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Mini-Symposium

Understanding the Role of DISCI in Psychiatric Disease and
during Normal Development

Nicholas J. Brandon,' J. Kirsty Millar,> Carsten Korth,’ Hazel Sive,*>¢ Karun K. Singh,” and Akira Sawa?*-1°

'Discovery Neuroscience, Wyeth Research CN 8000, Princeton, New Jersey 08543, 2Medical Genetics Section, University of Edinburgh Centre for Molecular
Medicine and The Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom,
3Department of Neuropathology, University of Duesseldorf Medical School, 40225 Duesseldorf, Germany, *‘Whitehead Institute for Biomedical Research,
SMassachusetts Institute of Technology, and ¢Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02142, 7Picower Institute
of Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Departments of 8Psychiatry and Behavioral
Sciences and *Neuroscience and '°Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

The biology of schizophrenia is complex with multiple hypotheses (dopamine, glutamate, neurodevelopmental) well supported to underlie the
disease. Pathways centered on the risk factor “disrupted in schizophrenia 1” (DISC1) may be able to explain and unite these disparate hypotheses
and will be the topic of this mini-symposium preview. Nearly a decade after its original identification at the center of a translocation breakpoint
in alarge Scottish family that was associated with major psychiatric disease, we are starting to obtain credible insights into its function and role
in disease etiology. This preview will highlight a number of exciting areas of current DISC1 research that are revealing roles for DISC1 during
normal brain development and also in the disease state. Together these different threads will provide a timely and exciting overview of the DISC1

field and its potential in furthering our understanding of psychiatric diseases and in developing new therapies.

Introduction

The disrupted in schizophrenia (DISC) gene locus was first iden-
tified as a risk factor for major mental illness through study of a
large Scottish family in which a balanced translocation between
chromosomes 1 and 11 cosegregates with schizophrenia, bipolar
disorder, and recurrent major depression (Fig. 1) (St Clair et al.,
1990; Millar et al., 2000). Statistical analysis indicates that inher-
itance of the translocation is causal and increases risk of develop-
ing one of these disorders by ~50-fold in comparison to the
general population (Blackwood et al., 2001). This translocation
simultaneously directly disrupts DISC1, a conventional protein
coding gene, and DISC2, an antisense noncoding RNA gene on
chromosome 1 (Millar et al., 2000). Since 2000, a number of
complementary research efforts have started to show the impor-
tance and relevance of DISCI for psychiatric disease. Subsequent
genetic studies have confirmed that the DISC locus is involved in
multiple psychiatric disorders and cognitive function, in several
populations worldwide (Chubb et al., 2008; Jaaro-Peled, 2009).
Efforts to model DISC1 disease biology in transgenic mice, and
more recently in Drosophila and zebrafish, have been quite suc-
cessful (Sawamura et al., 2008; Wang et al., 2008; Drerup et al.,
2009; Kellendonk et al., 2009). In general DISC1 mutant mice,
from a range of approaches, show behavioral and anatomical
deficits that can be linked to psychiatric disease. In addition, the
description of the “DISCI interactome,” a rich protein—protein
interaction network around DISCI, has given the field a platform
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to interrogate processes and pathways that may be affected by
DISC1 (Camargo et al., 2007).

This DISC1 mini-symposium will preview developments in
this rapidly growing field. We will start with breakthroughs in
understanding the molecular consequences of the original family
translocation that might have critical repercussions for the field
(Millar). Then switching gears a possible role for aberrant DISC1
protein multimerization and misassembly in a subset of sporadic
disease cases will be described (Korth). This will segue into an
analysis of the pathways affected by DISCI at both a cellular and
whole-animal level. The function of DISC-1 during normal de-
velopment will be described (Sive), using the zebrafish as a tool.
Zebrafish DISC-1 is an essential gene, required for forebrain de-
velopment and GSK3/B-catenin signaling. Moving into the
mouse the DISC1-GSK3 pathway will then be shown to regulate
the proliferation of neural progenitor cells in the developing mu-
rine cortex and adult dentate gyrus (Singh). Complementing this
work, we will describe how DISC1 plays a key role at the centro-
some (Sawa) and conclude with the identification of novel roles
for DISC1 at synapses (Brandon). As the diversity of DISCI func-
tion is elaborated through this session, we will pay close attention
to the diseases to which DISCI is a contributory factor and see the
emergence of possible therapeutic approaches for DISCI diseases
(Wang et al., 2008).

Understanding molecular lesions in DISCI that underlie
psychiatric illness

It is critical that we understand how mutations in DISCI can lead
to molecular deficits that contribute to psychiatric illness. Obvi-
ously the original Scottish family with the balanced t(1;11) trans-
location provides the key molecular lesion to study, but recently
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Adapted from Blackwood et al., 2001

Figure 1.

Pedigree of the Scottish family showing inheritance of a balanced translocation (1;11) (q42; q14.3) and clinical diagnoses within the family [adapted with permission from Blackwood

et al. (2001), their Fig. 1]. The translocation (carriers are indicted by a red arrow) is shown to be associated with a range of major psychiatric illnesses including schizophrenia, bipolar affective

disorder, and major depression.

discovered rarer mutations in DISC1 and posttranslational pro-
cessing events also need to be studied (see next section). The
original cloning of the translocation breakpoints suggested that
the disruption of DISCI and DISC2 on chromosome 1 was crit-
ical with the apparent gene desert on chromosome 11 suggesting
no other genes were involved (Millar et al., 2000). This has now
changed with the identification of a novel, brain-expressed gene,
named DISC1 Fusion Partner 1 (DISC1FEP1), disrupted by the
translocation on chromosome 11. With this finding it is possible
that the disease mechanism is more complex than simple loss of
normal function or gain of function with a truncated protein,
because DISC1 and DISCIFP1 are located in the same orienta-
tion, and are predicted to form unique fusion transcripts and
proteins as a result of the translocation (Zhou et al., 2008).
DISC1/DISCI1FP1 fusion transcripts can be detected from
both derived chromosomes in lymphoblastoid cell lines isolated
from translocation carriers. Fusion transcripts from the derived 1
chromosome are relatively rare, while fusion transcripts from the
derived 11 chromosome are relatively abundant. Fusions from
the der 1 chromosome encode DISC1 amino acids 1-597 fused to
60 or 69 novel amino acids, depending on DISC1FP1 exon splic-
ing. However, the open reading frame is followed by several splic-
ing events which potentially mark these abnormal transcripts for
nonsense-mediated decay, consistent with their apparent scar-
city. When exogenously overexpressed, the aberrant DISC1 fu-
sion proteins are strongly targeted to mitochondria where they
induce morphological abnormalities. Fusions from the der 11
chromosome encode a C-terminal fragment of DISC1 corre-
sponding to amino acids 669—854. This open reading frame is
preceded by several stop codons, and may therefore not be trans-
lated. Intriguingly however, if produced, this C-terminal frag-
ment of DISC1 would correspond remarkably closely to the

truncated portion of human DISCI used to disrupt normal
DISCI1 function in mice by transgenic overexpression, resulting
in a schizophrenia-like phenotype (Li et al., 2007). A third poten-
tial der 1-derived fusion transcript is under investigation. This
fusion transcript encodes DISC1 amino acids 1-597, plus one
additional amino acid. Like the other der 1-derived fusion tran-
scripts, this transcript may be subject to nonsense-mediated de-
cay due to the presence of splice sites after the stop codon.
However, if translated, the resulting protein would be essentially
identical to the truncated human DISC1 species used to generate
transgenic mouse models of psychiatric illness (Hikida et al.,
2007; Pletnikov et al., 2008). It also corresponds to the fragment
of mouse DISC1 expressed from a truncated transgenic BAC
(Shen et al., 2008) in a further model.

In addition to the translocation, several putative pathogenic
mutations have been identified through sequencing DISC1 exons
in patients (Song et al., 2008). As an example, R37W, was iden-
tified in a single patient with schizophrenia, but not in 5000
unaffected controls and is therefore classed as an “ultra-rare”
mutation. Preliminary data show that this mutation is functional
and enhances localization of DISC1 to mitochondria, where, like
the abnormal DISC1 fusion proteins, it induces mitochondrial
morphological abnormalities. Altogether these observations sug-
gest that disease pathogenesis may involve abnormal compart-
mentalization of DISCI.

Understanding the role of DISC1 misassembly in

psychiatric illness

As we reveal the fine molecular details of the original Scottish
family translocation, we are also confronted by a major question
of whether nonmutant, full-length DISCI protein plays a role in
sporadic forms of major psychiatric disease. The genetic dataina
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yet unknown posttranscriptional (splicing) and posttranslational modifications on DISC1 protein
could modulate multimer propensity: phosphorylation, sumoylation, or other covalent modifications

Figure 2.

regulation of
DISC1 assembly

Diagram depicting a possible scenario how assembly and misassembly of DISCT could regulate its function. Of note, experimental data that were used to generate this diagram were

obtained in different in vivo and in vitro systems and were to a large extent obtained with (C-terminal) DISCT fragments; the diagram’s purpose is to generate testable hypotheses rather than to

depict a complete picture of DISC1 physiology.

range of populations is fairly supportive to date of a role for
DISC1 in the general population (Chubb et al., 2008). In addition
there are well known precedents to how proteins that can be
dysfunctional both as mutant proteins and as nonmutant pro-
teins causing similar or even identical neuropsychiatric pheno-
types. In Alzheimer’s disease or Parkinson’s disease, for example,
proteins crucial to disease pathophysiology are mutant in familial
forms of the disease, but the same proteins are also dysfunctional
when they are posttranslationally modified (Prusiner, 2001).
These posttranslational modifications include misfolding or mis-
processing of specific proteins, or both (Prusiner, 2001; Taylor et
al., 2002).

DISC1 is a cytosolic scaffold protein with four predicted
coiled-coil domains; posttranslational modifications can theo-
retically include phosphorylation, sumoylation, multimeriza-
tion, and proteolysis into active fragments. We investigated
aberrant multimerization of DISC1 as one possible mechanism of
how a posttranslational modification could affect its function.
The middle part of DISC1 (residues 400-500) had been identified
as a DISC1 self-association domain (Kamiya et al., 2005). The
C-terminal part of DISCI that is possibly deleted in the Scottish
family harbors both a homomeric multimerization (residues
668-747) and a dimerization domain (residues 765-854), the
concerted interaction between both being essential for ordered
oligomerization to a functional C-terminal DISC1 domain in
vitro (Leliveld et al., 2008, 2009). We found that distinct octamers
but not dimers or high-molecular-weight multimers of the
DISC1 C terminus bind to important interacting molecule
nuclear-distribution element-like 1 (NDEL1), indicating that the
DISC1-NDELI interaction depends on assembly of DISCI1 to a
defined quartenary structure (Fig. 2). When transiently overex-
pressed in human neuroblastoma cells, DISC1 segregates into
aggresomes and reveals insolubility in the presence of ionic de-
tergents whereas under same conditions, for example, NDEL1
remains soluble (Leliveld et al., 2008). Insoluble DISC1 was un-
able to interact with NDELI1, and in a subset of patients with
psychiatric disease of mixed phenotypes insoluble DISCI was
identified to be associated with a subset of patients (Leliveld et al.,
2008). Thus, aberrant multimerization into insoluble forms
could be a dysfunctional correlate of DISC1 in a subset of cases
with sporadic disease. From these studies, a group of sporadic
disease cases could be related to DISC1 misassembly and thus

constitute a larger group of brain disorders related to DISCI
dysfunction.

Higher multimerization propensity of DISC1 degradation
products in DISC1 transiently overexpressing NLF cells has been
described (Leliveld et al., 2008). At this point, it is unclear, how-
ever, whether DISC1 is proteolytically processed, in whether such
fragments are physiologically functional. We have identified
C-terminal fragments of DISCI in human brains (Leliveld et al.,
2009) and a transgenic mouse model of inducible expression of
the C-terminal fragment has indicated a potential dominant-
negative function for this fragment (Li et al., 2007). These find-
ings suggest that DISCI proteolytic fragments could regulate
cellular events and potentially compete with full-length DISC1
for binding partners. Thus, posttranslational modifications and
proteolysis of the DISC1 protein as well as existence of multiple
splice forms of DISC1 add to a considerable complexity in how
the nonmutant DISC1 gene is expressed. For defining future
DISC1-based diagnostics and pharmacotherapy, it will be impor-
tant to sort out DISC1 protein isoforms, their modifications and
their interactors that ultimately are the smallest common de-
nominator for causing a behavioral phenotype.

Analysis of DISC1 function using the zebrafish tool

We have begun to use the zebrafish as a tool to study the function
of DISCI. In the study of mental health disorders, zebrafish do
not display the complex behaviors present in humans, and can-
not be used to recapitulate the disorder. We therefore draw the
distinction between an animal “model,” which recapitulates a
human disorder, and a “tool,” which does not, but nonetheless
can be used to provide insight into the disorder. The zebrafish is
an excellent tool for analysis of genes associated with mental
health disorders, due to the ability to perform rapid loss- and
gain-of-function assays, ability to assay function of human gene
variants rapidly, and feasibility of small molecule screens (Blaker,
2009).

Conserved domains are present in the DISC1 gene in zebrafish
and mammals. Zebrafish DISCI is expressed maternally and zy-
gotic expression is strongest in the developing CNS. To test the
embryonic function of DISC1, we decreased zygotic gene func-
tion by injecting morpholino-modified antisense oligonucleo-
tides (MOs) targeting splice sites. A DISC1 morpholino described
as DIMO was directed against the splice donor site between exon
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conserved, since expression of the human
gene can rescue DISC-1 morphants, and
this rescue requires the Gsk3f3 binding do-
main present in DISC-1. These data are con-
sistent with those obtained in late gestation
mouse embryos that led to the demonstra-
tion of direct DISC-1 and Gsk3 B interaction

(see next section) (Mao et al., 2009).

In conclusion, our data identify
DISC-1 as a crucial positive modulator of
the canonical Wnt pathway, and confirm
the efficacy of using zebrafish as a tool to
explore the function of genes implicated

| Ac. Tubulin

in human mental health disorders.

The role of DISC1 in progenitor

cell proliferation

Schizophrenia (SZ) is described as a neu-
ral development disorder since the age of
onset primarily occurs in early adulthood.
Moreover, it is thought that the pathology
of SZ develops during prenatal and post-
natal stages and that disrupted neural de-
velopment at these time points leads to SZ
in later years (Jaaro-Peled, 2009). Numer-

| diff. neurons

Figure3.  Knockdown of zebrafish DISC-1 protein function results in abnormal brain and impaired axonogenesis. Two antisense
morpholino-modified oligonucleotides (MO), targeting splice sites, were injected at the one- to two-cell stage. The D1 MO lies
between exons 1 and 2, and ablates all functional DISC-1 protein, while the D2 MO lies between exons 8 and 9 and produces a
truncated protein. Embryos were assayed at 24 h after fertilization in 4 — 6 independent experiments, with at least 100 embryos per
experiment. Brain ventricles were visualized after microinjecting a fluorescent dye, rhodamine— dextran, into the hindbrain
ventricle of living anesthetized embryos. A-D, DISC1 morpholino 1 (D1MO)-injected embryos display one of two phenotypes. The
D1MO mild phenotype shows reduced brain ventricles with loss of normal shape (A) and defects in the somites and head (B). The
DTMO strong phenotype shows abnormal brain (€) and no tail formation (D). E, F, Control morpholino (CMO)-injected embryos
display a wild-type phenotype. G, H, Embryos injected with the D2MO display reduced hindbrain and midbrain ventricles (G) and
reduced and bent tail (H). f, Forebrain; m, midbrain; h, hindbrain; asterisk, otic vesicles. I-K, Abnormal axon growth in D1 and D2
morphants, stained for differentiated neurons with anti-acetylated tubulin. Dorsal view of the hindbrain is shown. I, Control
animals. J, Strongly reduced and disorganized axon growth in DTMO-injected embryos. K, Reduction of axons in D2MO-injected

ous studies have shown that DISCI is
highly expressed during brain develop-
ment and plays vital roles in the growth of
the embryonic and postnatal brain (Schu-
rov et al., 2004; Chubb et al., 2008). This
suggests that DISC1 contributes to psy-
chiatric illness by affecting brain develop-
ment and maturation.

A recent study from the Tsai labora-
tory revealed a novel role for DISCI as an

embryos.

1 and intron 1/2, and ablates all normal DISC1 mRNA. DIMO-
injected embryos (“morphants”) show a very strong phenotype,
apparent by early somitogenesis, including defects in forebrain
formation and huge failure of axon outgrowth throughout the brain
(Fig. 3A-D,]). In contrast, a second DISCI-targeted morpholino
(D2MO) leads to aberrant splicing and truncation of the DISC-1
protein between exons 8 and 9, but gives a much less severe pheno-
type than D1 (Fig. 3G, H,K). This truncation recapitulates that seen
in the human translocation associated with schizophrenia (Millar et
al.,, 2000). Expression of this truncated protein in the brain of wild-
type embryos results in embryos with a similar phenotype to
those treated with the D2MO, suggesting that it may interfere
with normal DISC-1 function.

We noticed that the gross phenotypes resulting from DISC1
and Wnt8b loss of function are similar, and showed that partial
loss of function of each resulted in a strong phenotype, demon-
strating synergy between these genes. Several additional lines of
evidence indicate that DISC1 functions in the Wnt pathway. First,
similar changes in forebrain gene expression are observed after loss
of DISCI1 or loss of Wnt8b function. Second, loss of DISC1 function
decreases reporter gene expression in a Wnt-responsive reporter ze-
brafish line. Third, a Gsk33 inhibitor is able to rescue gene expres-
sion in DISC-1 loss of function morphants. Fourth, an inducible
[B-catenin fusion protein rescues the DISC-1 loss of function pheno-
type. Finally, we show that zebrafish and human DISC-1 function is

important regulator of embryonic and
adult neurogenesis (Mao etal., 2009). The
authors discovered that DISC1 is highly
expressed in the embryonic ventricular/subventricular zones of
the cortex where neural progenitor cells reside, suggesting DISC1
may regulate their proliferation and/or differentiation. To assess
this, in utero electroporation was used to introduce DISC1 RNAi
into neural progenitors in the developing neocortex. This re-
sulted in significantly reduced proliferation of progenitor cells,
concurrent with an increase in cell cycle exit and premature neu-
ronal differentiation. Interestingly, overexpression of DISC1 in
neural progenitors resulted in an opposite phenotype. These re-
sults suggest that the levels of DISCI in cycling neural progenitor
cells influences whether they remain as progenitors or differenti-
ate into neurons. This study also found that DISC1 has a promi-
nent role in adult neurogenesis. Knockdown of DISC1 using a
lentivirus to deliver RNAi resulted in a decrease in the prolif-
eration of adult progenitor cells in the dentate gyrus. Further-
more, this manipulation resulted in mice that displayed
hyperlocomotion in a novel environment and increased im-
mobility in the forced swimming test, both behavioral mea-
sures frequently observed in animal models displaying
schizophrenic-like behavior.

In searching for mechanisms to explain how DISC1 regulates
neurogenesis, Mao et al. (2009) discovered that downregulating
levels of DISC1 abolished the ability of Wnt3a to stimulate pro-
liferation of neural progenitor cells, suggesting DISC1 functions
in the Wnt signaling pathway (Fig. 4). Interestingly, in contrast to
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the C terminus of DISC1 which binds
NDELI1, the N-terminal region of DISC1
was found to directly bind and inhibit
GSK3, thereby stabilizing B-catenin lev-
els. Downregulating DISC1 expression
decreased levels of B-catenin and TCF/
LEF gene-reporter activity, while overex-
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effects. Most striking was the observation
that the in vitro and in vivo phenotypes due
to DISCI knockdown (both in the embry-
onic or adult brain) could be rescued by
either overexpression of a degradation-
resistant form of B-catenin, or by pharma-
cological inhibition of GSK3. This suggests
the cellular and behavioral results due to
DISC1 knockdown can be alleviated by hy-
peractivation of the canonical Wnt signaling
pathway. Together, these data argue that
DISC1 is an important regulator of neural
progenitor proliferation that acts by posi-
tively modulating canonical Wnt signaling
via inhibition of GSK3 (Fig. 4).

The role of DISCI1 at the centrosome
and microtubule networks

Microtubule networks organized from
the centrosome play important cellular
roles in the brain, including progenitor
cell proliferation, neuronal migration, and
differentiation (Feng and Walsh, 2001;
Badano et al., 2005). We originally identi-
fied a role for DISCI in the microtubule/
centrosome cascade, in which we reported
an interaction of DISC1 and NDELI and its
significance for neurite outgrowth in neuro-
blastoma PCI12 cells (Ozeki et al., 2003).
More recently we have isolated additional
DISC1 binding proteins associated with the
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material 1 (PCM1) and Bardet-Biedl syn-
drome proteins (BBSs) (Kamiya et al., 2008)
(Fig. 5). BBS4 is known as an adaptor of the
p150glued subunit of the dynein motor
complex and to recruit PCM1 to the centro-
some (Kim et al., 2004).

Many reports have now consistently
indicated that the C-terminal domain of
DISCI1, which is lost in the Scottish muta-
tion, play a key role in interactions with
most of these DISC1 interacting centroso-
mal proteins, facilitating the centrosomal
association (Ozeki et al., 2003; Brandon et
al., 2004; Millar et al., 2005a; Shimizu et
al., 2008) (Fig. 5). In addition, DISCI con-
tains a self-association domain in the
middle portion of the protein (Kamiya et
al., 2005). This domain may allow for the putative C-terminal
truncated DISC1 to function in a dominant-negative manner by
redistributing wild-type DISC1 through self-association and by
dissociating the DISC1-motor complex from the centrosome.
Consequently, either depletion of endogenous DISC1 or expres-
sion of a C-terminal truncated DISC1 impairs neurite outgrowth

Figure 4.

Increased neural progenitor
proliferation & other
GSK3B-related functions

Decreased neural progenitor
prolieration & other
GSK3pB-related functions

l

Risk of psychiatric disease

DISCT regulates neurogenesis via Wnt/[3-catenin signaling. During canonical Wnt signaling, 3-catenin levels are
kept low in the cytosol due to GSK3 3-mediated phosphorylation which targets 3-catenin for degradation. In the presence of Wnt
ligands, the receptor complex and downstream signaling machinery is engaged, leading to increased accumulation of 3-catenin
and transcription of Wnt-dependent genes. In embryonic and adult neural progenitors, DISCT directly binds and inhibits the
function of GSK3 3, thereby increasing cytosolic 3-catenin concentration and functioning as a positive regulator of Wnt signaling.
This function of DISCT is similar to Akt and Lithium (used to treat mood disorders), which can also inhibit GSK3 3, suggesting this
pathway plays an important role in psychiatric disease.

in vitro, proper development of the cerebral cortex in vivo, and
elicits behavioral deficits when expressed in mouse models (Ka-
miya etal., 2005; Hikida etal., 2007; Li et al., 2007; Pletnikov et al.,
2008; Shen et al., 2008; Wang et al., 2008).

The importance of the DISCI1 protein complex associated
with microtubule motors and the centrosome in schizophrenia
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tations (missense and nonsense) in the
PCMI1 gene, in association with schizo-
phrenia (Datta et al., 2008; Kamiya et
al., 2008). The second line of evidence
supporting the connection of DISC1
! and motors/centrosome with schizo-
\ phrenia are reports in which nonsyn-
onymous genetic variations in DISC1
associated with schizophrenia, such as
; §704C and L607F (Hodgkinson et al.,

2004; Callicott et al., 2005), seem to
have a functional influence on protein

centriolar
satellites

motor

interactions of DISCI and motor/cen-

centrioles

Centrosome
Figure 5.  DISC1 at the centrosome. DISCT is now known to bind to a number of proteins localized to the centrosome including

nudE nuclear distribution gene E homolog (A. nidulans)-like 1 (NDEL1), pericentriolar material 1 (PCM1), and Bardet-BiedI syn-
drome proteins (BBSs). DISC1 play a role in anchoring these molecules in association with the dynein motor complex and centro-
some, regulating microtubule organization. Of note, several of these DISCT interactors at the centrosome are promising genetic risk

factors for major mental illnesses in their own right.
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Figure 6.  Model of DISC1 at the synapse. Multiple pieces of evidence show that DISC1 is a
component of the postsynaptic density (PSDs) of excitatory synapses and requlates their form
and function. It is likely that the effects of DISCT are mediated through a range of protein
interaction partners. The function of complexes of DISC1 and PSD proteins Kalirin-7 (kal-7) and
Traf- and nck-interacting kinase (TNIK) are currently being elaborated. Kal-7 and TNIK both
regulate the actin cytoskeleton, but it is currently unknown whether these two complexes act in
a common pathway or independently of each other.

has been supported by two lines of genetic findings. First, genes
encoding for these motor and centrosomal proteins have been re-
ported in genetic association studies. Thus far, the most reproducible
association has been in the PCM1 gene. Initially, Gurling et al. (2006)
reported that PCM1 is implicated in susceptibility to schizophrenia
and is associated with orbitofrontal gray matter volumetric deficits.
Genetic association of PCM1 with schizophrenia has since been re-
produced in several sample sets (Datta et al., 2008). Furthermore,
two groups including our own have reported nonsynonymous mu-

"*.__Microtubule ()

trosomal proteins. We have been able to
show that NDEL1 and NDE1 share the
same DISCI binding domain, and op-
posing binding patterns of NDEL1 and
NDE1 to S704 versus C704 are observed
(Kamiya et al.,, 2006; Burdick et al,
2008).

Together, although further genetic and
neuropathological support are needed to
lead to a firm conclusion, various lines of
evidence have supported that a subsection
of the “DISC1 interactome” associated with
the centrosome and microtubule motors is
likely to play a role in the pathology of
schizophrenia.

A role for DISCI1 at the synapse

In postmortem studies of schizophrenia patients, a consistent
observation has been a reduction in spine density on cortical
pyramidal neurons (Glantz and Lewis, 2000). Dendritic spines
contain the postsynaptic compartment of the majority of excita-
tory synapses in the brain and their morphology is inextricably
linked to neuronal activation and synaptic plasticity (Blanpied
and Ehlers, 2004; Tada and Sheng, 2006). Accumulating data
suggest DISCI is localized at synapses, but its function(s) here
remains poorly understood. The initial indication of a synaptic
form of DISC1 came from an electron microscopic study of hu-
man neocortex that showed that DISC1 is found at asymmetric
synapses principally on the postsynaptic side (Kirkpatrick et al.,
2006). The ever-increasing number of DISC1 mouse models has
added to the evidence for a role at the synapse, in particular through
analysis of the neuronal architecture of some of these strains of mice.
For example C57BL/6] mice, which carry a 25 bp deletion in Discl
exon 6, produce a truncated Discl protein mimicking the Scottish
family (Kvajo et al., 2008). These mice have significant decreases in
synaptic spines in the dentate gyrus, and impairments in working
memory as a consequence (Kvajo et al., 2008). While depletion of
Discl in the dentate gyrus by shRNA in adult C57BL/6 mice led to
accelerated formation of dendritic spines in newborn neurons with
both glutamatergic and GABAergic synapses involved as measured
functionally by electrophysiology (Duan et al., 2007).

These observations provide good support for a bioinformatics
analysis of DISCI interactions which strongly suggested that
DISCI1 is likely to be a key component of the postsynaptic density
and a player in regulating synaptic plasticity (Camargo et al.,
2007). This study was driven by a series of iterative yeast two
hybrid screens which culminated in the “DISC1 interactome,” a
highly integrated network of protein—protein interactions
around DISCI. We have approached synaptic DISC1 by under-
standing its protein environment at the synapse and so have re-
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lied on the DISC1 interactome for guidance (Camargo et al,,
2007). As mentioned one of cellular processes enriched in this
protein network was actin cytoskeleton regulation. The actin cy-
toskeleton is critical for regulating spine formation, which under-
lies synaptic plasticity (Sekino et al., 2007; Cingolani and Goda,
2008). To understand whether DISC1 plays a role in spine func-
tion, through regulating the actin cytoskeleton, we focused our
efforts on DISCI interacting partners that have been implicated
in this process. The first interaction we have started to explore is
between DISC1 and kalirin-7 (kal-7). Kal-7 was a very attractive
target as it is reduced in schizophrenic brain (Hill et al., 2006).
Kal-7 is a Racl-GTP exchange factor (GEF) that activates Racl
and is known to be downstream of a number of key signaling
pathways at the synapse. Multiple lines of evidence now support
a critical role for kal-7 in regulating spine morphology and un-
derlying synaptic plasticity (Penzes and Jones, 2008). For exam-
ple NMDAR activation has been shown to enhance kal-7 activity
and in turn activate racl signaling. This in turn leads to increased
spine size, an increase in GluR1 content in the spine and in-
creased synaptic strength (Xie et al., 2007). It is likely that these
events are driven by racl regulation of the actin cytoskeleton. We
have recently characterized a DISC1-Kal-7-racl complex and
shown that DISC1 is critical for regulating kal-7 activity and in
turn the regulation of spine form and function (A. Hayashiand A.
Sawa, unpublished results) (Fig. 6). In parallel we have analyzed
the role of DISC1 in regulating the activity of a member of the
Sterile-20 (Ste20) group of kinases known as Traf- and nck-
interacting kinase (TNIK) (Q. Wang and N. Brandon, unpub-
lished results). TNIK is an attractive partner to characterize as it
has been recently linked to altered cortical function in schizo-
phrenic patients and at the cellular level has been linked to actin
cytoskeleton regulation (Fu et al., 1999; Potkin et al., 2009). The
challenge now is to understand how DISC1 regulate both the
kal-7 and TNIK pathways and how this is integrated with addi-
tional binding partner pathways at the synapse (Fig. 6). It is clear,
though, that DISC1 is building up a curriculum vitae as a major
player at the postsynaptic density.

Discussion and perspective

Emerging evidence suggests that DISCI plays multiple key roles
in normal brain development, while a number of mechanisms
from the gene to aberrant protein processing may contribute to
psychiatric disease etiology. The complexity of DISC1 biology
should be of no surprise due to complexity at the transcriptional
and translational levels and in the number of proteins to which
DISC1 binds. As the pathways regulated by DISC1 emerge, for
example cAMP via PDE4 previously (Millar et al., 2005b) and the
wnt pathways via GSK3 herein, it is clear that therapeutic opportu-
nities to reverse DISC1-related deficits may arise. Further study of
these disease mechanisms and pathways through ever-increasing re-
fined animal models and cell biology approaches is likely to bring
this hope to a reality.
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