levels of 

Dectin 2 are lower those in the foetus. TLR9 is expressed at relatively high levels in the 

spleen, with the 80 day time point showing the highest value and Dectin 1 shows no pattern 

across the five time points.

4. Discussion

The second trimester period of gestation seems to be critical in the development of 

potentially protective immune responses in lambs [11]. Depending on the nature of the 

antigen, antibody responses begin by as early as day 53 and T cell responses are active by day 

77. This paper begins to examine the contribution of innate mechanisms to the protection of 
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the foetal lamb. A major part of innate protection is recognition of pathogen-associated 

ligands by PRRs, which is linked to the initiation of the adaptive immune response. In this 

study we quantified the expression of a panel of PRRs in the skin and spleen throughout the 

second trimester of gestation and compare it to the adult pattern. These tissues were chosen 

because the skin is the interface with the external environment of the amnion and the spleen is 

largely responsible for systemic immunity. The levels of PRRs in adult sheep tissues have 

been quantified previously [19] and the data on skin and spleen is similar to that presented 

here despite the fact that they are of different ages and breeds. However this study is specific 

comparison of animals of different ages and therefore the adult animals here are one year old 

and of the same breed as the foetuses.  We cannot measure levels of PRR protein because of a 

lack of specific antibodies but we assume that the relative quantities of receptor and mRNA 

are linked. This study demonstrates that foetal sheep, even as early as day 60 express the 

same spectrum of PRR transcripts as the adult but that the level of expression for most is 

dependent on the developmental age of the animal. However, the relationships are not simply 

one of a higher level of expression in the older animals. 

It is likely that the PRR profile in the tissues reflects their relative expression by the 

predominant cell types in the tissues [4]. Within the skin the major cell types associated with 

PRR expression are Langerhans cells (LC), dendritic cells (DC), macrophages and 

keratinocytes; in addition there will be a contribution from hair follicles and, especially in 

foetal skin, the large population of infiltrating leukocytes [21]. In the spleen there are major 

contributions from myeloid and lymphoid cell populations as well as erythroid and myeloid 

precursors [14]. Minor contributions will also be made in both tissues by epi- and 

endothelium. Animals at different developmental ages will have variable proportions of these 

different cells. 

There are three main patterns of expression, although not all PRRs have the same 

pattern in both tissues. The first, where there are no significant changes at any time point; the 

second, where foetal levels are high and adult levels are low and the third, where foetal levels 

are low and adult levels are high. 
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TLR2, TLR3 and TLR8 are the three PRRs with relatively invariant expression levels 

across the age groups. The probable explanation is that this reflects their expression by 

keratinocytes [22] and, in the case of TLR2, hair follicles [23]. TLR1, TLR5 and TLR7 have 

relatively high expression levels in foetal skin and significantly lower levels in adult skin; 

possibly explained by the fact that foetal skin contains higher numbers of infiltrating 

leukocytes [21]. The significant level of PRRs expressed in foetal skin could also play a role 

in the formation of the vernix caseosa present on foetal skin at birth and possessing 

antibacterial properties. Antigenic stimulus may arise from the amniotic fluid in which the 

foetus is suspended and encourage the formation of the protective layer. The third group, 

TLR4, TLR6, CARD15, CD14 and Dectins 1 and 2, have relatively low foetal levels and 

significantly higher levels in the adult. One possible reason is that these PRRs are principally 

expressed by LC/DC [24,25], which are more abundant and mature in the older animals. The 

low levels of TLR4 and especially CD14 in the developing foetus may the explain the 

prenatal hyporesponsiveness to LPS [7], The TLR levels in adult sheep skin reported here and 

previously [19] vary from those in cattle of similar age [26]; particularly different are TLR4

and TLR6, which are absent in cattle and TLR7, which is very low in sheep. It seems likely 

that different species are reliant on different panels of innate receptors.

The spleen undergoes major developmental changes in terms of structure and 

function between 60 and 90 days [14]. Before 64 days it consists of erythroid and myeloid 

precursors associated with a framework of reticular cells with only small numbers of B cells. 

Primitive B cell follicles appear by about 80 days, associated by rudimentary periarteriolar 

lymphoid sheath consisting mainly of CD8+ T cells. The proportion of CD4 and CD8 T cells 

only approaches the adult ratio after birth. TcR1+ T cells, which constitute more than 50% of 

peripheral blood T cells in neonatal lambs, do not begin to populate the spleen until after day 

113. The pattern of TLR expression in the spleen is surprisingly similar to the skin, given the 

fact that different cells populate these two tissues. Macrophages and monocytes express all 

PRRs in this panel; while DC strongly express most but are negative for TLR7 and TLR10 

[19]. The different sheep lymphocyte populations express limited panels of PRRs; only B 
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cells express TLR1 and TLR2, only CD4+ T cells express TLR10 and CD8+ T cells express 

none of this panel except MyD88. TLR3, TLR5, Dectin 1 and Dectin 2 are not expressed by 

any peripheral blood lymphocyte population [19]. 

The levels of expression of most PRRs is generally much higher in the spleen that in 

the skin; varying from about 2 fold greater for TLR2 to about 50 fold greater for TLR7. 

Indeed, TLR9 and TLR10 are expressed at significant levels in the spleen but are undetectable 

in the skin. Strangely, in view of this quantitative differential is the fact that MyD88, the 

adapter molecule for most TLRs is expressed at similar levels in both tissues. The one PRR 

that is significantly higher in skin than spleen is CARD15; possibly because it is highly 

expressed by LC, DC  and keratinocytes [27]. This study will contribute towards 

understanding of the ontogeny of the immune system in sheep and will also form the basis for 

future research on the role of PRRs in foetal immunology and foetal disease conditions.
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Figure Legends

Fig. 1. PRR transcript levels in skin of second trimester foetal lambs and in adult sheep.  
Data are transcript copy number ± SD, normalized to SDHA and -actin; * p≥0.05, ** p≥0.02 
adult level compared to any foetal sample.

Fig. 2. PRR transcript levels in spleen of second trimester foetal lambs and in adult sheep.  
Data are transcript copy number ± SD, normalized to SDHA and -actin; * p≥0.05, ** p≥0.02 
adult level compared to any foetal sample.
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